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Abstract— As intrusion detection essentially can be formu-
lated as a binary classification problem, it thus can be solved
by an effective classification technique—Support Vector Ma-
chine(SVM). Additionally, some text processing techniques
can also be employed for intrusion detection, based on the
characterization of the frequencies of the system calls exe-
cuted by the privileged programs. Based on the intersec-
tion of these two research domains, i.e. pattern recognition
and text categorization, and breaking the strong traditional
assumption that training data for intrusion detectors are
readily available with high quality in batch, the conventional
SVM, Robust SVM and one-class SVM have been modified
respectively based on the idea from Online SVM in this
paper, and their performances are compared with that of
the original algorithms. After elaborate theoretical analy-
sis, concrete experiments with 1998 DARPA BSM data set
collected at MIT’s Lincoln Labs are carried out. These ex-
periments indicate that the modified SVMs can be trained
online and the results outperform the original ones with
fewer support vectors(SVs) and less training time without
decreasing detection accuracy. Both of these achievements
could significantly benefit an effective online intrusion de-
tection system.

Keywords— computer security, intrusion detection,
anomaly detection, support vector machines, text catego-
rization

I. INTRODUCTION

As computer networks play an increasingly vital role in
modern society with rapid increases in the functionality,
connectivity and accessibility, more and more efforts are
being put to its security, because a major attack can signif-
icantly reduce the capability of information systems. Any
exploitable weakness of networks that can be used by hack-
ers and criminals can potentially cause great losses to peo-
ple. As backup measures for intrusion prevention, such
as user authentication, authorization, encryption, etc., in-
trusion detection techniques are attracting increasing at-
tention, and some achievements have been applied widely,
with limited performance.

Briefly, the aim of intrusion detection is to identify ma-
licious attacks that might threaten the security from the
normal activities of information systems. Existing intru-
sion techniques fall into two general categories: anomaly
detection and misuse detection. Anomaly detection tech-
niques mainly focus on establishing normal activities pat-
tern (set or rule) Q, and any current activity w that devi-

ates from (2 is treated as an intrusion. On the contrary,
misuse detection techniques attempt to create a model of
attack signatures ¥, when a current signature 1 matches
W, it is regarded as an intrusion. However, defects exist in
both anomaly detection and misuse detection, false posi-
tives (¢ is misclassified to §2) and false negatives (novel at-
tack 1) € WU is ignored) often cause these techniques to fail.
Due to the complementary nature of these two approaches,
the intuitive approach to design an effective intrusion de-
tection system is to combine them together. Generally, the
criterion for evaluating the efficiency of an IDS is its abil-
ity to detect underlying attacks, while minimizing the false
positive rate.

Based on the analysis of the available literature on intru-
sion detection, we found that two elements are essential to
intrusion detection, namely, a data model of the observable
subjects or events, and the corresponding techniques for
characterizing and analyzing the data model. Specifically,
several questions should be answered carefully: What ob-
servable subjects should be selected for monitoring and an-
alyzing? What attributes should be considered for charac-
terizing these related subjects? What existing approaches
or novel methods can be employed to detect anomalies
based on the characterized observation? It is well known
that a computer and network system generally contains
two components: hosts and communication links among
hosts. Consequently, network traffic data, from captured
data packets travelling on the communication links, and au-
dit data, which record the sequence of events on the hosts,
can be selected as observable subjects. Actually, those two
domains can be further exploited for seeking more particu-
lar and effective observation, such as command line strings,
system call traces, and resource consumption patterns in
the host audit data, or the intrinsic features, traffic fea-
tures, and content features of the network packets. Based
on the characterization of the data model, all techniques
that are effective for distinguishing intrusions from normal
behaviors are worthy of consideration. Up to now, tech-
niques drawn from statistics [11,31,32], data mining [18],
pattern recognition [6], machine learning [13,25], and other
research fields have effectively been applied to intrusion de-
tection.



The available approaches for intrusion detection focus on
improving detection accuracy and restraining false alarms,
and given enough time, most of them can achieve satisfac-
tory results in terms of these criteria. However, in practice,
intrusion detection is a real-time critical mission, that is,
intrusions should be detected as soon as possible or at least
before the attack eventually succeeds. In addition, there is
usually an initial training period for an intrusion detector
to characterize the observable subject’s behavior, and most
existing methods are based on the assumption that high
quality labelled training data are readily available. This
assumption severely limits their application in practice. In
fact, intrusion detectors must undergo frequent retraining,
to incorporate periodically new examples into the training
data for classifying novel attacks and changes from nor-
mal behavior. Therefore, running time and training time
should also be considered in addition to detection accuracy
and false alarms when designing an effective IDS.

Various methods have been introduced for detecting in-
trusions at the level of privileged processes in SUN OS,
because of its special properties, such as sensitivity to in-
trusions, stability over time, and limited range of behaviors,
hence any exploitation of vulnerabilities in privileged pro-
cess can give an intruder super-user status and thus commit
further attacks. In [20], intrusion detection was formulated
as a text processing problem based on the analogy between
“system calls/processes” and “words/documents”. Here,
we also take system calls executed by privileged processes
as observable subjects for analysis. Generally, the contri-
butions of our work presented in this paper mainly include:
« Based on the fact that original ¢ f-idf (term frequency in-
verse document frequency) weighting model in text catego-
rization might cause high false alarm rate in anomaly detec-
tion, a new weighting model based on the tf-idf method is
established; this new model considers the special informa-
tion between different processes and sessions of computer
audit data.

o Based on the assumption that training data are noisy
(normal data are mixed up with anomalies or errors we do
not expect) , Robust SVM [27] is employed to discriminate
anomalies and normal activities. Based on the assumption
that anomalies in training data are hard to attain and the
number of anomalies is much smaller than that of normal
activities, One-class SVM [26] is applied to identify the few
anomalies from training data.

o Rejecting the assumption that high quality labelled
training data is always readily available, and based on the
fact that training data should be frequently updated to
adapt the new normal regularity, Robust SVM and One-
class SVM are modified based on the idea from Online SVM
[17]. That is, training data are provided in sequence online,
rather than in a batch.

After an elaborate theoretical analysis, we evaluated our
methods using reformulated 1998 DARPA BSM data and
compared their performance with the original algorithms
based on the original tf-idf weighting model. The re-
sults show that our modified SVMs can significantly reduce
training time with better generalization performance and

fewer support vectors while maintaining high detection ac-
curacy; They thus require less computational overhead and
running time and so are more desirable for real time intru-
sion detection. Furthermore, our modified weighting model
based on the ¢ f-idf weighting method suppresses the false
alarm rate to an acceptable level, thus guaranteeing the
proposed method to be applied in practice.

The rest of this paper is organized as follows. In sec-
tion 2, we review some related work on the existing in-
trusion detection techniques that used host audit data as
observable subjects. Section 3 formulates the problem we
solved and describes the data source that was used in our
work together with the modelling of the data. In section 4,
we introduce the effective classification method—SVM, and
modify three SVMs, which have different assumptions, for
online training. After the analysis of the data model and
the improvement of the candidate methods, experiments
were implemented to evaluate the performance of our pro-
posed methods, which is described in section 5. Finally,
our conclusions are presented in section 6.

