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abstract. We observe that the known fact that the difference logic and
the hybrid logic with universal modality have the same expressive power on
Kripke frames can be strengthened for a far wider class of general frames.
This observation, together with a general completeness result and some al-
gebraic theory of closure operators, is used to show that lattices of difference
logics and of hybrid logics are isomorphic.
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Gargov and Goranko proved in [13] that languages of difference logic
ML(D, !) and hybrid logic with universal modality H(E, !) are equivalent
with respect to frame definability. This observation was improved upon by
Areces [1] who showed how to define a polynomial translation. It was sug-
gested by Patrick Blackburn (personal communication) that these results
should be strengthened to show something more. Namely, one would ex-
pect the existence of an isomorphism between the lattice of difference logics
and the lattice of hybrid logics. We are going to show that weakly atomic
frames — duals of atomic algebras — provide a natural tool to attack this
problem. The apparatus behind the isomorphism proof is the standard al-
gebraic theory of closure operators. In addition, weakly atomic frames also
allow to generalize the correspondence results to the topological setting. To
avoid notational complications, we work with the unimodal language, but
virtually nothing hinges on it: all results transfer to the polymodal case.

The main results of this paper are Corollaries 17 and 18, Theorem 26
together with Corollaries 29 and 30. Theorem 6 is also of some indepen-
dent interest. Corollary 18 allows for immediate transfers of known results
on topological definability from H(E, !) to ML(D, !) and back. A recent
example: Sustretov [19] has obtained a Goldblatt-Thomason-style charac-
terization of topo-definability in H(E, !), which by our result must be also
a characterization of topo-definability for ML(D, !).1 In the converse di-
rection, Kudinov [17] announced an axiomatization of the KName

D -logic of
Euclidean spaces of dimension at least 2. Hybrid translations of these ax-
ioms must then yield an axiomatization of the KName

H -logic of these spaces.
The idea that translations in logics can be used to prove that certain

lattices of logics are isomorphic occurred already in Kracht and Wolter’s [16]

1Thanks to Balder ten Cate for pointing out this example.
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improvement of Thomason’s translation from polymodal logics to a subclass
of unimodal logics. Actually, in their survey work [15] on modal translations
and simulations, the authors mention the original result of Gargov and
Goranko. However, they do not discuss the possibility of lifting it to an
isomorphism between lattices of logics or otherwise put in on equal footing
with other translations discussed in that paper. What they say, instead,
is that both nominals and the difference [operator] are rather nonstandard
devices which work fine on Kripke structures but present special problems
for generalized frames [15]. One of the main purposes of this note is to
show that those special problems are not impossible to overcome and it
is possible to treat both formalisms in a general mathematical framework.
More generally, the presence of non-orthodox (or non-structural) rules is
not necessarily an impenetrable barrier for algebraic methods. There is
more to universal algebra than varieties, quasi-varieties, structural rules
and structural closure operators. Finally, our results make clear that the
theory of closure operators can and should be applied to translations and
embeddings between classes of logics.

The author wishes to thank Nick Galatos, who showed him how to sim-
plify the formulation of Lemma 19 and how to relate it to existing results, to
Patrick Blackburn for the inspiration and to the anonymous referees whose
comments led to significant re-organization of the paper. Most of all, how-
ever, thanks are due to Balder ten Cate for his emails and comments on
earlier versions of this work.

1 Languages and semantics

1.1 Weakly atomic frames

We are going to consider two formalisms extending the one of basic modal
logic. The first is the hybrid language with the universal modality, obtained
by extending the basic modal language with an infinite set of nominals
NOM = {i, j, . . .} and a new modal operator E. The formulas of this
language are generated by the following recursive definition:

φ ::= ! | p | i | ¬φ | φ ∧ ψ | !φ | Eφ,

where p is a proposition letter and i is a nominal. It is usually assumed that
the set of nominals NOM , as well as the set of proposition letters PROP ,
is countable. V AR := PROP ∪ NOM . The second extension arises by
adding the difference operator D, i.e., its syntax is:

φ ::= ! | p | ¬φ | φ ∧ ψ | !φ | Dφ.

The set of hybrid formulas is denoted by H(E, !). The set of difference
formulas is denoted by ML(D, !). To improve readability, we drop refer-
ences to V AR and PROP . For every formula φ, Sub(φ) denotes the set of
its subformulas. The remaining connectives — ⊥, ∨, →, ", A — are defined
as abbreviations in a standard way. Define also Dp := ¬D¬p, Op := p∧¬Dp.
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DEFINITION 1. A weakly atomic frame is a structure of the form F :=
〈W, R, A〉, where R ⊆ W ×W and A is a family of subsets of W closed under
the Boolean operations, the operator !RX := {w ∈ W | ∃x ∈ X.wRx} s.t.
for every non-empty P ∈ A there is x ∈ P s.t. {x} ∈ A. If {x} ∈ A,
x is called an admissible element. The set of admissible elements of W is
denoted as AtA. Similarly, members of A are called admissible subsets.

