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Word Sense Disambiguation (WSD) is the task of choosing the right sense of a pol-
ysemous word given a context. It is obviously essential for many natural language
processing applications such as human-computer communication, machine transla-
tion, and information retrieval. In recent years, much attention have been paid
to improve the performance of WSD systems by using combination of classifiers.
In (Kittler, Hatef, Duin, and Matas 1998), six combination rules including product,
sum, max, min, median, and majority voting were derived with a number of strong
assumptions, that are unrealistic in many situations and especially in text-related
applications. This paper considers a framework of combination strategies based on
different representations of context in WSD resulting in these combination rules as
well, but without the unrealistic assumptions mentioned above. The experiment was
done on four words interest, line, hard, serve; on the DSO dataset it showed high
accuracies with median and min combination rules.
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1 Introduction

The automatic disambiguation of word senses has been an interest and concern for many

decades. Roughly speaking, word sense disambiguation involves the association of a given

word in a text or discourse with a particular sense among numerous potential senses of that

word. As mentioned in (Ide and Véronis 1998), this is an “intermediate task” necessary to

accomplish most natural language processing tasks. It is obviously essential for language un-

derstanding applications, such as message understanding and human-machine communication;

it is also at least helpful for other applications whose aim is not language understanding, such

as machine translation and information retrieval, among others. Since its inception, many

methods involving WSD have been developed in the literature (see, e.g., (Ide and Véronis

1998) for a survey). Practically speaking, an ambiguous word usually has ambiguity regard-

ing its part-of-speech and its meaning. WSD usually considers disambiguating the meaning

of a word in a specific part-of-speech. A word in a specific part-of-speech which has several

meaning (senses) is called polysemous.
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Two essential problems are concerned in the task of disambiguating word senses: designing

which features are used as evidence for identifying the sense and what learning method is used.

Regarding the second problem, during the last decade, many supervised machine learning al-

gorithms have been used for the WSD task, including Näıve Bayesian (NB), decision trees,

an exemplar-based, support vector machine, maximum entropy, etc. As observed in studies

of machine learning systems, although one of the available learning systems could be chosen

to achieve the best performance for a given pattern recognition problem, the set of patterns

misclassified by the different classification systems would not necessarily overlap. This means

that different classifiers may potentially offer complementary information about patterns to

be classified. This observation highly motivated the recent interest in combining classifiers.

Especially, classifier combination for lexical disambiguation in WSD has, not surprisingly, re-

ceived much attention recently from the community, e.g., (Brill and Wu 1998; Kilgarriff and

Rosenzweig 2000; Hoste, Hendrickx, Daelemans, and van den Bosch 2002; Pedersen 2000;

Klein, Toutanova, Tolga Ilhan, Kamvar, and Manning 2002; Florian, Cucerzan, Schafer, and

Yarowsky 2002a; Florian and Yarowsky 2002b; Wang and Matsumoto 2004).

As is well-known, there are basically two classifier combination scenarios. In the first sce-

nario, all classifiers use the same representation of the input pattern. In the second scenario,

each classifier uses its own representation of the input pattern. An important application of

combining classifiers in this scenario is the possibility of integrating physically different types

of features. For determining the sense of a polysemous word, a specific context in which the

word appears is given. A set of features extracted from the context will be used as clues for de-

termining an appropriate sense of the target word. Kinds of features usually used include bags

of content words, collocations, or some relationship between the target word with surrounding

words such as syntactic relation and distance relation. However, utilizing all of these features

in a unique set is not always a good idea because each of them, even those of the same kind

(for example bag of content words) but with different window sizes, has a different impact

on the meaning of the polysemous word, depending on a particular context or on the target

word itself. This intuitive observation prompted us to use multi-representation of context as

a means of combining individual decisions to reach a consensus.

Concerning the second scenario in combination strategies, (Kittler et al. 1998) presented a

theoretical framework for combining classifiers, resulting in commonly-used combination rules

including product, sum, max, min, median, and majority voting. First, the product rule was

generated as the result of the Bayesian approach, in which distinct pattern representations

are used jointly to make a classification decision. Obviously, this rule adopts the assump-
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tion of conditional independence between individual classifiers. Furthermore, other rules are

generated with two strong assumptions, namely the assumption that posteriori probabilities

computed by the respective classifiers will not deviate dramatically from the prior probabilities,

and that of equality of priors. However, these assumptions are unrealistic in many situations

and especially in text-related applications such as WSD. Therefore, in this paper, we present

a new interpretation for obtaining the median, max, min, and majority voting rules without

using such assumptions. In addition, some observations from our experiences and other studies

such as in (Klein et al. 2002) show that designing features as clues for identifying word sense

may be more important than learning methods. In the classifier combination problem in the

second scenario, an important thing is to select the various context representations so that

the individual classifiers based on them satisfy two criteria: they are “good” classifiers (mean-

ing that the individual classifiers can archive with as high accuracy as possible); and they

have rich information so that they can provide complementary information in combination

strategies. In this paper we present an ensemble of context representations that tries to fulfill

these criteria. Particularly, we experimentally design multiple representations of context, each

of which corresponds to an individual classifier, covering enough information to identify the

sense of a polysemous word and obtain high accuracies with experiments on the four words

interest, line, hard, serve, and on the DSO dataset.