II. RELATED WORK

As we know, intrusion detection can be treated as a bi-
nary concept on a domain consisting of temporal sequences
of discrete, unordered elements, such as system call traces,
network packet traces, and resource consumption. So far,
many effective techniques have been employed to this prob-
lem domain, including multivariate model [32], Markov
process [33], and discriminant analysis [1] from statistics;
neural networks [9,15] from pattern recognition; support
vector machines [13,25] from machine learning; and other
clustering methods and classification methods from data
mining [18,19].

Forrest et al [8] proposed to build program profiles with
short sequences of system calls executed by running priv-
ileged programs for intrusion detection, based on the as-
sumption that sequences of system calls in an intrusion
are noticeably different from those of normal operations.
The reason for selecting privileged programs as subjects
is that it constitutes a natural boundary for a computer,
and the range of behaviors of privileged processes is limited
and relatively stable over time compared to user behavior.
Subsequently, many researchers applied various techniques
[10,20,29] to extend and improve the work with increasingly
better performance. Warrender et al [29] even argued that
the choice of data stream (short sequences of system calls)
is more important than the particular method of analy-
sis, but subsequent studies did not adequately support this
conclusion. Ye et al [31] investigated the frequency and
ordering properties of computer audit data, showing that
the frequency property of multiple audit event types in a
sequence of events is necessary for intrusion detection, and
that the ordering property of multiple audit events can
provide additional advantages to the frequency property.
However, due to the scalability problem of complex data
models (e.g. higher-order stochastic models) [33], intru-
sion detection techniques based on the ordering property
can hardly provide a feasible solution that produces good



performance with low computational overhead, especially
when the intrusive audit data are mixed with the white
noise of normal audit data. The frequency property, on the
other hand, can provide a viable tradeoff between compu-
tational complexity and intrusion detection performance.
The motivation of our work heavily based on this conclu-
sion.

Liao et al [20] used K-Nearest Neighbor(KNN) classifier
to label program behavior as normal or intrusive. Specifi-
cally, each system call in the process was treated as a word,
and the collection of system calls over each program exe-
cution was treated as a document; thus the system call fre-
quencies were used as the main property to represent pro-
gram behavior. This method can be easily implemented
and in general has smaller computational overhead than
other techniques from statistics, data mining, etc. Us-
ing the same data model, and based on the assumption
that normal cases are mixed with anomalies in the train-
ing data, Hu et al [13] applied Robust SVM [27], which
can solve the over-fitting problem effectively introduced by
the noise in the training data set, to intrusion detection
over noisy audit data; in this situation, if an attack oc-
curs during the training process, the undesired intrusive
behavior usually is regarded as normal one, undermining
the intrusion detector’s accuracy [21]. However, their ex-
periments showed that intrusion detection based on the
text processing model would generate an unacceptable false
positive rate, so it could hardly be applied in practice. Ad-
ditionally, based on the assumption that the number of nor-
mal instances is significantly larger than that of anomalies,
Eskin et al [7] proposed unsupervised anomaly detection
methods with unlabelled data, and Nguyen [25] employed
One-class SVM [26] to identify “outliers” amongst positive
examples (normal behaviors) by treating them as negative
examples(abnormal behaviors). Although detection accu-
racy performance was comparable to some other intrusion
detection techniques, the unchanged patterns which can
not reflect concept drift limit its application. Moreover, all
the intrusion detectors we listed above are based on the
strict assumption that training data are readily available
with high quality.

III. PROBLEM DEFINITION AND OBJECTIVE

This section gives a general description of intrusion de-
tection from our perspective, and describes the base-rate
fallacy of intrusion detectors, which motivates us to sup-
press false alarm rate as low as possible. The data source
that will be used in the experiments, along with its model
for characterization are also presented.

A. Intrusion Detectors and Their Failure Curses

Generally, the trade-off between the ability to detect
novel attacks and the ability to generate a low rate of false
alters is the main criterion for evaluating an intrusion de-
tector. Actually, from the functional perspective, intru-
sion detectors can be roughly regarded as a simple kind
of inductive inference system. In this system, an incoming
process @; is regarded as a “question”, while the normal or

anomaly models M; that stored in the memory are regarded
as “answers”. Then, given a new @;, the system tries to
find an appropriate answer M; so that ID(Q;) = M,;. We
look for effective IDs that have the highest a priori - that
have “accurate descriptions”. In generating such IDs, some
primitive IDs have to be previously defined. From proba-
bilistic prediction we can gradually to deterministic predic-
tion, that is, whether the current “question” is an anomaly.
Due to the fact that the sample size of “M” is limited but
the number of questions “Q)” are infinite and long-standing,
the ken and adaptability of ID is a key to answer diverse
questions successfully.

Therefore, the first objective is to train IDs to be capa-
ble of learning online to adapt the changing situations, and
thus construct or update corresponding “M”. For instance,
in practice, training sequences are usually not readily avail-
able with labels and high quality, especially for a computer
system with reconfiguration. In such case, the ID has to
be trained online with training data provided in a sequence
rather than in a batch.

Furthermore, the construction and characterization of
training sequences “M” is the next objective needs to be
considered well. Existing IDs mainly focus on the order-
ing property (sequential property) and frequency property.
Similar with the description in [11], a statistical framework
can be utilized to analyze those two properties.

Notations:

H(t): a hidden stochastic process which maps the activ-
ities of legitimate users and attackers to a finite space S in
terms of discrete time step “¢”; at time step ¢, if H(t) =0,
means legitimate user traces is generated, if H(t) = 1,
means attacker traces is generated, and it is transparent
to the intrusion detectors.

h(z): a hidden stochastic process for generating event x.

O;: an observable subject that is captured at time step ¢,
it can represent a single event or a group of events accord-
ing to the specific detection method, and its generation is
governed by the hidden process H;

Set(Oy,w): a set of available subjects O; (i depends on
the specific anomaly detection model) with window w at
time step .

N(t): a legitimate stochastic process that is generated
at time unit ¢, i.e., H(t) = 0;

M (t): a malicious stochastic process that is generated at
time unit ¢, i.e., H(t) = 1;

What an ID cares is the current observation Oy, a pair
of probability distribution therefore can be considered as
follows:

PT{Ot|H(t) = ]., Ot—lOt—2~~Ola t}
PT’{Ot|H(t) = 0, OtflOt,Q...Ol, t}
if we do not consider the specific property of the obser-
vations {O;_10;_5...01 }, the above two probability distri-
bution can be generalized as follows:
Pr{O:|H(t) =1, Set(O,w), t}
Pr{O:|H(t) =0, Set(O:,w),t}



in such case, a posterior probability of intrusion detection
can be given as:
Pr{H(t) = 1|0y, Set(O,w), t}
~ Pr{OH(t) = 1,Set(Os, w), t} - (1 — X)
N Pr{O, Set(O,w),t}
as Pr{Oy, Set(Oy,w),t} = Pr{O;|H(t) = 0, Set(O,w),t}-
A+ Pr{O:|H(t) = 1,Set(O¢,w),t} - (1 — A), equation (1)
can be simplified as:

(1)

c-(1=X)
c- (=X +A @)

where A = Pr{H(t) = 0, Set(O;,w),t}, represents a priori
probability of the legitimate pattern which contains w con-
secutive events that has been generated by h(x), and an
unknown constant