Thus, weakly atomic frames are those where every subset contains an
admissible element. A propositional valuation is one assigning members of
A to propositional variables, a nominal valuation is one assigning admissible
members of W to nominal variables, a (total) valuation for hybrid logic is
one which is both nominal and propositional. In the case of difference
operator, a valuation is simply a propositional valuation. A model M is
a pair 〈F, V〉, consisting of a weakly atomic frame and a valuation in it.
Depending on the kind of valuation, it is propositional or (total) hybrid
model (we do not consider purely nominal models). For x ∈ W and c ∈
NOM ∪PROP , we write M, x ! c if c ∈ PROP and x ∈ V(c) or c ∈ NOM
and x = V(c). Clauses for booleans and the modal operator are standard.
For universal modality, the clause is M, x ! Eφ if ∃w ∈ W.M, w ! φ. For
difference modality, the clause is M, x ! Dφ if ∃w -= x.M, w ! φ. We write
F, V ! φ if φ holds under V at all points in W . If φ is a hybrid formula and
V is a propositional valuation, we write F, V ! φ if F, V′ ! φ for every total
valuation V′ whose propositional component coincides with V. We write
F, x ! φ if φ holds at x under every valuation. Finally, F ! φ means that
F, x ! φ for every x ∈ W .

Say that a model 〈F, V〉 is weakly named for H(E, !) if for every formula
φ there is a nominal i s.t. V(i) ∈ V(φ). A model is weakly named for
ML(D, !) if for every formula φ there is a variable p s.t. ∅ -= V(p∧¬Dp) ⊆
V(φ). General frames associated with weakly named models — i.e., frames
where admissible subsets of W are exactly those which are values of some
formula under V — are weakly atomic.

Important subclasses of atomic frames are:

• discrete frames : frames where every singleton is admissible;

• full frames or Kripke frames: frames where every set is admissible, i.e.,
A = 2W . In such a case, we may simply drop A from the signature.
This is how Kripke frames are usually defined. The only non-logical
constant of first-order correspondence language for Kripke frames is a
binary constant corresponding to the accessibility relation.

If for a given family of subsets X ⊆ 2W there is A ∈ A s.t.
⋃

X ⊆ A and
for every B ∈ A,

⋃
X ⊆ Z implies A ⊆ Z, we call A the supremum of X

and denote it as
∨

X ; observe it is not necessarily equal to
⋃

X .

LEMMA 2. If F = 〈W, R, A〉 is a weakly atomic frame, then for every
admissible subset A ∈ A, A =

∨
A ↓At, where A ↓At:= {{x} | x ∈ AtA ∩ A}.
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Proof. It is clear that
⋃

A ↓At⊆ A. Now assume
⋃

A ↓At⊆ B and A -⊆ B.
Then A ∧ ¬B is a non-empty admissible subset. Hence, by weak atomicity
it has to contain an element whose singleton is in A ↓At — a contradiction.

"

The reader probably recognized this lemma as a thinly disguised version
of a proof that in an atomic algebra every element can be represented as the
supremum of a family of atoms. The next subsection makes this connection
explicit.

1.2 Connection with algebra

This subsection is addressed to readers interested in algebra, hence we do
not define basic notions of duality theory appearing here: such readers are
likely to know them anyways. It is not hard to recognize that weakly atomic
frames are atomic modal algebras in disguise. The condition of weak atomic-
ity readily implies that the algebra of admissible sets is atomic. Conversely,
assume that the algebra is atomic and take the descriptive frame corre-
sponding to it. Every admissible subset contains a principal ultrafilter and
singletons of principal ultrafilters are admissible: hence, the frame is weakly
atomic. Thus, we can obtain a full-blown duality between descriptive weakly
atomic frames and atomic algebras as a restriction of standard duality be-
tween modal algebras and descriptive frames, as discussed in Chapter 5 of
Blackburn et al. [2]. The only reason why we used the name weakly atomic
frames instead of simply atomic frames is that the latter was sometimes
used for discrete frames.

1.3 Neighborhood frames and topological spaces

The fact that we can identify so-called (normal) neighborhood frames (or
Scott-Montague semantics) with a certain subclass of weakly atomic frames
follows readily from the duality theory developed by Došen [8] and the above
discussion. To make the paper more self-contained, let us describe it in more
detail. Let us say that a weakly atomic frame 〈W, R, A〉 is set-theoretical
if for every X ⊆ A there exists

∨
X ∈ A. In other words, the family of

admissible sets is lattice-complete. It is thus straightforward to prove that
descriptive set-theoretical frames are exactly duals of atomic and complete
modal algebras. Every Kripke frame is set-theoretical, but the converse
does not hold for weakly atomic frames. However, a discrete frame is set-
theoretical iff it is a Kripke frame.

There is another way of representing atomic and complete modal alge-
bras: as Scott-Montague semantics or normal neighborhood frames. Such a
structure consists of a family W and a function f assigning to every element
of W a filter over W . Recall that a filter is a nonempty family of sets X
satisfying A, B ∈ X iff A∩B ∈ X . f(x) is called the family of neighborhoods
of x. The dual algebra of a neighborhood frame is the powerset algebra of
W together with the operator "fA = {x ∈ W | A ∈ f(x)}.

Given a set-theoretical frame F := 〈W, R, A〉, define the neighborhood
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frame associated with F as F" := 〈AtA, fR〉, where

fR(x) := {X ⊆ AtA | x ∈ "R

∨
X ↓AtA}.