The rest of this paper is organized as follows: in the next section related works will be

briefly reviewed. Section 3 first introduces WSD with multi-representation of context and

explores the product rule of combination. Then, other combination strategies derived from

the median combination rule including product, median, max, min, and majority voting are

discussed. Section 4 first describes various types of features and different representations of

context in previous work, and then presents our selection of context representations for indi-

vidual classifiers. In Section 5, we present our experimental results and some comparison with

previously known results on the same test datasets. Finally, some conclusions are presented

in Section 6.

2 Related Work

In this section, we will review previous work related to WSD in the context of using com-

bination methods. As mentioned above, in (Kittler et al. 1998) the combination methods are

divided into two main scenarios based on the differences of learning methods and feature sets.

In another view, one way to create multiple classifiers is to use subsamples of the training

examples. In bagging, the training set for each individual classifier is created by randomly
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drawing training examples with replacement from the initial training set. In boosting, the

errors made by a classifier learned from a training set are used to construct a new training

set in which the misclassified examples get higher weight. By sequentially performing this

operation, an ensemble is constructed. One other way to create multiple classifiers is based

on multiple feature sets on the same training dataset. Methods of combining the outputs of

component classifiers in an ensemble include simple voting, wherein each component clas-

sifier gets an equal vote, and weighted voting, in which each component classifier’s vote is

weighted by its accuracy. The most interesting approach to combination is stacking, in which

a classifier is trained to predict the correct output class when given as input the outputs of

the ensemble classifiers, and possibly additional information.

In the WSD literature, the first empirical study of combining classifiers was presented in

(Kilgarriff and Rosenzweig 2000), in which the authors combined the output of the partici-

pating SENSEVAL1 systems via simple voting. (Pedersen 2000) built an ensemble of Naive

Bayesian classifiers, each of which is based on lexical features that represent co-occurring words

in varying sized windows of context. (Klein et al. 2002) use a stacking type of combination

techniques. First, individual classifiers were constructed based on different training datasets

and learning methods, and then they were ranked according to results obtained from testing

on held-out data. In the next step, majority voting, weighted voting, and maximum entropy

were used as combination strategies. (Hoste et al. 2002) used word experts consisting of four

memory-based learners trained on different context. Output of the word experts is based on

majority voting or weighted voting. In (Florian et al. 2002a) the authors used six different

classifiers as components of their combination. They compared several different combination

strategies which include combining the posterior distribution, combination based on order sta-

tistics, and several different voting strategies. (Frank, Hall, and Pfahringer 2003) presented a

locally weighted Naive Bayesian model. For a given test instance, they first chose k-nearest

neighbors from training samples, then constructed a Naive Bayesian classifier by using these

k-nearest neighbors instead of all training samples. (Wang and Matsumoto 2004) presented

a kind of stacking; individual classifiers were built using NB with varying sized windows of

context that are similar to Pedersen’s approach (Pedersen 2000), and then used K-nearest

neighbors as the meta learning method.

Several combination approaches in WSD, most of which used majority voting or weighted

voting on the output of individual classifiers, were based on different sets of features or differ-

ent learning methods. Some of them proposed different approaches such as using maximum

entropy (Klein et al. 2002), or a stacking method (Wang and Matsumoto 2004) as combi-
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nation strategies. Linear combination strategies as shown in the next section have not yet

been considered in WSD studies, with the exception of the recently report (Le, Huynh, and

Shimazu 2005), but in which the authors simply applied the framework suggested in (Kittler

et al. 1998). Furthermore, from our observation, and also as shown by others such as (Klein et

al. 2002), differences in representations of context have a stronger influence than differences in

learning algorithms. Therefore a selection of context representation for individual classifiers

adaptive with combination strategies may play an important role in obtaining high accuracy,

which was lacking in previous works.

3 WSD with Multi-representation and Combination

Strategies

In this section, we first observe that the given context of a polysemous word can be rep-

resented in different ways, so that each of them can be used to build an individual classifier.

It is well-known that in the WSD problem, context plays an essentially important role to

identify the meaning of a polysemous word. Given an ambiguous word w, which may have m

possible senses (classes): {ω1, ω2,. . . , ωc}, in a context C, the task is to determine the most

appropriate sense of w.