_ Pr{O4H(t) = 1,Set(Oy,w), t}
“T Pr{OH(t) = 0, Set(Oy, w), £}
for equation (2), Pr{H(t) = 1|0, Set(O,w),t} > o« iff
¢ > ar/(1—a)(l —A). Thus it is easy to find that the
performance of IDs is related directly with the value of
Pr{H(t) = 1|0, Set(O, w),t}, and it increases with the
value of ¢. Based on the equation, a simple intrusion de-
tection model can be defined as:

Pr{H(t) = 1|0y, Set(Oy,w),t} =

0 if ID(Oy) <«
1 otherwise

(3)

Obviously, due to the lack of prior knowledge about A,
and c, it is almost impossible to carry the detection model
into practice directly. Moreover, a good estimates of A and
a thorough understanding of distributions of the processes
N(t) and M(t), which we call system normality, are not
readily available, which make the detection task deem to
be N P-hard. From this point of view, no matter ordering
property or frequency property of O, the ultimate goal
is to characterize the observation normality as perfect as
possible. For purposes of this paper, we explore and de-
velop Support Vector Machine as an effective frequentist
estimator to characterize and identify system anomalies.

In addition, based on the fact that the number of nor-
mal activities is several orders of magnitude larger than
that of anomalies in our daily computer activities, Axels-
son [2] gave an analysis of intrusion detector’s base-rate
fallacy using Bayesian Theorem. He pointed out that the
false alarm rate is the limiting factor for the performance
of an IDS, and thus the false alarms should be suppressed
as few as possible in order to achieve substantial values of
the Bayesian detection rate P(Intrusion|Alarm). In prac-
tice, excessive alarms from normal activities would make
the network supervisor insensitive and intrusion detector
inefficient, which is a straightforward motivation for us to
restrain false alerts to an acceptable level.

ID(Oy) = ¢, or ID(O;) = {

B. Attributes of Data Source

As we mentioned in the last section, a computer network
typically includes two kinds of objects—hosts, and commu-
nication links. Therefore, network traffic data and host au-
dit trails are two main observations for capturing activities.

In this study, we select the benchmark—1998 DARPA data
set [23] as our experimental data. The data is provided by
the 1998 DARPA Intrusion Detection System Evaluation
Program, and it contains a large sample of computer at-
tacks embedded in normal background traffic. TCPDUMP
and BSM [28] (Basic Security Module) audit data were col-
lected on a simulation network that simulated the traffic of
an air force local area network, the set consists of seven
weeks of training data and two weeks of testing data.
TCPDUMP contains data network packets travelling
over communication nets, while BSM captures activities oc-
curring on a host machine, based on the execution records
of system calls by all processes launched by users. Most
traces of attacks are revealed both in TCPDUMP and BSM
audit data. In our study, BSM audit data from UNIX-
based host machine (SUN Solaris OS) is selected as the
subject for detecting anomalies. Based on the assumption
that actions in the user space can not harm the security
of the system and the security-related activities that can
impact the system only happen when users request ser-
vices from the kernel, BSM monitors the events related
to the system security and records both the instructions
executed by the processor in the user space and instruc-
tions executed in the system kernel. Actually, a full sys-
tem call trace gives us overwhelming information, whereas
the audit trial provides a limited abstraction of the same
information, such information as memory allocation, inter-
nal semaphores, and consecutive files reads do not appear.
And in fact, there is usually a straightforward mapping of
audit events to system calls. BSM records the execution of
system calls by all processes launched by users and it also
contains other detailed information about events in the sys-
tem, such as user and group login identification, file names
with attributes and full path, command line arguments,
return code etc. In our study, we only use the names of
system calls and ignore other attributes. Former studies
[12] showed that privileged processes in UNIX are a good
level to focus on because exploitation of vulnerabilities in
privileged process can give an intruder superuser status and
thus commit further attacks, and the range of behaviors of
privileged processes is limited compared to that of users.
Therefore, we choose system calls executed by privileged
processes rather than user profiles as the observable sub-
ject. Additionally, instead of establishing privileged pro-
cess profiles by short sequences of system calls, we char-
acterize the privileged processes using the frequencies of
system calls. Due to the fact that the number of system
calls is limited, and based on the assumption that intru-
sion detection can be considered as a binary categorization
problem, models and methods from the text categorization
domain can be employed in a straightforward manner.

C. Data Model

When the connection is established between two hosts,
several sessions are generated and then many processes are
executed during the connection. The atomic element of our
observation is system calls, which are executed by privilege
programs. Using the text processing metaphor, each sys-



tem call is treated as a “word” and the set of system calls
generated by a process is treated as the “document” [20];
all the training processes are treated as a set of documents.

C.1 Analysis of the Original Data Model

Based on the analogy between program processes and
documents, the simple frequency weighting method and ¢ f-
idf (term frequency inverse document frequency) weighting
method can be applied to transfer a process into a vector.
The simple model is established as follows:

Matrix A = a;j, the collection of processes from different
sessions, and a;; is the weight of system call ¢ in process j.

fij, the frequency of system call 4 in process j.

N, the number of processes in the collection.

M, the number of distinct system calls in the collection.

n;, the number of times that system call ¢ appears in the
collection.

Thus, frequency weighting is defined as:

aij = fij (4)
tf-idf weighting method is defined as:
fij

o (N)
Ajj = —F——= og(—
M i

Vil I "

Based on the data model, several text categorization
methods were proposed [13,20] for intrusion detection. Al-
though these methods are easy to implement and effective
for detecting intrusive processes with satisfactory accuracy,
they are still far from ready for application in real life be-
cause of their unacceptably high false alarm rate. Careful
analysis discloses the causes of generating excessive false
alters: First, a session is hastily labelled as intrusive once
one of its processes is detected as an anomaly; in such cases,
any misclassified process would cause the whole session to
be misjudged as an intrusion without discriminating other
processes from the same session. Secondly, the correlations
between the processes are ignored. Since most of attacks
leave their traces in several processes and sessions, isolat-
ing processes might lose some essential information and
thus decreases the detection accuracy and generates high
false alarm rate. Additionally, some necessary time infor-
mation are ignored, the incoming processes are dealt with
independently, and the training data set is not updated in
time. Thus it can not reflect current novel behavior in a
timely fashion, leaving much space for intruders to com-
mit attacks. With these problems in mind, we attempt to
establish a new data model that considers all those aspects.

(5)

C.2 New Data Modeling

In [20], an incoming process (new document) was com-
pared with the training processes (existing documents) af-
ter being transformed to a vector by weighting techniques,
and then KNN was used to cluster the processes accord-
ing to their distance, based on the assumption that pro-
cesses with similar properties will cluster together in the
vector space. The applied weighting techniques are tradi-
tional tf-idf and simple frequency weighting. Due to the

limited number of system calls, dimensionality reduction
techniques are unnecessary. When a connection is estab-
lished between two hosts, several sessions or processes will
be generated, in order to reflect the source specific differ-
ences, we add the session information (such as Source Ma-
chine or session ID, which can be regarded as the topic of
documents) [3]. Accordingly, the ¢f-idf model can be im-
proved as follows: p’ fs.1(0) represents the process p from
session s at time ¢ which includes system call 6, and is
updated according to the equation:

D fsr(0) =D for—1(0) + D fs.pr.(0) (6)

where, p fp,(f) denotes the process frequencies in the
newly added set of processes P;. The process frequencies
can be used to calculate weights for the system calls 6 in
the process p. The model is based on the fact that different
sessions include different processes, and various processes
have various system calls, consequently it reflects session-
specific differences. The same system call may have dif-
ferent weights because it belongs to different sessions. To
specify the equation (6), the weight of the system call 6 in
the processes p can be calculated as follows at time ¢:

1+ log2f (0, ?)) X loga(N¢/ng)
Z—>
P

—
where
f(8, D), the frequency of system call 6 in the process p;
N is the number of processes in the current training set;
ng is the number of processes that include system call 6;

Z5 = \/296? we (6, ?)2 is the 2-norm of vector p .