Observe that for a non-admissible X this may be a larger set than {X ⊆
AtA | x ∈ "RX}: a definition of fR using this smaller set would not
work as it should. It is an instructive exercise to find a suitable coun-
terexample. Conversely, for every neighborhood frame G we can take the
descriptive frame corresponding to its dual algebra to be the corresponding
set-theoretical frame G#.

FACT 3. F" is a neighborhood frame, G# is a set-theoretical frame, G 1
(G#)" and if F is a descriptive set-theoretical frame, F 1 (F")#.

To see how this idea can be lifted to a category-theoretical equivalence,
check Došen [8]. Topological spaces can be identified with neighborhood
frames s.t. for every X ∈ f(x) (1) x ∈ X and (2) "fX ∈ f(x).

FACT 4. For any neighborhood frame G, t.f.a.e.

1. G satisfies (1) and (2) above.

2. G is a neighborhood base in the topological sense.

3. G is a S4 frame.

4. the accessibility relation of G# is a quasi-order.

2 Axiomatizations and completeness

2.1 The hybrid language

Axiomatization of KName
H — basic hybrid logic with the non-standard

NameH rule — is given in Table 1. A KName
H -logic is any set of for-

mulas containing all the axioms of KName
H and closed under all its rules.

For every Γ ⊆ H(E, !), KName
H Γ denotes the smallest logic containing Γ.

LEMMA 5. Every KName
H -logic Λ is closed under the rule Name+

H:

from A(i → φ) deduce Aφ, for i -∈ Sub(φ)

Proof.

1: A(i → φ) (assumption)

2: i → φ (by the dual of RefE and MP)

3: φ (by NameH, as i -∈ Sub(φ))

4: Aφ (by NecA)
"
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Axioms and rules for KName
H

CT φ, for all classical tautologies φ
K !(p → q) → !p → !q
KA A(p → q) → Ap → Aq
RefE p → Ep
TransE EEp → Ep
SymE p → AEp
Incl! "p → Ep
Incli Ei
Nom E(i ∧ p) → A(i → p)

MP From φ → ψ and φ deduce ψ
Nec From φ deduce !φ
NecA From φ deduce Aφ
Subst From φ deduce φσ, where σ is a substitution that uniformly replaces

proposition letters by formulas and nominals by nominals
NameH From i → φ deduce φ, for i #∈ φ.

Additional rule of KBG
H

BGH From E(i ∧ "j) → E(j ∧ φ) deduce E(i ∧ !φ),
for i #= j and j #∈ Sub(φ)

Table 1. Axiomatization for the hybrid language

Axioms and rules for KName
D

CT φ, for all classical tautologies φ
K !(p → q) → !p → !q
KD D(p → q) → Dp → Dq
WTransD D2p → p ∨ Dp
SymD p → DDp
InclD "p → p ∨ Dp

MP From φ → ψ and φ deduce ψ
Nec From φ deduce !φ
NecD From φ deduce Dφ
Subst From φ deduce & φσ, where σ is an arbitrary substitution
NameD From Op → φ deduce φ, for any p #∈ Sub(φ)

Additional rule of KBG
D

BGH From E(Op ∧ "Oq) → E(q ∧ φ) deduce E(Op ∧ !φ),
for p #= q and q #∈ Sub(φ)

Table 2. Axiomatization for the difference language
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We write Γ ! γ if for every weakly atomic frame F, if F ! Γ then F ! γ.
More generally, for any class K ′ of weakly atomic frames, we write Γ !K′ γ
if for every F ∈ K ′, F ! Γ implies F ! γ. We say that a hybrid logic Γ
is atomically complete if for every γ ∈ H(E, !), Γ ! γ iff γ ∈ KName

H Γ.
Definition of K ′-completeness is analogous, with ! replaced by !K′ . We
also say that a set of formulas Γ is atomically Λ-consistent if ⊥ cannot be
deduced from Γ by means of theorems of Λ, MP, NameH and Name+

H.
Observe that we don’t allow the use of NecA rule here, so we cannot use
Lemma 5 and eliminate Name+

H from this definition.

THEOREM 6 (Atomic completeness for hybrid logics). Every KName
H -logic

Λ is atomically complete.

Proof. (sketch) It is enough to show that every KName
H -logic Λ is complete

with respect to weakly named models. Extend every atomically Λ-consistent
set of formulas Γ to a weakly distinguishing MCS Γ+ — i.e., a set of formulas
s.t.

• Γ is closed under all theorems of Λ and MP,

• for every φ, either φ or its negation belongs to Γ+, but not both,

• there is a nominal i ∈ Γ+ and

• for every φ, Eφ ∈ Γ+ only if E(i ∧ φ) ∈ Γ+, for some i -∈ Sub(φ).

The third requirement can be met because of NameH-consistency of Γ,
the fourth — because of Name+

H-consistency of Γ. Compare this strategy
to Lindenbaum-style lemmas in Gargov et al. [14], [13], de Rijke [18] or ten
Cate, Litak [4]. Weakly distinguishing MCS’s could be also called weakly
pasted MCS’s or MCS’s pasted for E-modality, to show both similarities and
differences with distinguishing or pasted MCS’s used in these papers.