Generally, context C can be used in two ways (Ide and Véronis 1998): in the bag-of-words

approach, the context is considered as a bag of words in some window surrounding the target

word w; in the relational information based approach, the context is considered in terms of

some relation to the target such as distance from the target, syntactic relations, selectional

preferences, phrasal collocation, semantic categories, etc. Thus, for a target word w, we may

have different representations of context C corresponding to different views of the context.

Assume we have R representations of C, say f1, . . . , fR, serving to identify the right sense of

the target w. Clearly, each fi can be also considered as a semantical representation of w. Each

representation fi of the context has its own type depending on which way the context is used

(for details, see Section 3). In the sequence, we can use a set of features and a representation

interchangeably without danger of confusion. It is quite natural to assume that there are

R classifiers, each representing the context by a distinct set of features. The set of features

fi, which is considered as a representation of context C of the target w, is used by the i-th

classifier.

In the remainder of this section, we first present the product rule based on the Bayesian

approach, which is the same as in (Kittler et al. 1998). Next, a basic framework for combining
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classifiers and the median rule are presented, and then other combination rules including max,

min, and majority voting are derived from the median rule using lower and upper approxima-

tions. It is worth emphasizing again that our approach is different from (Kittler et al. 1998)

in which the authors derived the min rule from product rule, and the sum rule was yielded by

the product rule with the assumption that posteriori probabilities computed by the respective

classifiers will not deviate dramatically from prior probabilities. Other rules including median,

max, and min rules were derived from sum rule with the assumption of equality of priors and

some approximations.

3.1 Product Rule

Under a mutually exclusive assumption, given representations fi (i = 1, . . . , R), the

Bayesian theory suggests that the word w should be assigned to class ωk provided the a

posteriori probability of that class is maximum, namely

k = arg max
j

P (ωj |f1, . . . , fR) (1)

That is, in order to utilize all the available information to reach a decision, it is essential to

consider all the representations of the target simultaneously.

The decision rule (1) can be rewritten using Bayes theorem as follows:

k = arg max
j

P (f1, . . . , fR|ωj)P (ωj)
P (f1, . . . , fR)

Because the value of P (f1, . . . , fR) is unchanged with variance of ωj , we have

k = arg max
j

P (f1, . . . , fR|ωj)P (ωj) (2)

As we see, P (f1, . . . , fR|ωj) represents the joint probability distribution of the represen-

tations extracted by the classifiers. Assume that the representations used are conditionally

independent, so that the decision rule (2) can be rewritten as follows:

k = arg max
j

P (ωj)
R∏

i=1

P (fi|ωj) (3)

According to Bayes rule, we have:

P (fi|ωj) =
P (ωj |fi)P (fi)

P (ωj)
(4)

Substituting (4) into (3), we obtain:

k = arg max
j

P (ωj)
R∏

i=1

P (ωj |fi)P (fi)
P (ωj)

= arg max
j

[P (ωj)]−(R−1)
R∏

i=1

P (ωj |fi) (5)
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The decision rule (5) quantifies the likelihood of a hypothesis by combining the a posteriori

probabilities generated by the individual classifiers by means of a product rule.

3.2 Derived Combination Strategies

Let D = {D1, . . . , DR} be a set of classifiers, and let Ω = {ω1, . . . , ωc} be a set of class

labels. Each classifier gets as its input a representation of polysemous word w and assigns it to

a class label from Ω. Alternatively, we may define the classifier output to be a c-dimensional

vector

Di(w) = [di,1(w), . . . , di,c(w)] (6)

where di,j(w) is the degree of “support” given by classifier Di to the hypothesis that w comes

from class ωj . Most often di,j(w) is an estimation of the posterior probability P (ωi|w). In

fact, the detailed interpretation of di,j(w) beyond a “degree support” is not important for the

operation for any of the combination methods studies here.

With the notation f as a set of the different context representations {f1, . . . , fR}, it is

convenient to organize the output of all R classifiers based on f in a decision matrix as follows.

DP (f) =




d1,1(w) . . . d1,j(w) . . . d1,c(w)

. . .

di,1(w) . . . di,j(w) . . . di,c(w)

. . .

dR,1(w) . . . dR,j(w) . . . dR,c(w)




(7)

Thus, the output of classifier Di is the i -th row of the decision matrix, and the support

for class ωj is the j th column. Combining classifiers means to find a class label for f based on

the R classifiers outputs. We look for a vector with c final degrees of support for the classes,

denoted

D(f) = [µ1(w), . . . , µc(w)] (8)

If a single class label of w is needed, we use the maximum membership rule: Assign w to class

ωs iff

µs(w) ≥ µt(w),∀t = 1, . . . , c. (9)

Note that, returning to the Product rule (5), we have

di,j(w) = P (ωj |fi), for i = 1, . . . , R; j = 1, . . . , c;
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µj = [P (ωj)]−(R−1)
R∏

i=1

P (ωj |fi), for j = 1, . . . , c

where fi is a representation of w

Median Rule.