When calculating the weights of the system calls, we
apply the session-specific 7 fs,0 instead of 7 fo. There-
fore, information about the session could be included in
our method. If no training data is available at ¢ = 0
for a specific session, we can set ?fs,o = 0 for its all 6
or identify other similar sessions s, that is, 7]”5,0(6‘) =
Doy ?fsr’o(ﬁ), which happens when an intrusion detector
is trained online.

Additionally, based on the fact that the number of sys-
tem calls in the various processes might differ, and inspired
by the work reported in [12], we divide one process into
several segments by a sliding window of fixed length w,
which advances with a step s, and can be determined ex-
perimentally. Here we note that only the process with a
length longer than w is divided into overlapping segments
by the sliding window. Specifically, < Py, Ps,...P, >=<
P, P, .. .P, > [s,w], where < P, >1<i<w is a sub-
episode of < P; >1<i<n, for a process with length I,

1 —
m = LJ + 1| segments can derive from it, and we

assume that minimal occurrence of some attacks can be
detected in [P}, Pi1.]. We only take this step if the length
of the process is much longer than that of the others. After
dividing, m segments from the same process are all trans-
formed into vectors and treated as individual “documents”.

In practice, normal processes and abnormal processes in
the training data should be updated frequently for restrain-
ing false alarms and detecting novel attacks. Therefore,



some time information should also be considered. Here, we
apply a linear time model [30], which uses a time window
on the historic data. We only consider the processes within
the time window m:

N = (1 —time/m) - N4 (8)

P
The processes outside the window are not considered. Ac-
tually, at the beginning of the training, time window m
should large enough to include all the processes; with the
increase of the number of processes, m can be adjusted
manually or experimentally.

A simple example is given here to illustrate the measures
we proposed. Intrusive session Eject is a buffer overflow us-
ing an eject program on Solaris OS, which might lead to a
status transition from a common user to a super user. The
session consists of a series of processes:
telnetd—login—tcsh— quota— cat—mail— cat—gec— cpp—ccl —as—Id
—ejectexploit—pwd
actually, in this session, only ejectexploit is the intrusive
process, and if it executes successfully, an attack might
happen. The process contains following system calls:
close, close, close, close, open, close, close, execve, open, mmap,
open, mmap, mmap, munmap, mmap, close, open, mmap, mmap,
munmap, mmap, mmap, close, open, mmap, mmap, Mmunmap,
mmap, close, open, mmap, close, open, mmap, mmap, Munmap,
mmap, close, close, munmap, pathdonf, stat, stat, open, close, open,
open, joctl, lstat, lstat, close, close, close, close, close, exit

The weight of the system calls in the session Fject are
only considered in the collection of the processes from the
same source host. If we set the sliding window at fixed
length 50, and left system calls close, close, close, close,
close, exit advance with step 5, we can derive another two
processes from the current process.

The final countermeasure to minimize the false positive
rate is to consider the causal relationship between different
attack attempts. With such consideration, when a pro-
cess is identified as intrusive, we do not immediately treat
the session it belongs to as an intrusion. As described in
[24], in a series of attacks in which the intruder launches
earlier attacks to prepare for later ones, there are usually
strong connections between the consequences of the earlier
attacks and the prerequisites of the later ones, especially in
"stealthy” attacks with multi-stages. For instance, format,
the buffer overflow using the fdformat UNIX system com-
mand leads to root shell, contains two stages: ftp over files
and then chmod exploit files. Thus the correlation of the
attacks is formulated as a connected DAG(directed acyclic
graph), HG = (N, E), in which the set N of nodes is a set
of attacks, and for each pair of nodes ni,ne € N, there is
a edge from ny to no in E iff ny prepares for ny. There-
fore, the triple (fact, prerequisite, consequence) holds for
an attack happen in the multi-session scenario. Based on
this assumption, when an intrusive process is detected, its
neighbor processes or sessions are also considered carefully
instead of immediately labelling the entire session as intru-
sive. Suppose in a sequence of attacks, we have 4 intrusive
sessions Ipsweep, Eject, Land, Pod. Ipsweep performs ei-
ther a port sweep or ping on multiple host addresses, Land

and Pod are Dos attacks. Assuming that Ipsweep prepares
for Land and Eject, Eject prepares for Pod, the relation-
ship correlated(Eject, HG)=precedent(Eject, HG) U subse-
quent(Eject, HG) is intuitively shown in Figure 1.

|Psweep Eject Pod  [Psweep Eject

Eject Pod

®—O

Land Land

Correlated(Eject, HG) Precedent({ Eject, H()

Fig. 1. Attacks correlation graph

The intrusive session Eject is identified as an intrusion
for the malicious process ejectexploit. Actually, when ob-
viously malicious processes appear, such as formatexpolit,
ffbexploit, ejectexploit, the session should be interrupted as
soon as possible. However, some intrusive processes are not
obvious enough; for example, the denial of service attack
process table, which consists of abuse of a legal activity, can
hardly be identified because of its normal individual pro-
cess. In order to detect such attacks effectively, the correla-
tion between neighboring processes within a time window
T and the precedent attacks should also be considered.

IV. ONLINE TRAINING OF SUPPORT VECTOR
MACHINES BASED ON TEXT PROCESSING MODEL

Most of the available intrusion detection techniques were
evaluated using a labeled high quality training data set,
and the data set was unchanged once attained. However,
in practice, training data is not readily available, and in-
trusion detectors must undergo frequent training for cap-
turing novel attacks and adapting to changes in normal
behaviors. After transforming ongoing processes into vec-
tors based on the data model presented in the last section,
we applied the effective binary classification method, sup-
port vector machine, to distinguish anomalies from normal
activities. In this section, we first briefly introduce con-
ventional SVM, RSVM, and One-class SVM that based on
different assumptions, and then modify these methods by
a general algorithm drawn from Online SVM. A theoretical
analysis of the modified method is also given.

A. Three SVMs with Different Assumptions

SVM is an approximate implementation of the Struc-
ture Risk Minimization principle based on statistical learn-
ing theory rather than the Empirical Risk Minimization
method, in which the classification function is derived by
minimizing the Mean Square Error over the training data
set such that the maximum width of the margin between
the classes can be achieved [4]. In order to solve various
problems effectively, several improved SVM such as Ro-
bust SVM [27], One-class SVM [26], Online SVM [17] have
been proposed. We give a brief mathematical description of
these SVMs here; more detailed descriptions can be found
in the corresponding reference.