Our model is then built out of all MCS’s ∆ s.t. for every φ ∈ ∆, Eφ ∈ Γ+.
Observe that — as opposed to proofs in papers mentioned above — we
don’t assume that every MCS in the model is a weakly distinguishing one
and hence named (i.e., contains a nominal). The accessibility relation R! is
then defined as usual in canonical models: ∆1R!∆2 iff for every "φ ∈ ∆1,
φ ∈ ∆2. The model thus obtained is weakly named and the general frame
associated with it is a weakly atomic frame for the logic in question. "

This strategy then is a mixture of the standard canonical model technique
and the hybrid technique of surjectively named models [13], which gives rise
to discrete frames. The relationship with “mainstream” hybrid techniques
and rules is discussed further in Section 2.3.

2.2 The difference language

Axiomatization of KName
D -logic — difference logic with the non-standard

NameD rule — is given in Table 2. Note that the universal modality is
definable in this system: in the case of difference operator, Eφ is defined
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as an abbreviation of φ ∨ Dφ. The definition of atomic completeness is the
same as in the hybrid case and we can prove

THEOREM 7 (Atomic completeness for difference logics). Every difference
logic is atomically complete.

Proof. (sketch) Essentially the same as Theorem 6. The role of names
for the points in the weakly named model construction is performed by
formulas Op. The only point one has to take care of is that RD is really
irreflexive, as the canonical model construction for difference logic — as
opposed to the technique of distinguishing sets [21] — does not preclude
that for some ∆, ∆RD∆. Nevertheless, weak namedness implies that for
every φ and every ∆, Eφ ∈ ∆ iff E(Op ∧ φ) ∈ ∆ for some p. If Op ∈ ∆,
then ∆ must be RD-irreflexive. Hence, the variant of the canonical model
obtained by deleting all pairs 〈x, x〉 from the interpretation of RD validates
exactly the same formulas. "

2.3 The role of non-standard rules

The axiomatizations used above are weaker than those used in Gargov and
Goranko [13], Gargov et al. [14], Venema [21], ten Cate and the present
author [4] and other papers on hybrid and difference logic. The difference
lies not in the choice of axioms, but in non-standard rules. We are using only
NameH for H(E, !) and NameD for ML(D, !). The Bulgarian logicians
used a rule scheme called COV for H(E, !). NameH only is not enough to
derive all instances of COV . Venema [21] made an analogous observation
concerning NameD, which he denoted as IR, and replaced it with a (set
of) rule(s) IR∗

D. Blackburn et al. [2] used both NameH and a rule called
PASTE. Our counterparts of these stronger rules are BGH (Table 1) for
H(E, !) and BGD (Table 2) for ML(D, !). It can be proven that — as
we have the universal modality in the language — both in the hybrid case
and in the difference case all these strengthenings are equivalent. KName

H -
logics closed under BGH are called KBG

H -logics, KBG
D -logics are defined

analogously.
Every KBG

H -logic is complete with respect to surjectively named models
(Theorem 5.4 in [13]), i.e., models where every point is named by a nominal.
Analogously, every KBG

D -logic is complete with respect to models where
every point is named by Op. This gives us the following

THEOREM 8. Every KBG
H -logic and every KBG

D -logic is complete with re-
spect to discrete frames.

How and why are these stronger rules non-conservative? It was observed
first by Gabbay [10] and later restated in Venema [21] or Gargov et al. [13]
that NameH (NameD) is enough if ! is conjugated.

FACT 9. If Λ is KName
H -logic (KName

D -logic)containing p → "!p, then Λ is
also closed under BGH (BGD). Consequently, Λ is complete with respect
to discrete frames.
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As every other result in the paper, this observation can be easily gen-
eralized to the polymodal context, e.g., for tense logics. Nevertheless, in
general atomic completeness does not imply di-completeness. The logic of
the so-called van Benthem frame [20] is atomically complete but not di-
complete. Here, let us consider a more natural example taken from ten
Cate and the present author [5]. That paper contains a more thorough
discussion of non-standard rules in the topological context.

FACT 10. The BGH (BGD) rule does not preserve validity on the real line,
and, indeed, on any non-discrete T1 space.

2.4 Properties of logics

Let us sum up by compiling a list of some standard properties one would
like to be preserved and/or reflected by mappings between lattices of logics.

Decidability, finite axiomatizability. Definitions are standard.
Di-completeness, neighborhood completeness, Kripke completeness, finite

model property. Substitute a suitable K ′ in definition of K ′-completeness.
Elementary generation. Completeness with respect to a first-order defin-

able class of Kripke frames.
Elementarity. The class of Kripke frames validating theorems of the logic

is first-order definable.
At-persistence, di-persistence. If a weakly atomic (discrete) frame vali-

dates Λ, its underlying Kripke frame validates Λ as well.
Sahlqvist property. We present the notion of a Sahlqvist formula along

the lines of Venema [21]. Let c1, c2, c3 . . . be syntactic metavariables rang-
ing over V AR, let #1, #2, #3, . . . be syntactic metavariables ranging over
arbitrary combinations of {!, E} in the hybrid case ({!, D} in the in the
difference case) and define "1, "2, "3 . . . dually, i.e., a syntactic metavari-
able ranging over words in {", D} in the difference case ({", A} in the hybrid
case). A strongly positive formula is a conjunction of formulas of the form
"ci. A formula is positive (negative) if every ci occurs under an even (odd)
number of negation symbols. A formula is untied if it obtained from strongly
positive and negative formulas by applying only ∧ and #1, . . . #n. Formulas
of the form UNTIED → POS (i.e., where antecedent is untied and conse-
quent is positive) are called Sahlqvist formulas. Logics axiomatizable with
Sahlqvist formulas are called Sahlqvist logics.