Let us return to the decision matrix (7), each classifier Di supports a degree di,j(w) for

the class ωj . According to (Perrone and Cooper 1993), if the errors made by R classifiers Di,

i = 1, . . . , R, are uncorrelated and unbiased, then these R classifiers can be combined into a

classifier that supports the class ωj with the degree

µj =

[
1
R

R∑

i=1

di,j(w)

]
(10)

Let di,j(w) be an estimation of the posterior probability P (ωi|w). Noting that fi is the

representation of w with respect to the classifier Di, equation (10) then becomes

µj =

[
1
R

R∑

i=1

P (ωj |fi)
]

(11)

Therefore, the class (sense) ωk is chosen as the best class for the target word under the

median rule as follows

k = arg max
j

[
1
R

R∑

i=1

P (ωj |fi)
]

(12)

Max and Min Rule.

From the median rule, it is interesting that the max and min rules can be derived using

the following inequality

R
min
i=1

P (ωj |fi) ≤ 1
R

R∑

i=1

P (ωj |fi) ≤ R
max
i=1

P (ωj |fi) (13)

This relationship suggest that the median combination rule can be approximated by the

above upper and lower bounds, as appropriate. Starting from (11) and maximizing the sum

by the upper bound, we obtain the Max rule

k = arg max
j

[
R

max
i=1

P (ωj |fi)
]

(14)

Also, minimizing the sum (11) by the lower bound, we obtain the Min rule

k = arg max
j

[
R

min
i=1

P (ωj |fi)
]

(15)
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Furthermore, the max combination rule can be interpreted in a intuitive way: for the class

ωj and an input word w, each classifier Di supports the class ωj with a degree di,j(w), so

with the hypothesis that there exist one classifier which supports ωj , the maximum of these

supported degrees (di,j(w), i = 1, . . . , c) is considered as the global support of class ωj . Using

the maximum membership rule we generate the max combination rule.

For the min combination, with the hypothesis that all classifiers support class ωj , so the

minimum of degrees (di,j(w), j = 1, . . . , c) will be chosen as the global support for class ωj .

The class corresponding to the maximum of the global support degrees is chosen.

Majority Voting.

Majority voting follows a simple rule as: it will vote for the class which is chosen by max-

imal number of individual classifiers. Suppose that the classifier Di chooses class ωk as the

final decision, then we can consider the outputs of Di as follows:

di,j(w) =





1, if j = k

0, otherwise
(16)

Still considering the output of each classifier Di by the posterior, it is natural to use the

maximum membership rule, so formula (16) can be rewritten as

di,j(w) =





1, if P (ωj |fi) = max
k

P (ωk|fi)
0, otherwise

(17)

Substituting (17) into (10), we have majority voting: the right class (sense) ωk is deter-

mined as follows:

k = arg max
j

∑

i

di,j(w) (18)

4 Representation of Context

As mentioned previously, context plays an essential role in WSD. Selection of an effective

representation of context may be more important than the learning algorithm. Several kinds

of information are usually used to predict the senses of a word. Among them, information

about topic context, which is represented by a bag of words, is always used in WSD studies.

(Ng and Lee 1996) proposed the use of more linguistic knowledge resources including topic

context, collocation of words, and the verb-object syntactic relationship, which then became

the popular template of knowledge used in many studies. (Leacock, Chodorow, and Miller

1998) used another type of information, which includes words or part-of-speech tags assigned
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with their positions in relation to the target word. In (Le and Shimazu 2004; Le et al. 2005),

Le et al. used five kinds of information including bag of content words, collocation of words,

collocation of part-of-speech tags, words assigned with their position, and part-of-speech as-

signed with their position. All these kinds of features can be grouped into a unique set of

features and used in a learning algorithm. However, each kind of knowledge has a different

effect on the decision to determine the right sense of a polysemous word. In some cases, only

information about collocation can discriminate word senses. In other cases, information about

topic context is enough for that task, and even that topic context with different window sizes

will have causes different effects on the decision. Therefore, it is of interest that distinct rep-

resentations of context can be used jointly to identify the meaning of the target word based

on combination strategies.

4.1 Representations in previous works

In the literature related to combining classifiers for WSD based on different sets of features,

only topic context with different sizes of context windows is used to create different represen-

tations of a polysemous word, such as in (Pedersen 2000; Wang and Matsumoto 2004). In

this work, we do not consider other information than the orthographic form of words and

part-of-speech tags. For easy understanding of what constitutes features, we define that: wi

is the word at position i in the context of the ambiguous word w and pi is the part-of-speech

tag of wi, with the convention that the target word w appears precisely at position 0 and i

will be negative (positive) if wi appears on the left (right) of w.