Subsequenti Eject, HG)



Given a training sample: D; = {z;,y;}}_,, z; is the ith
input vector, z; € R", y; € [+1,—1], [ is the total number
of input vectors and n is the dimension of the input space.
Suppose the relation between x and y is y = sgn(f(x)+¢),
where sgn(z) =1, if x > 0 and sgn(z) = —1, if z <0, the
task uncovering function f is called classification. SVC is
a maximization(minimization) algorithm used to identify
a set of linear separable hyperplanes in the feature space
whose formula like f(z) = (w,z) + b, and 2/||w|| can be
regarded as a canonical representation of the separating
hyperplane. Maximization of the margin between the posi-
tive examples and negative examples can be transferred to
the following problem:

min
s.t.

By applying the Lagrangian multiplier, the problem can
be formulated as:

1 l 1
= Slwl? =3 Bun(w, ) +8) + 3 6.,
i=1 i=1

3llwlf?

yil(w, z;) +b) > 1 Vi, (9)

(10)

The dual objective function is given below and the opti-
mization problem is:

l l
mzn LD == %ZZﬂ ﬁ yly_] $zax]>

i=1 j=1

l
st ) Bwi =00, >0,

=1

Above equations only describe linear separable SVMs, and

the general dual objective function can be rewritten in a
matrix form as follows [17]:

Lor

= 507K~ (. ), (12)

where cis an [ x[ vector, = {3, ..., 0;} and K = {K;;},

Ki; = yiy; K (z;,z;), while K(z;,x;) is called kernel func-

tion, which can be selected such formulas as K(z;,z;) =

(xi,2;)% or K(z;,2;) = el®=%il/7 The feasible solution

of Eq.(11) should satisfy the KTT [4] conditions as follows:

B; =0y fi >1,
(13)
O<ﬁ1§0<:>y1fz§17

The hyperplane f(x) can be expanded from the kernel as

follows:
> BiyiK (w,2:) +b > _

€SV

) = sam (1)

In order to solve the over-fitting problem of a soft margin
SVM due to noisy training data, Robust SVM [27] mini-
mizes only the margin of the weight w instead of minimiz-
ing the margin and the sum of misclassification errors. The
objective function can be written as following:

min Lp = %ﬁTKB —{c,0)

l
1

=1

where 0 = (v,8), v = {y,-n}, and 7, = 1 —
AD*(z;,x} ), A > 0 is a pre-determined regularization
parameter measuring the influence of averaged informa-
tion(distance to the class center), and D?(z;,x} ) rep-
resents the normalized distance between data point x;
and the center of the corresponding classes, (z,,y; €
{—|—1 —1}), in the feature space. The slack variable
AD?(x;, ;) can be justified by considering it as part of
the margin. Because of this term, the RSVM algorithm
will have fewer support vectors and the decision boundary
will be smoother.

Another adapted algorithm, called one-class SVM algo-
rithm, identifies “outliers” amongst positive examples and
uses them as negative examples. After mapping between
input data space X and high-dimensional feature space H
via a kernel, origin is treated as the only member of the
second class. Then “relaxation parameters” is used to sep-
arate the point of the first class from the origin. As a
comparison with the above algorithms, we can write the
objective function as:

min Lp= %HTKﬂ

l
16
st. 0<p, <L B =1 (16)
i

where v € (0,1) is a parameter that controls the trade-
off between maximizing the margin from the origin and
containing most of the data in the region generated by
the hyperplane. The general decision function with kernel

expansion is:
) )

fla «—wn<§:ﬁka,

If o; meets the subject conditions, p can be recovered as:

l

pP= Zﬁjk(xj7‘r2)

Jj=1

(18)

Generally, two facts usually hold during the intrusion de-
tection process. One is that training data is always mixed
with noisy data, which thus decreases the capability of de-
tectors to capture anomalies with high accuracy and in-
creases the probability to generate false alarms. The sec-
ond is that the number of anomalies is much smaller than
that of normal activities, which thus motivate us to apply
robust SVM and one-class SVM respectively.

B. Modified SVMs for Online Training

The SVMs mentioned above are used for the classifica-
tion of input data that are supplied and computed in batch.



It is time consuming to classify a large data set and thus
these SVMs can not meet the demands of online applica-
tions, especially for intrusion detection, which needs pe-
riodical retraining. Online SVM [17], on the other hand,
have input data supplied in sequence rather than in batch,
and the experiments showed it has fewer support vectors
and faster convergence than the conventional SVC. Here
we would modify SVMs we discussed in the last section
using the method from OSVM.

As we know, in the original SVMs a batch of train-
ing data are extracted as vectors and classified by solving
the quadratic programming problems Fq.(13,16,17). The
number of elements determines the dimensionality of the
vectors. A final hyperplane can be achieved after comput-
ing the objective functions. Now let us consider another
case, that training data can not be acquired at one time or
supplied in a sequence.

For supervised SVMs, i.e., conventional SVM and Ro-
bust SVM, we can give one example for each class, the hy-
perplane with a maximum margin for these two examples
can be found by solving the objective function Fq.(13,16).
When a new example becomes available, corresponding to
the KKT conditions [4], two cases need to be considered,
that is, whether or not the current optimal boundary can
classify the new example correctly. If it can be classified,
then the example is not a support vector, otherwise, a new
hyperplane should be determined so that it can classify
three examples. The new hyperplane can be found by min-
imizing the objective function with the SVs obtained from
the current hyperplane and the new example. At the kth
step, the set of SVs can be denoted as SV}, and the exist-
ing examples are {Sz¥, SyF}S%*| respectively. The corre-
sponding hyperplane is (conventional SVM):

|SVil

) ay)

fi(@) = sgn ( > BiSyrK (x, Szf) + by

Once the hyperplane is updated, the KKT conditions
are checked for all k examples, and the examples which
violate the KKT conditions are fed to the algorithm as new
examples. With reference to Online SVM [17], we rewrote
a general algorithm for the three SVMs described above to
improve the performance of their training phase:

Algorithm of online training for SVMs
void OnlineTraining( )
{
set Wy = {xk,yr}, for k = 1,2, and |Es| =0,
//ork=n,n+1and |E,41| =0
Minimize Fq.(4,7,8) with W; to obtain an optimal
boundary f;.
for (int k=3; k<=0 k++){
//ork=[n+3 ..,n+l
Obtain a new element Sy = {zx, yx };
if (Sk can be distinguished by fr_1) {
Add Sy to the corresponding class;

else {

Wy = {Sxf_l,Syf_l}Li‘l/’“’l‘ U Sk;
Minimize Fq.(4,7,8) with W}, to obtain a new
optimal boundary fy;

if (|Ex| = |{zi, vilyi fx(z;) violates the KKT
conditions }¥_;| > 0){
FE;. be input next step as new elements;

}

while (|E;| > 0) {
Minimize Fq.(4,7,8) with W; = SV, U E} to obtain
an optimal boundary fi;
¥
}

As described in the algorithm, we can give more than one
example for each class (normal and anomaly) at first, that
is, the process can start at any kth steps, thus some typical
attacks can be kept, meanwhile the algorithm can learn to
detect novel attacks. However, because of computational
overhead, the number of SVs, n, for the existing examples
should not be too large, otherwise, this algorithm can per-
form little better than the conventional training methods.
Because of its unsupervised nature, One-class SVM only
takes an original point and another normal behavior at
its initial training stage for subsequent classification, while
anomaly points are not necessary. Some other accelerated
training algorithms [14] and decomposition algorithms are
also worth considering in order to speed up the training
phase of SVMs. The prove of the convergence of those
modified SVMs is shown in the appendix.