3 From ML(D, !) to H(E, !) and back

This section is based on the ideas of Gargov and Goranko [13] and Areces
[1, Chapter 7].

DEFINITION 11 (Translation from ML(D, !) to H(E, !)).
Fix any recursive 1 − 1 mapping f : ML(D, !) 3→ N s.t. N − f [N] is an

infinite recursive set and any recursive 1 − 1 mapping g : N 3→ N − f [N].
Let τ ′ : ML(D, !) 3→ ML(D, !) and τ : ML(D, !) 3→ ML(D, !) be
preprocessing functions s.t. τ ′ replaces every propositional variable pn in ψ
by pg(n) and τ(ψ) replaces all occurrences of subformulas of the form Dφ
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in τ ′(ψ) by pf(Dτ(φ)) by induction on the number of nested D operators.
Denote h(φ) := f(Dτ(φ)). Define

σ(ψ) := τ(ψ) ∧
∧

Dφ∈Sub(τ ′(ψ))

(Aph(φ) ∨ A¬ph(φ) ∨ (A(ph(φ) ↔ ¬ih(φ)) ∧ Eph(φ))) ∧

(Aph(φ) → E(τ(φ) ∧ ih(φ)) ∧ E(τ(φ) ∧ ¬ih(φ))) ∧

(A¬ph(φ) → A¬τ(φ)) ∧

((A(ph(φ) ↔ ¬ih(φ)) ∧ Eph(φ)) → A(τ(φ) ↔ ih(φ))).

As opposed to Areces [1, Chapter 7], we tried to avoid adding new vari-
ables to the language: we want to keep the language fixed, hence slightly
more involved formulation. Nevertheless, the translation is in fact the same.

THEOREM 12. For every weakly atomic frame F and every ψ ∈ ML(D, !),
F ! ψ iff F ! σ(ψ).

Proof. (sketch) First, observe that F ! ψ iff F ! τ ′(ψ), as the logic of
an arbitrary frame is closed under substitution. Let V be a propositional
valuation in F. Take V′ to be any total valuation s.t. V′ agrees with V
on variables with indices from g[N], V′(ph(φ)) = V(Dτ(φ)), V′(ih(φ)) is
some admissible singleton in V(τ(φ)) if this set is non-empty (here we use
weak atomicity) and arbitrary otherwise. Clearly, V(τ ′(ψ)) = V′(σ(ψ)).
Conversely, for every total hybrid model M := 〈F, V〉 and ψ ∈ ML(D, !),
if V(σ(ψ)) -= ∅, then for every Dφ ∈ Sub(τ ′(ψ)), V(ph(φ)) = V(Dτ(φ)) and
hence V(σ(ψ)) = V(τ ′(ψ)). "

The converse direction is quite simple. As we already saw, by means of
the difference operator, we can explicitly force a variable to serve as a name.

DEFINITION 13 (Translation from H(E, !) to ML(D, !)).
Choose any 1 − 1 and onto recursive mapping θ : PROP ∪ NOM 3→

PROP and extend it inductively to all formulas φ ∈ H(E, !). Let π(φ) :=∧

i∈NOM∩Sub(φ)

EOθ(i) → θ(φ). In addition, for every hybrid model M =

〈W, R, V〉 define M'= := 〈W, R, V '=〉, where V '=(p) := V(θ−1(p)) for each
p ∈ PROP .

THEOREM 14. For every weakly atomic frame F and every φ ∈ H(E, !),
F ! φ iff F ! π(φ).

Proof. (sketch) Let F := 〈W, R, A〉 be a weakly atomic frame, x ∈ W and
φ ∈ H(E, !). Then

F, x ! φ iff F, x ! π(φ)

and thus F ! φ iff F ! π(φ). The proof of the above fact is based on two
claims whose proofs can be adopted from Gargov and Goranko [13]:

CLAIM 15. For every hybrid valuation V, V(φ) = V '=(π(φ)).
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CLAIM 16. For every propositional valuation V, x -∈ V(π(φ)) only if there
is a hybrid valuation Vφ s.t. Vφ(φ) = V(θ(φ)) = V(π(φ)).

Proof. (of claim, sketch) Fix an admissible w ∈ W . Define

Vφ(q) =





V(θ(q)) : θ(q) ∈ Sub(π(φ)),

{w} : θ(q) -∈ Sub(π(φ)).

"

"

COROLLARY 17. ML(D, !) and H(E, !) are equally expressive with re-
spect to weakly atomic frames.

This in turn using the observations of Section 1 gives us the following

COROLLARY 18. ML(D, !) and H(E, !) are equally expressive with re-
spect to discrete frames, normal neighborhood frames and topological spaces.

4 Isomorphism between lattices of logics

4.1 Equivalence of closure operators

Ever since the early work of Tarski and the Polish school in the 1930’s, it
became clear that the study of logics should be intimately connected with
the study of closure operators. Let us recall (cf. [7]) that given an arbitrary
set X and a function C : 2X 3→ 2X , we say that C is a closure operator on
X if the following three conditions are satisfied for every A, B ∈ 2X :

C1. A ⊆ C(A),

C2. A ⊆ B implies C(A) ⊆ C(B),

C3. C(C(A)) = C(A).