(Pedersen 2000) considered several context windows on both the left and the right and

grouped them into three kinds: small with window sizes 0, 1, 2; medium with window sizes 3,

4, 5; and large with window sizes 10, 25, 50. There were 81 different representations generated

from combining between left and right window sizes. He then chose the best of each kind for

the majority voting procedure. (Wang and Matsumoto 2004) also used only the content words

in various window sizes with different left and right window sizes was (1,2,3,4,5,6,10,15,20).

In (Le et al. 2005), the authors tested the combination strategies on two types of context

representations. In the first type, they borrowed this feature space division from Pedersen

and used the maximum window size in each kind, consequently nine different representations

were generated based on nine different combinations of left and right windows: (2, 2), (2, 5),

(2, 50), (5, 2), (5, 5), (5, 50), (50, 2), (50, 5), and (50, 50). In the second type they used five

context representations corresponding to five kinds of features including bag of content words,

collocation of words (and part-of-speech tags), and words (and part-of-speech tags) assigned
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with their positions.

4.2 An adaptive selection of context-representation ensemble

The combination strategies to be considered include product, median, max, min rule, and

majority voting. As mentioned in Section 3, the product rule is derived based on Bayes theory

with the independent assumption of context representations, so that the context representa-

tions are to be built to satisfy as much as possible two criteria: they are mutually exclusive

or in other words, they are independent; and the combination of the context representations

contains as much rich information as possible. For the remaining combination rules, the con-

text representations need to contain some important characteristics. They should be based on

different kinds of information, so that the corresponding classifiers make different errors and

therefore can supply complementary information. However, they do not need to satisfy the

assumption of independence. We design them so that the corresponding individual classifiers

are as good as possible, and thus they can make the combination more efficient. It is worth

emphasizing that two of the most important kinds of information for determining the sense

of a polysemous word include the topic of the given context and relational information repre-

senting the structural relations between the target word and the surrounding words in a local

context.

We now discuss which features will represent each of those kinds of information. First of

all, the topic of the context can be represented by a set of content words in a context win-

dow. In almost WSD studies, the window size is 50. However, as mentioned above, in some

cases and depending on the particular word, the window size needs to be smaller or large.

Therefore, we discriminate the context window with left and right sizes. We design two sizes

of windows including a local size (5) and a large size (25). Consequently, four different sets

of topic features are created by combining the left and right sizes, including: (5,5), (5,25),

(25,5), and (25,25). Another feature, collocation, is a knowledge resource which has been de-

scribed as the most informative resource for determining word sense (Ng and Lee 1996). Our

observations have also shown that collocation is a very useful features containing information

about relationship between the target word and its neighbors. In summary, there are a total

of five sets of features will be used in our work, concretely as follows:

• s1 is a set of collocations of words with collocation lengths consisting of 1, 2, and 3 (not

counting the target word):

s1 = {w−3w−2w−1w0, w−2w−1w0w1, w−1w0w1w2, w0w1w2w3,
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w−2w−1w0, w−1w0w1, w0w1w2, w−1w0, w0w1}

• s2 is a set of unordered words in window size (5,5):

s2 = {w−5, . . . , w−2, w−1, w1, w2, . . . , w5}

• s3 is a set of unordered words in window size (5,25):

s3 = {w−5, . . . , w−2, w−1, w1, w2, . . . , w25}

• s4 is a set of unordered words in window size (25,5):

s4 = {w−25, . . . , w−2, w−1, w1, w2, . . . , w5}

• s5 is a set of unordered words in window size (25,25):

s5 = {w−25, . . . , w−2, w−1, w1, w2, . . . , w25}

In the experiment, we constructed two sets of context representation. The first set supports

the independent assumption, so we designed each representation as a feature set listed above:

R1 = {f1, f2, f3, f4, f5}, where fi = si for i = 1, 2, 3, 4, 5.

In the second one, we tried to design a set of classifiers that can utilize the power of

combination strategies median, max, min, and majority voting, which do not depend on the

independent assumption. As shown in many WSD studies, collocation is the most important

information for most ambiguous words, and our experiment also shows that an individual

classifier will become more efficient if it is based on the feature set containing collocations,

and consequently it makes better combinations. Such an observation suggest to us that we

design the representations with overlapping sets of collocations. Therefore we construct the

five context representations as follow: R2 = {f1, f2, f3, f4, f5} where

• f1= {s1}
• f2={s1 ∪ s2}
• f3={s1 ∪ s3}
• f4={s1 ∪ s4}
• f5={s1 ∪ s5}

5 Experiments

In our experiments, each individual classifier is a naive Bayesian classifier built on a context

representation. We have five individual classifiers corresponding to five context representations
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in two models, R1 and R2. They will jointly make a consensus decision under the combina-

tion rules: product, median, max, min, and majority voting. The remainder of this section

first presents the computation of posterior probability P (ωj |fi), and then presents test data,

results, and some discussion.