V. PERFORMANCE EVALUATION OF PROPOSED
METHODS

In section 3, we briefly described our data source. To
evaluate our proposed methods, we reformulated the train-
ing data and testing data based on the benchmark data
set. We apply our three modified SVMs to the selected
data, and compare the results with those of the original
algorithms. The data are provided in sequence to SVMs
as our need instead of in batch as the raw data format.
Furthermore, the modified SVMs are based on our pro-
posed weighting model, while the original SVMs are based
on original tf-idf weighting method. Actually, based on
the same weighting method, original SVMs and modified
SVMs can be compared, but we did not do that for it has
little contribution to evaluate our new methods. The spe-
cific implementation procedure is shown in Figure 2.

A. Training Data and Testing Data

According to the attributes of the data source, prepro-
cessing of the DARPA data and feature(characteristics of
system calls) extraction from those data sets are necessary
before employing the data model and the techniques we
proposed. Basic Security Module(BSM) audit data col-
lected from a victim Solaris machine in a simulation net-
work by DARPA Intrusion Detection System Evaluation
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Fig. 2. Evaluation procedure of the Proposed Intrusion Detectors

System is used as the experiment data here, and only the
name of system calls are considered; other attributes re-
lated to them are ignored. Each session, which consists of
a number of processes, corresponds to a TCP/IP connec-
tion between two hosts, and each of them was labelled with
numbers (session ID). A text categorization problem based
on our weighting model is formulated, and the techniques
we proposed in the previous section are applied to solve it.
Any attacks or anomalies during the execution of processes
attempted to detect them immediately, thus guaranteeing
the intrusion detection in real time.

Actually, the 1998 DARPA data has been widely criti-
cized for some hidden factors in it [22], which might have a
direct effect on the quality of the results, and thus there is
always the doubt the IDSs would well in real environments
with diverse and dynamic traffic backgrounds. Following
reasons need to be claimed for our application of this eval-
uation framework:

o It is usually hard to accumulate substantial intrusion de-
tection data due to personal privacy, considerable recourse
costs, and long-term period, which is also the reason that
there are only several ID benchmark datasets are available.
o The existing 1998 DARPA data has been widely applied
during past 6 years, its structure and attributes are well
known in ID community, which thus greatly simplify the
data preprocessing stage.

o Although the construction of synthetic data is a possi-
ble evaluation approach, the results can not be compared
with other methods that use different data sets, and hence
undermine its credibility.

o Although the amount of data is limited, after prepro-
cessing and reformulation as experimental demands, it is
general enough to evaluate our proposed methods, and ac-
tually, it is not such a good witness that can vindicate the
merits of our methods adequately. On the other hand, how-
ever, as all the other methods, we cannot rule out the prob-
ability that our proposed algorithms tend to yield worse
results under real conditions before they are really put into
practice, in this sense, a real experimental prototype is de-
sirable and helpful.

The benchmark data set provides 9 weeks audit data al-
together (7 weeks are labelled training data, 2 weeks are un-
labelled testing data). In addition, in order to compare our

methods with KNN classifier, similar preprocessing steps of
data as report in [20] is carried out:

1. There are 5 out of 35 (seven-week training) simulation
days free of attacks; 4 out of these 5 days are picked arbi-
trarily as training data, the left one day data is taken as
the normal part of testing data.

2. There are total 606 distinct processes drawn from more
than 2000 sessions running on the victim Solaris machine
during the selected four training days, all these processes
are picked as the normal part of training data; There are
total 40 attack instances (hidden in more than 55 sessions)
in the seven-week training data, and 30 intrusive processes
among those intrusive sessions (cover most of the attack
types in the training data, such as “eject, spy, ffb, ip-
sweep...”) are selected as anomaly part of training data.
3. The left one day data in step 1 (3rd day of week Tth)
contains 412 sessions (total 5285 processes), and all these
processes are taken as the normal part of testing data (ses-
sion information are included); 24 attacks (16 are known,
8 are novel) from two-week DARPA testing data are taken
as anomaly part of our testing data.

It is worth noting that an intrusive session may contain
only a small part of intrusive processes or even only one,
such as eject, format, ffb, spy and so on. Therefore, 55 in-
trusive sessions do not mean there are 55 attacks. In fact,
there are 40 clear (components of the attacks are visible
in BSM data) or stealthy (components of the attack in
the audit data are hide by encryption, by spreading the at-
tack over multiple sessions or by other techniques) attack
instances included in more than 55 intrusive sessions, rep-
resenting all types of attacks and intrusion scenarios in the
seven-week training data.

To evaluate our proposed methods that are based on dif-
ferent assumptions, two data sets are formulated here; one
is taken as clean data, and another is taken as noisy data.
As above reformulation, details of the training and test-
ing data for those two data sets are illustrated in Table 1.
Note that training data of the noisy data set takes only
15 out of the original 30 intrusive processes as anomalies,
and the remaining 15 intrusive processes are disguised as
normal processes and incorporated into the truly normal
ones. The reason we formulated noisy data set is to ver-
ify the performance of Robust SVM. While for One-class
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SVM, we only use normal training data (i.e., 606 normal TABLE II
processes). The testing data for clean data set and noisy REGULATION PARAMETERS OF DIFFERENT METHODS
data set are same. Methods Regulation Parameters
TABLE I Traditional SVM o, C
Robust SVM o, A\
EXPERIMENT DATA SETS
One-class SVM o, v
Clean data (processes) | Noisy data (processes) KNN k, T
normal intrusive normal intrusive General parameters | sliding window w=60, time window T=10
Trau.rllng 606 30 621 15 “r” denotes the threshold of KNN, “T™ is the number of consecutive
Testing 5285 24 attacks 5285 24 attacks processes being considered, rather than the real time counting.

According to our definition, when a process is determined
to be intrusive, the session with which the process is asso-
ciated is classified as an attack session, and each attack
counts as one detection, even with multiple sessions (for
those stealthy attacks). Detection accuracy is then calcu-
lated as the rate of detected attacks, and the false positive
probability is defined as the rate of misclassified normal
processes (these two terms are not rigorously symmetri-
cal here). A drawback of intrusion detection using original
SVMs is that, as time passes, the old hyperplane can no
longer accurately distinguish normal from abnormal activ-
ities, thus the detection accuracy decreases dramatically
with an increasing false positive rate. The obvious way
to handle this concept drift [16] is to periodically retrain
the SVMs, therefore, training time is another important
factor to consider. Because the running time of SVM is
proportional to the number of support vectors (SVs), we
prefer SVs rather than time counting to measure their per-
formance. Additionally, we also have a comparative study
on the performance between our proposed methods with
that of existing method—KNN classifier.