For convenience, a pair 〈X, C〉 consisting of a set and a closure operator
on it will be called a closure space. A logic is often identified with a de-
ductive consequence operator, which is indeed a closure operator on the set
of formulas. The problem with this approach is that distinct consequence
operators can often generate the same set of theorems. That is, the notion
of a theory (deductively closed set of sentences) may differ even if the set
of tautologies (deductive closure of the empty set) is the same.

Here, we take a more Hilbert-style approach: we identify logics with sets
of formulas. But it doesn’t mean that the theory of consequence operators
is of no use for us. Because of its generality, it works well in contexts,
where other algebraic techniques may pose certain problems, such as those
mentioned in the introduction. There is nothing which prevents us from
studying in this manner deductive consequence with the substitution rule
and also with non-orthodox rules. Set of formulas which are closed under
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the substitution rule are logics rather than theories. It is a standard fact
that for any closure operator C, C-closed sets form a complete lattice, where
arbitrary meets coincide with set-theoretical intersections (cf. [7, Chapter
2]). Recall also that an element a of a complete lattice L is called compact
if for every A ⊆ L, a ≤

∨
A implies the existence of B ⊆fin A s.t. a ≤

∨
B.

If 〈A, C〉 is a closure space, C is algebraic if for every X , C(X) =
⋃
{C(Y ) |

Y ⊆fin X}. For algebraic closure operators, compact closed sets are those
of the form C(Y ) for a finite Y .

LEMMA 19 (Isomorphism of lattices of closed elements). Let X := 〈X, CX〉
and Y := 〈Y, CY 〉 be two closure spaces and assume there are mappings
Σ : X 3→ Y , Π : Y 3→ X s.t. for every {a}, A ⊆ X, {b}, B ⊆ Y :

I1. a ∈ CX(A) iff Σ(a) ∈ CY (Σ[A]),

I2. b ∈ CY (B) iff b ∈ CY (ΣΠ[B]).

Then the lattices of CX and CY -closed sets are isomorphic by Σ̄(A) :=
CY (Σ[A]). Moreover, Π̄(B) := CX(Π[B]) is the converse isomorphism, i.e.,
B = Σ̄(Π̄(B)) for any CY -closed B. For algebraic closure operators, this
mapping preserves and reflects compactness; that is, A is compact iff Σ̄ is.

Proof. For the sake of readability, we omit almost all parentheses, both
round and square. It is straightforward to see that Σ̄ is well-defined and
preserves order. To see that it also reflects the order and hence is 1 − 1,
assume A1, A2 are CX -closed, a ∈ CXA1 and CY ΣCXA1 ⊆ CY ΣCXA2.
Then by I1, Σa ∈ CY ΣCXA1 and by assumption and another application
of I1, it gives us a ∈ CXA2.

To prove the mapping is onto and the ’moreover’ part, take any CY -
closed B and let A := CXΠB. Then b ∈ CY ΣCXΠB iff (C1–C3) CY b ⊆
CY ΣCXΠB iff (I2) CY ΣΠb ⊆ CYΣCXΠB iff (C1–C3) ΣΠb ∈ CY ΣCXΠB
iff (I1 and C3) Πb ∈ CXΠB iff (I1) ΣΠb ∈ CY ΣΠB iff (I2) ΣΠb ∈ CY B
iff (C1–C3) CY ΣΠb ⊆ CY B iff (I2) CY b ⊆ CY B iff (C1–C3) b ∈ CY B.
Thus, Σ̄A = CY B = B and surjectivity follows. Preservation and anti-
preservation of compactness is straightforward. "

Cf. Blok, Jónsson [3, Theorem 3.7] or Galatos, Tsinakis [12] for more
general results of this kind.

4.2 Isomorphism via translation

Lemma 19 allows us to obtain a lattice isomorphism result as soon as we
have the following ingredients:

• a class of frames or algebras K;

• two languages L1 and L2 and two closure operators C1 and C2 on
them — the sets of formulas closed under C1 (C2) are called L1-logics
(L2-logics);
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• a proof that every L1-logic and every L2-logic is complete with respect
to a subclass of K;

• two translations F1 : L1 3→ L2 and F2 : L2 3→ L1 s.t. every A ∈ K
satisfies φ ∈ L1 iff it satisfies F1(φ) and A satisfies ψ ∈ L2 iff it satisfies
F2(ψ).

We will be also able to prove that this isomorphism preserves and reflects
many desirable properties, such as finite axiomatizability or completeness
with respect to some well-behaved subclass of K. The idea is clear, but in
order to prove it formally we need to introduce some definitions in the spirit
of Abstract Algebraic Logic.

DEFINITION 20 (Logical family). 〈F, C), K, !K〉 is called a logical family
if

• F is an arbitrary set of formulas. We assume here that this set is
recursive.

• C) is an algebraic closure operator on F . C)-closed sets are called
logics. Compact C)-closed sets are called finitely axiomatizable logics.

• K is an arbitrary class of structures (frames, algebras, topological
spaces . . . ) called a semantics.