5.1 Computing probabilities

We assume that in all combination strategies, the support degree di,j(w) is estimated by

posterior probability P (ωj |fi), for j = 1, . . . , c; i = 1, . . . , R. For the context C, suppose that

the representation fi of C is represented by a set of features fi = (fi,1, fi,2, . . . , fi,ni
), and that

the features fi,j are conditionally independent. According to Bayes theory, we have:

P (ωj |fi) =
P (ωj)P (fi|ωj)

P (fi)
=

P (ωj)
ni∏

k=1

P (fi,k|ωj)

P (fi)
(19)

For simplicity, assume that we are working on the representation fi, we then have

c∑

j=1

P (ωj |fi) = 1

Let us denote

rj =
P (ωj |fi)
P (ω1|fi) , for j = 1, . . . , c

With this notation, we immediately obtain

P (ω1|fi) =
1∑c

j=1 rj
(20)

Clearly, r1 = 1. We will then compute rj (j = 2, . . . , c) based on the following formulation.

From (19), we have

rj =
P (ωj |fi)
P (ω1|fi) =

P (ωj)
∏ni

k=1 P (fi,k|ωj)
P (ω1)

∏ni

k=1 P (fi,k|ω1)

Taking the log of the last expression, we obtain

log(rj) =
ni∑

k=1

log(P (fi,k|ωj)) + log(P (ωj))−
ni∑

k=1

log(P (fi,k|ω1))− log(P (ω1)) (21)

which is easy to compute more exactly. Once all rj are computed via (21), it is easily to derive

probabilities P (ωj |fi), for j = 1, . . . , c, from (20).

The probability of sense ωj , P (ωj), and the conditional probability of a feature fi,k given

the sense ωj , P (fi,k|ωj), are computed via maximum-likelihood estimation as:

P (ωj) =
count(ωj)

N

13



and

P (fi,k|ωj) =
count(fi,k, ωj)

count(ωj)

where count(fi,k, ωj) is the number of occurrences of fi,k in a context of sense ωj in the training

corpus, count(ωj) is the number of occurrences of ωj in the training corpus, and N is the total

number of occurrences of the polysemous word w or the size of the training dataset. To avoid

the effects of zero counts when estimating the conditional probabilities of the model, when

meeting a new feature fi,k in a context of the test dataset, for each sense ωj we set P (fi,k|ωj)

equal to 1
N .

5.2 Data and Results

We tested on the datasets for four words, namely interest, line, serve, and hard, which

are used in numerous comparative studies of word sense disambiguation methodologies such

as (Pedersen 2000; Ng and Lee 1996; Bruce,and Wiebe 1994; Leacock et al. 1998). We ob-

tained those datasets from Pedersen’s homepage 1. There are 2369 instances of interest with

6 senses, 4143 instances of line with 6 senses, 4378 instances of serve with 4 senses, and 4342

instances of hard with 3 senses. For evaluating on a large dataset, we tested the DSO corpus

published in (Ng and Lee 1996), which contains 192,800 semantically annotated occurrences

of 121 nouns and 70 verbs corresponding to the most frequently used and ambiguous English

words.

In the experiment, a 10-fold cross validation was used. Table 1 and Table 2 show results

when testing on the four words with representations R1 and R2 respectively. Their columns

include results from separately testing five individual classifiers {f1, f2, f3, f4, f5}, and the next

column contains maximum results from the five individual classifiers. The next columns are

results of using the various combination rules including product, median, max, min, and ma-

jority voting, and the final column is the maximum result from the five combination rules.

From the experiment on the DSO dataset, like (Escudero, Marquez, and Rigau 2000), we show

results of the 15 most frequent words in DSO in Table 3 and Table 4. The columns of these

tables are the same as Table 1 and Table 2.

Some conclusions are extracted from these tables as follows.

• The new selection of context presentations, that accepts overlapping of collocations in

each presentation, makes the individual classifiers more efficient and help us to obtain

better results on combination rules. We can see that the results obtained from repre-

sentation R2 are better than those from representation R1 for most test words when

1 http://www.d.umn.edu/∼tpederse/data.html
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f1 f2 f3 f4 f5 max f product median max min m-vote max
combination

interest 89.2 88.7 85.7 86.2 85.2 89.2 91.8 90.9 91.1 91.6 90.2 91.6

line 78.3 83.9 84.1 84.1 86.2 86.2 92.2 91.1 90.4 91.4 90.3 92.2

hard 91.0 90.5 88.3 87.1 85.3 91.0 92.4 91.3 92.4 92.2 91.3 92.4

server 80.5 88.7 86.3 83.3 83.6 88.7 90.5 90.4 90.1 90.5 90.4 90.5

Table 1 Result with representation R1 for the four words.

f1 f2 f3 f4 f5 max f product median max min m-vote max
combination

interest 89.1 93.0 92.5 92.5 92.5 93.0 93.9 94.0 93.9 93.8 93.8 94.0
line 77.9 87.1 88.7 90.2 91.1 91.1 91.9 91.4 91.6 91.5 90.9 91.9
hard 90.8 92.7 92.4 91.8 92.3 92.7 92.3 92.9 92.7 92.7 92.9 92.9
serve 80.6 91.5 90.6 89.4 89.4 91.5 91.3 91.6 91.8 91.6 91.3 91.8

Table 2 Result with representation R2 for the four words.

compared in the same combination rules (the same columns).