B. Results and Discussion

We did experiments over clean training data and noisy
training data respectively using the SVMs we presented
above. All the SVMs were implemented with the RBF ker-
nel function(i.e. K(z;,x;) = el#=il/7) and the best hy-
perplanes were obtained by varying the related regulation
parameters (table IT). Moreover, for our modified SVMs,
training data were provided in a sequence, namely, nor-
mal processes and intrusive processes were mixed up and
provided one by one, while for original SVMs and KNN,
training data were provided in a batch. A comparative
study were carried on the performance of various SVMs, in
terms of detection accuracy, false positive rate, the number
of support vectors and training time.

Although the Receiver Operating Characteristic (ROC)
curve is a typical method for measuring the performance of
an intrusion detection technique, it provides little insight
into the performance that we intend to evaluate, and we did
not employ it here because the multi-variable would make
it unclear. Actually, we care most about two points in the
ROC, that is, detection accuracy when false positive rate is
zero and the false positive rate when detection accuracy is
100%. These two terms of three different SVMs and KNN
are shown in table III by adjusting the related regulation

parameters after training with clean data and noisy data
respectively.

TABLE III
TwoO SAMPLES OF THE EXPERIMENTS WITH TRAINING DATA

(Hits out of 24 attacks while no FA. and False Alerts (FA.) out of
5285 normal processes while 100% Hit)

Methods Hits (%) FA. (%)
Clean ‘ Noisy | Clean ‘ Noisy
SVM Original 54.2 58.3 12.3 —
Modified 58.3 58.3 11.1 -
RSVM Original 70.8 50.0 3.8 8.7
Modified 70.8 54.2 3.8 8.7
KNN Original 16.7 12.5 9.9 —
Modified 20.8 12.5 9.9 11.1
o * *
One-class SVM Original 70.8 70.8 10.1 10.1
Modified 75.0 75.0% 9.8 9.8%

“_»

means the value is unavailable, “*” means the value unchanged.

Following conclusions therefore can be derived from the
results that shown in table III:
¢ Online training did not cause the detection accuracy de-
terioration of SVMs; instead, new weighting method some-
times improved the detection performance. For example,
original KNN can not detect all the attacks hidden in test-
ing set with noisy data (a DoS attack named process table
cannot be detected due to its normal appearance), but it
can do that with some false alerts using the new weight-
ing method (considering the correlation between a partic-
ular time window). In addition, keeping zero false positive
rate, a conventional SVM can detect 13 out of 24 attacks
with clean training data (i.e. detection accuracy is 54.2%),
while the modified SVM can detect 14 attacks; the mod-
ified RSVM and One-class SVM also had more hits than
the original methods.
o All the methods experienced performance deterioration
with noisy training data (One-class SVM had no change
because it was trained with only normal data). To get
100 percent hits, the conventional SVM misclassified 12.3%
of normal processes as intrusive ones with clean training
data, while with noisy data, the conventional SVM could
not detect all the intrusive processes until all the normal
processes were misclassified as intrusive ones, indicating
that conventional SVM has no ability to suppress the effect
brought by noisy samples, neither does KNN.



o Compared with the conventional SVM, Robust SVM
showed a slight decline of performance in the presence
of noise, and were able to reach 100% detection accuracy
while maintaining a low false positive rate.

TABLE IV
COMPARISON OF THE DETECTION ACCURACY (%) OF ALGORITHMS
WHEN FP. LESS THAN 1%

Traini Methods SVM | RSVM KNN Oc-SVM
raining
Data Parameters o=8, o=4, k=10 o=10
C=10 A=1.2 7=0.85 | v=0.005
Clean Original 79.17 83.33 87.50 75.00
Data Modified 87.50 83.33 91.67 83.33
Noisy Original 50.00 70.83 66.67 75.00%
Data Modified 63.33 75.00 70.83 83.33*
‘One-class SVM is denoted by Oc-SVM, due to the limited margin.”

Furthermore, as we mentioned above, intrusion detec-
tion systems usually require as low a false positive rate as
possible due to the fact that too high false positive rate
would make the systems ineffective. This is also the reason
that most existing commercial IDSs prefer misuse ID tech-
niques rather than anomaly ID techniques. To compare
the performance of our proposed methods, the false posi-
tive rate was kept under 1% by regulating the parameters
of the SVMs, and the detection accuracy of conventional
SVM and RSVM were recorded over both clean training
data and noisy training data (One-class SVM only was
trained with normal data). The results in Table IV show
that the performance of SVM, RSVM with clean training
data and that of One-class SVM with normal data did not
have much difference, but RSVM had better performance
than traditional SVM over noisy data due to its ability
to solve the overfitting problem. Additionally, the results
showed that our modified methods suppress false positives
effectively. For instance, the original conventional SVM
achieved 79.17% detection accuracy with 0.99% false pos-
itive rate, while our modified SVM could achieve 87.50%
detection accuracy with 0.75% false positive rate. Also
shown in the Table IV, both modified RSVM and One-class
SVM had better performance than the original ones. Sur-
prisedly, KNN showed the best performance with cleaning
data (91.67% hit with only 0.66% FA.), but it deteriorated
greatly with noisy training data because of some misclas-
sified intrusive processes.

Another factor worth considering is the number of sup-
port vectors. As we know, SVC classify new examples by
solving a quadratic programming problem, and the compu-
tational complexity of SVCs has a linear relationship to the
number of SVs, therefore, SVMs with less SVs require less
running time, which significantly benefits online intrusion
detection. When we derived table IV, we recorded the num-
ber of SVs of different SVMs, and as illustrated in Table
V, traditional SVM and RSVM had more support vectors
over the clean training data than over the noisy training
data because of the misclassified elements, and the number
of SVs of our proposed methods was generally less than

11

that of the original ones. Original One-class SVM selected
48 out of 606 normal processes as its SVs, while the mod-
ified one reduce the number of SVs to 34. Unlike SVMs,
KNN has to calculate the similarity distance between the
ongoing process and all the processes in the training data
(the size is usually huge in practice), in order to guarantee
a high detection accuracy, which thus increase its running
time and response time heavily.

TABLE V
COMPARISON OF THE NUMBER OF SVS OVER TRAINING DATA SETS

Training Data | Methods | SVM [ RSVM | Oc-SVM
Original 46 34 48
Clean Data
Modified 43 32 34
o . *
Noisy Data Original 41 19 48
Modified 36 19 34*

Besides the detection accuracy and support vectors, an-
other aspect that must be addressed is the training time
of intrusion detectors. Available intrusion detection ap-
proaches rely too strongly on the assumption that high
quality labeled training data can be readily obtained, which
undermines their efficiency and limits their application. An
ideal IDs should be trainable with any provided data, even
online. Therefore, the ability to achieve satisfied detection
accuracy during as short a certain training time as possi-
ble is very important for an IDS that works online. Table
VI shows the ratio of the training time for original SVMs
to the modified method with clean data and noisy data
respectively.