• !K⊆ K × F is called a validity relation. If A ! φ, we say φ holds in
A.

This definition is so general that it has to be unsatisfying. For a start, it
does not say anything about the relationship between 6 and !. For Γ ⊆ F
and K ′ ⊆ K, denote closure operators induced on F by K ′ as

CK′(Γ) := {φ ∈ F | ∀A ∈ K ′(∀γ ∈ Γ.A ! γ ⇒ A ! φ)}.

It is straightforward to see CK′ is a closure operator; we say that CK′(Γ)
is the K ′-closure of Γ. If Γ = CK′(Γ), we say Γ is a K ′-complete logic.
Conversely, for any Γ ⊆ F , we can define Mod(Γ) := {A ∈ K | A ! Γ}.
Thus, Γ is a K ′-complete logic iff Γ = CK′∩Mod(Γ)(Γ).

DEFINITION 21 (Soundness, completeness, complete family).
Let 〈F, C), K, !K〉 be a logical family. If C)(Γ) ⊆ CK(Γ) for every Γ ⊆ F ,

K is a sound semantics. If the converse inclusion holds, K is called a
complete semantics. A logical family with sound and complete semantics is
called a complete family.

FACT 22. In every complete family, C)-closed elements are exactly CK-
complete logics.

DEFINITION 23 (Persistence and relative soundness).
Assume F1 = 〈F1, C1, K, !1〉, K ′ ⊆ K and ν : K ′ 3→ K ′ is a mapping s.t.

• restriction of ν to ν[K ′] is the identity mapping;
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• for every A ∈ K ′ and every φ ∈ F , νA ! φ implies A ! φ.

νA is called then the underlying ν-frame of A. ν itself is called a carrier
mapping. We say that Γ ⊆ F is K ′-persistent (relative to ν) if K ′ 9 A ! Γ
implies νA ! Γ. Also, assume F2 := 〈F2, C2, ν[K ′], !2〉, i.e., the semantics
of F2 is the range of ν. We say that F1-logic Γ is sound relative to F2 if
there is Γ′ ⊆ F2 s.t. ModF1(Γ) ∩ ν[K ′] = ModF2(Γ

′).

A paradigm example of such a ν is the mapping assigning to a weakly
atomic frame its underlying Kripke frame. We allowed the case when the
domain of ν is smaller than K itself to cover the case of di-persistence
too. The notion of relative soundness generalizes the notion of elementarity.
To see how, take F2 to be the family of first-order theories in the frame
correspondence language.

To sum up: we saw how to generalize notions such as topo-completeness,
di-completeness, Kripke completeness, finite model property, elementary
generation (K ′-completeness, with K ′ replaced by respective class of frames),
at-persistence, di-persistence (K ′-persistence), and elementarity (relative
soundness). Now let us see how to generalize the idea of translations pre-
serving and reflecting validity — and how to use this notion to prove the
existence of isomorphism preserving and reflecting the above-defined prop-
erties.

DEFINITION 24 (Equivalent families).
Let F1 := 〈F1, C1, K, !1〉, F2 := 〈F2, C2, K, !2〉 be two complete logical

families sharing the same class of structures as semantics and let f1, f2 be
a pair of functions s.t.

T1. f1 : F1 3→ F2 and f2 : F2 3→ F1;

T2. for every A ∈ K and every φ1 ∈ F1, A !1 φ1 iff A !2 f1(φ1);

T3. for every A ∈ K and every φ2 ∈ F2, A !2 φ2 iff A !1 f2(φ2).

We say then F1 and F2 are K-equivalent by 〈f1, f2〉.

LEMMA 25. Assume F1 := 〈F1, C1, K, !1〉 and F2 := 〈F2, C2, K, !2〉 are
K-equivalent by 〈f1, f2〉 and let K ′ ⊆ K. Then 〈F1, C1K′ , K ′, !1〉 and F2 :=
〈F2, C2K′ , K ′, !2〉 are K ′-equivalent by 〈f1, f2〉, where C1K′ and C2K′ are
closure operators induced by K ′ on F1 and F2, respectively.

THEOREM 26. Assume F1 := 〈F1, C1, K, !1〉 and F2 := 〈F2, C2, K, !2〉
are K-equivalent by 〈f1, f2〉. For Γ ⊆ F1, define F (Γ) = C2(f1[Γ]). This
mapping restricted to C1-closed sets is an isomorphism onto the lattice of
C2-closed sets, which preserves and reflects

• finite axiomatizability;

• for every K ′ ⊆ K, K ′-completeness. Moreover, lattices of K ′-complete
F1-logics and F2-logics are isomorphic too;
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• for any carrier mapping ν : K ′ 3→ K ′, K ′-persistence and for any
logical family G whose semantics is ν[K ′], relative G-soundness;

• if both f1 and f2 are effectively defined, the isomorphism preserves and
reflects decidability. If, moreover, both are computable in polynomial
time, the isomorphism preserves complexity up to a polynomial.

Proof. The existence of such an isomorphism follows directly from Lemma
19. All we have to do is to check that the following two conditions hold for
arbitrary {δ} ∪∆ ⊆ F1, {γ} ∪ {Γ} ⊆ F2:

CLAIM 27. δ ∈ C1(∆) iff f1(δ) ∈ C2(f1[∆]).