• In average, the min and median rules show the best results, and for DSO data, product

is shown as the worse combination rule.

• Although the independent assumption is violated, the result of product rule of individ-

ual classifiers based on feature sets overlapped with rich features such as collocations

can improve the accuracy.

Table 5 compares our proposed method with (Ng and Lee 1996), (Escudero, Marquez,

and Rigau 2000a), and (Le and Shimazu 2004). It shows our approach achieves better results

with the min and median combination rule. Other information for comparison can be found

in Tables 6 and 7. Table 6 presents the comparison of the min rule in our method with various

WSD studies that also tested on the four words interest, line, hard, and serve. Table 7 com-

pares Escudero et al. (Escudero et al. 2000), (Le and Shimazu 2004) and the result from our

min combination rule test on the 15 most frequent words which appear in DSO data. These

tables show that by using the min combination rule and the our context representation, we will

obtain the better results. It also emphasizes that our new ensemble of context representations

is stronger than previous representations.

6 Conclusion

In this paper we first argued that various ways of using context in WSD can be considered

as distinct representations of a polysemous word, and then, that these representations can
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f1 f2 f3 f4 f5 max f product median max min voting max
combination

age 72.9 69.6 67.2 71.7 72.5 72.9 74.7 77.0 76.4 77.2 75.4 77.2

art 60.4 57.8 62.1 61.1 61.8 62.1 65.3 64.8 68.5 66.3 64.8 68.5

car 94.3 95.0 95.4 95.3 95.9 95.9 86.1 96.0 96.2 96.3 96.2 96.3

child 90.4 83.2 80.0 74.3 74.5 90.4 74.1 85.1 87.5 87.8 84.9 87.8

church 65.5 75.5 74.6 74.9 76.8 76.8 77.6 77.9 75.7 78.4 78.2 77.9

cost 78.1 83.7 82.4 85.7 85.3 85.7 83.3 87.3 86.7 86.9 87.1 87.3

fall 74.7 79.2 78.8 76.6 77.5 79.2 81.2 82.3 81.1 81.8 81.5 82.3

head 76.0 78.3 77.2 78.5 76.2 78.3 72.3 82.2 80.7 80.9 81.4 82.2

interest 68.1 69.2 68.4 67.6 69.2 69.2 73.4 71.9 71.3 72.7 72.1 73.4

know 46.3 46.1 45.3 44.5 44.7 46.3 53.8 52.3 51.3 54.1 49.7 54.1

line 51.5 52.6 51.2 51.4 51.5 52.6 54.6 58.5 59.0 58.4 57.3 59.0

set 50.7 52.6 49.9 51.3 49.9 52.6 46.4 56.7 56.5 56.8 56.5 56.8

speak 67.9 69.7 67.9 66.9 66.7 69.7 69.7 74.0 73.8 76.3 74.4 76.3

take 40.1 45.7 41.9 41.9 39.9 45.7 28.8 48.0 45.5 45.4 46.5 46.5

work 53.0 53.8 53.8 53.6 55.0 55.0 59.8 59.9 59.3 59.7 59.7 59.9

Average 70.0 67.5 66.4 66.3 66.5 66.7 71.6 71.3 71.9 71.0

Table 3 Result with representation R1 for the 15 words in DSO.