TABLE VI
RATIO OF THE TRAINING TIME FOR THE MODIFIED SVMS/ORIGINAL
SVMs
Training Data  SVM(%) RSVM(%) One-class SVM(%)
Clean Data 56.01 51.61 59.40
Noisy Data 65.12 66.67 60.20

The training time for the modified SVMs was much less
than for the original ones; RSVM and One-class SVM need
more training time than conventional SVM in order to get
high detection accuracy with a false positive rate less than
1%. The training time for modified SVMs represents an av-
erage performance over 50 trials, and it greatly depends on
the distribution of the SVs in the training sequence. Dur-
ing the experiment, we found that the modified algorithms
converge faster to the optimal boundary if the SVs are pro-
vided to the algorithms earlier than the in other examples.
However, modified algorithms deteriorated severely when
abnormal points were provided after most of the normal
points had been supplied, due to the sudden change of the
nature of boundaries. Under such conditions, the modi-
fied algorithms perform narrowly better than the original
algorithms. In our experiment, the fastest trial only takes
8.3s, when the normal processes and anomaly processes
were provided alternately during the initial training phase,



in contrast to the worst trial, which takes 223.3s, when
some anomaly processes were supplied suddenly at the end
of training stage, so we averaged the performance over 50
trials for comparison with the original algorithms.

VI. CONCLUSION AND FUTURE WORK

In this paper, intrusion detection was formulated as a
text processing problem. Aiming to lower the high false
positive rate, and based on the special characteristics of
the observable subjects—system calls in privileged pro-
cesses, we use a modified ¢ f-idf text processing model with
considering the time information and the correlation be-
tween the processes, the prerequisites and consequences
of the attacks, etc. In addition, we modified traditional
SVM, RSVM and One-class SVM respectively, based on the
method from OSVM. The preliminary experiments with
the 1998 DARPA BSM audit data showed that our mod-
ified algorithms outperform conventional SVMs in terms
of the number of support vectors and amount of required
training time while keeping comparable detection accuracy.
Specifically, the running time of the modified algorithms
can be greatly reduced because of the fewer support vec-
tors, and significant training time can be saved by the ef-
fective decomposition of the original algorithms for faster
convergence. Both of these two aspects are essential to the
design of an satisfactory online IDS. One significant dis-
covery is that the modified One-class SVM can be trained
online with unlabelled data sets because of its unsupervised
nature, which contradicts the strong assumption that most
existing methods are based on. It also inspires us to under-
take further research about the application of online train-
ing with related effective unsupervised learning methods
for intrusion detection, such as incremental learning meth-
ods. Although there may still be some reasons to doubt the
performance of our proposed methods in practice, actually,
we can not exclude causes from the limited sample of the
experiment data. Moreover, we can conclude that the char-
acterization of the observable subjects is more important
than the specific method, so the effective description of the
subjects is more meaningful for improving the performance
of intrusion detection that uses text processing techniques.
The following aspects are worth further consideration:

o Collecting more random samples particularly of intru-
sions from real environments, to evaluate our method.
Some effective evaluation methods that offer insight into
the mechanisms of anomaly detectors are worth further ex-
ploration, rather than just tallying detection accuracy with
false positive rates using benchmark datasets.

e Comparing our method with other intrusion detection
techniques from machine learning and pattern recognition.
o Some other effective incremental learning algorithms are
worth considering to be applied to the realtime intrusion
detection, and capture the system normality drift.

APPENDIX
CONVERGENCE OF THE MODIFIED SVMs

The convergence of the modified conventional SVM has
been proved in Ref. [17] by comparing it with the decompo-
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sition algorithm(DA). Here we only prove the convergence
of modified Robust SVM and modified One-class SVM. As
we know, the main idea of DA is that instead of imme-
diately solving the large quadratic programming problem,
small quadratic programming sub-problems are iteratively
solved, and thus the iteration solution of the sub-problem
brings the solution closer to the optimal solution. The
training set is decomposed into two subsets, working sub-
set B and correcting subset N. At each step, m elements
exchange between the subset B and N. With the elements
exchanged, the sub-problem involving the new working set
is solved. The exchange between B and N repeats until
no example violates the KKT conditions. Note that m is
pre-determined as a constant, and the size of B and N
are arbitrarily determined. The convergence of the DA for
standard SVC and Robust SVC has been proved in Refs.
[5] and [14] respectively. Similarly, the dual objective func-
tion Fq.(17) of One-class SVM can be rewritten involving
the working and correcting sets as follows:

min  B5KppBp + BpKenBN + BNENBBp + BN ENNON]

(20)

st. 0<PBp< L4, Bp+h8y=1
where
Bp

= ()= ) = (

All the DA of these different SVMs are based on the
following two propositions.

Proposition 1 Moving a variable from B to N leaves
the cost function unchanged, and the solution is feasible in
the sub-problem.

Proposition 2 Moving a variable that violates the KKT
condition from N to B gives a strict improvement in the
cost function when the sub-problem is re-optimized.

Proposition 1 means that the objective functions of
SVMs can be decomposed by subset B and subset N, while
the value of the cost function is unchanged. With propo-
sition 2, the solution of sub-problem is improved when an
element violating the KKT conditions is moved from N to
B. The difference between our modified SVMs and DAs is
that modified SVMs keep SV's in the working subset and
move the other elements to the correcting subset, and thus
By is a zero column vector. In addition, modified SVMs
move at least one element which violates the KKT condi-
tions to the working subset at each step; the element can
be either a new one just obtained or moved from the cor-
recting set. Therefore, solving the sub-problem will make
a improvement at each step. The following corollary given
by Lau et al [17] shows that keeping the SV's in the work-
ing set will not affect the optimal solution, and we attempt
to prove that it also holds for both Robust SVM and One-
class SVM.

Corollary Moving an element which is not an SV from
B to N leaves the cost function unchanged and the solution
is feasible in the sub-problem.

Proof. Suppose B = B — {m},N' = NU{m},{m} €

Kpp Kpn
Kyp Knyn )



B — SV, where“—"denotes set substraction, m represents
an element which is not SV.
(1) For robust SVM, we have
LD (/BB’ P /BN’)
= %[52/1{3/3/53/ —+ ﬁg/KB/N/ﬁN/ + BJTCTIKN/B//BBl
+0 Ky Ba] = Y8 + By)
= 3B Ky By + 205 Ky v By + B Ky Byr]
T T
_’Y(ﬁB’ + ﬁ]\ﬂ)

The optimization problem can be formulated as follows:

min  Lp(Bp.Bn")
<yB'aﬁB' >+<yN'7/8N' >=0,
_63’ <0.

s.t. (21)

(2) Similarly, for One-class SVM, we have

LD(ﬂB’aﬂN’)

= %[ﬁg’KB'B'ﬂB' +ﬂ£’KB’N’5N’ + 611\}/KN’B’ﬂB’
+ﬂ%’KN'N'ﬂN’]

=38 Ky p By +26% B+ By Ky n Byl
—2WWp'BrB'B'MB’ B'BB'N' PN’ N'AN'N'PN’

The optimization problem can be formulated as follows:

min LD(ﬂB'aﬂN’)
st. 0<fp <&, (22)
ﬂB’ +6N’ =1

From Proposition 1, we know that the objective function
Lp(By,0x) = Lp(Bg, By). We note that N does not
contain any SV. Hence, 8, = 0, for its elements are
not SVs, and thus Lp(8z,0) = Lp(Bg,0), where 0 is a
column vector whose all elements are 0. In addition, we
have ﬁgyB = 5£/y3/ = 0 and the bound constraints of
robust SVM are unaffected, and obviously, the bound con-
straints of one class SVM are unaffected also. Therefore,
both the sub-problem of Robust SVM and One-class SVM
have the same solution with their corresponding proposed
algorithms which modify Proposition 1 but keep Proposi-
tion 2 of the DA. O
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