f1 f2 f3 f4 f5 max f product median max min voting max
combination

age 72.3 74.1 73.5 75.5 74.9 75.5 68.4 77.0 75.8 76.2 76.6 77.0

art 59.6 63.1 66.3 69.1 69.6 69.6 66.6 66.6 66.3 66.8 66.1 66.8

car 94.1 94.8 95.6 95.4 96.2 96.2 85.6 96.2 96.5 96.5 96.2 96.5

child 89.5 89.1 87.8 84.8 84.8 89.5 75.9 88.2 87.2 87.3 88.7 88.7

church 66.9 74.7 77.6 77.1 77.9 77.9 79.5 79.8 80.0 80.0 79.8 80.0

cost 77.8 80.8 81.8 83.6 84.1 84.1 79.5 83.3 84.0 84.1 83.2 84.1

fall 75.3 80.7 82.0 80.6 81.8 82.0 80.6 82.3 82.6 82.7 82.1 82.7

head 74.9 78.9 80.0 79.3 79.6 80.0 80.0 82.3 81.3 81.5 81.7 82.3

interest 68.2 72.0 71.9 72.1 72.9 72.9 73.3 73.3 73.0 73.2 73.3 73.3

know 46.2 51.1 52.7 51.2 52.1 52.7 49.0 53.7 53.1 54.2 52.0 54.2

line 50.9 59.2 60.2 60.2 60.6 60.6 57.3 62.8 62.7 62.7 61.9 62.8

set 52.0 55.9 56.1 57.5 57.7 57.7 51.0 59.0 58.2 59.7 59.2 59.7

speak 69.9 71.2 71.8 72.6 72.2 72.6 69.1 73.6 73.2 74.0 73.6 74.0

take 40.5 47.7 47.4 45.9 45.3 45.9 32.5 47.9 47.1 47.3 47.4 47.9

work 51.7 57.2 58.0 58.2 59.9 59.9 60.4 61.7 60.8 61.9 59.8 61.9

Average 66.0 70.0 70.8 70.9 71.3 67.2 72.5 72.1 72.5 72.1

Table 4 Result with representation R2 for the 15 words in DSO.

be jointly used to identify the meaning of the target word. This consideration allowed the

application of a common theoretical framework for combining classifiers, developed in (Kittler

et al. 1998), to create numerous strategies of classifier combination for WSD. However, since

some of the strong assumptions used in (Kittler et al. 1998) to yield the combination rules
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NL Es LS
combination rules

product median max min majority vote

Nouns(121) - 70.8 72.7 70.3 73.1 72.9 73.1 72.7

Verbs(70) - 67.5 66.4 59.7 66.8 66.4 66.9 66.5

Average 68.6 69.5 70.4 66.4 70.8 70.5 70.8 70.4

Table 5 Result with representation R2 comparing with other studies on DSO,
where NL, Es, and LS are abbreviation for (Ng and Lee 1996),
(Escudero et al. 2000) and (Le and Shimazu 2004), respectively.

BW M NL LC P LS min rule (R2)

interest 78 – 87 – 89 91.4 93.8

line – 72 – 84 88 89.4 91.4

hard – – – 83 – 91.0 92.2

serve – – – 83 – 89.6 90.5

Table 6 The comparison between the min rule on representation R2 with previous studies
where BW, M, NL, LC, P, and LS are abbreviation for (Bruce and Wiebe 1994),
(Mooney 1996), (Ng and Lee 1996), (Leacock et al. 1998), (Pedersen 2000), and the best results
from the combination rules in (Le et al. 2005), respectively.

are not suitable for text-related applications, particularly WSD, we have developed a new

combination framework for generating these combination rules including median, max, min,

and majority rule; the product was yielded in the same way as in (Kittler et al. 1998). This

interpretation allowed us to construct the ensemble of context representations which accepted

some overlapping features. The context representations were built using collocations and con-

tents words in different windows of the target word. Two ensembles of context representations

have been designed: one is without overlapping features (considered to satisfy independent

assumption); in the other, all representations contain collocation features. The combination

rules with an individual classifier based on two models of context representations were tested

on the DSO corpus and on the four words - namely interest, line, serve, and hard, - which

are used in numerous comparative studies of word sense disambiguation methodologies. The

experiment showed that with these context representations, combining classifiers improves the

accuracy of WSD specially with min and median combination rules. In addition, designing an

ensemble of context representations in model R2 gives high accuracy. Comparing with other

studies on the same test data, it has been shown that our approach is promising.

As future work, we plan to apply this framework of classifier combination with classifiers
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Number of examples/senses Escudero et al. Le and Shimazu Our-Min

age(n) 493/4 74.7 73.9 76.2

art(n) 405/5 57.5 68.0 66.8

car(n) 1381/5 96.8 96.0 96.5

child(n) 1068/4 92.8 87.3 87.3

church(n) 373/4 66.2 76.0 80.0

cost(n) 1500/3 87.1 84.3 84.1

fall(v) 1500/19 81.1 83.5 82.7

head(n) 870/14 79.0 80.7 81.5

interest(n) 1500/7 65.4 73.5 73.2

know(v) 1500/8 48.7 51.9 54.2

line(n) 1342/26 54.8 63.6 62.7

set(v) 1311/19 55.8 59.1 59.7

speak(v) 517/5 72.2 68.9 74.4

take(v) 1500/30 46.7 47.7 47.3

work(n) 1469/7 50.7 61.1 61.9

Avg. 68.6 71.7 72.5

Table 7 This table borrowed a part from (Le and Shimazu 2004) shows the comparison between
Escudero et al. (Escudero et al. 2000), Le and Shimazu (Le and Shimazu 2004),
and our method with min combination rule notated
by “Our-Min”, on the 15 most frequent words in DSO

which are based on different learning methods such as example-based, maximum entropy, and

support vector machine. In addition, strategies of weighted combination of classifiers would

be interested to consider in the spirit of this framework.
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