Proof. (of claim) δ ∈ C1(∆)
iff ∆ !F1 δ (F1 is a complete family)
iff for every F ∈ K, F !1 ∆ implies F !1 δ
iff for every F, F !2 f1[∆] implies F !2 f1(δ) (T2)
iff f1(δ) ∈ C2(f1[∆]) (F2 is a complete family). "

CLAIM 28. γ ∈ C2(f2[f1[Γ]]) iff γ ∈ C2(Γ).

Proof. (of claim) γ ∈ C2(f1[f2[Γ]])
iff for every F ∈ K, F !2 f1[f2[Γ]] implies F !2 γ (F2 is a complete

family)
iff F !2 Γ implies F !2 γ (by T2 and T3)
iff γ ∈ C2(Γ) (F2 is a complete family). "

Preservation and antipreservation of

• finite axiomatizability: follows from preservation and antipreservation
of compactness;

• decidability: assume ∆ = C1(∆) is a decidable F1-logic. The problem
whether γ ∈ F2 is in F (∆) reduces then to checking if f2(γ) is in
∆. So, if f2 is computable, computability is preserved and if f1 is
computable, computability is reflected. Reasoning for complexity is
analogous;

• K ′-completeness: is a consequence of Lemma 25;

• K ′-persistence:

K ′ 9 A ! Γ implies νA ! Γ

is equivalent to

K ′ 9 A ! f1(Γ) implies νA ! f1(Γ);

• relative soundness: because ModF1(Γ)∩ν[K ′] = ModF2(f1[Γ])∩ν[K ′].

"
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COROLLARY 29. The lattices of KName
H -logics and KName

D -logics are iso-
morphic. This isomorphism preserves and reflects di-completeness, topo-
completeness, Kripke completeness, finite model property, elementary gen-
eration, elementarity, at-persistence, di-persistence, finite axiomatizability
and decidability.

COROLLARY 30. The lattices of KBG
H -logics and KBG

D -logics are isomor-
phic. This isomorphism preserves and reflects Kripke completeness, finite
model property, elementary generation, elementarity, di-persistence, finite
axiomatizability and decidability.

4.3 The Sahlqvist problem

One more property whose preservation under modal translations is desir-
able is the property of being Sahlqvist. Its preservation and/or reflection
are usually discussed while introducing translations and interpretations in
modal logic; cf. [15]. Nevertheless, as observed by Conradie et al. [6], the
problem with the syntactic definition of the Sahlqvist property is that it is
extremely fragile as it does not withstand even simple boolean transforma-
tions, or even substitutions changing the polarity of propositional variables.
And so, even if φ ∈ H(E, !) is Sahlqvist, π(φ) can, strictly speaking, fail
to be one. The antecedent

∧

i∈NOM∩Sub(φ)

EOθ(i) is indeed an untied for-

mula, but the consequent, which is θ(φ) itself, is not necessarily positive.
However, it is of course a matter of trivial boolean pre-processing to show
that if φ is a Sahlqvist formula of the form α → β, then π(φ) can be taken
to be

∧

i∈NOM∩Sub(φ)

EOθ(i) ∧ θ(α) → θ(β), and this is again a Sahlqvist

formula. Therefore, it is safe to say that π preserves the property of being
Sahlqvist as well. Moreover, it is clear that this slightly modified version of
π (i.e. with the clause that formulas whose main connective is implication
are translated as described above) yields a Sahlqvist formula iff the input
was a Sahlqvist formula. Thus, it is justified to say that this translation
preserves and reflects the property of being Sahlqvist. Things, however,
look different if one takes σ as a starting point. It is enough to glance at
the definition of σ to see there is no straightforward way of ensuring that
this translation preserves the Sahlqvist property.

5 Concluding remarks

5.1 Further applications

There is nothing in the isomorphism proof from Section 4 which crucially
depends on the nature of weakly atomic frames, hybrid logic or the difference
operator. Therefore, our note is meant as a methodological suggestion: a
proof that two languages are equivalent with respect to expressivity over
certain class K of frames, algebras, spaces etc. yields automatically that
lattices of K-complete logics in both languages are isomorphic. If K is large
enough to provide a general completeness proof, it proves the isomorphism of
lattices of all logics in both languages. Moreover, this isomorphism preserves
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many desirable properties. We feel this method can find other applications.
First idea: using results of Gabbay et al. [11], one can try to apply ideas
presented here to the correspondence between lattice of modal logics with
Stavi connectives and the lattice of weak second-order theories (in the sense
of van Benthem [20]) of linear orders. It would be also interesting to find
other examples of this kind in the modal realm or elsewhere.

Besides, it should be possible to relate the isomorphism-via-translation
techniques to the theory of residuation and Galois connections. It was not
necessary to study this connection in depth for our present purposes, but
anyone aiming to develop a more general mathematical theory of transla-
tions between classes of logics along the lines of Section 4 should investigate
this option seriously. A good starting point is Erne et al. [9]

5.2 Life without rules

Coming back to the correspondence between KName
H -logics and KName

D -
logics, the reader may wonder now what was the role of non-standard rules
in the isomorphism proof. As we have shown, general completeness and
isomorphism results can be proven both with and without the paste-like
rules (BGH and BGD, respectively). They are geared towards discrete
frames — algebraically, they force complete additivity of corresponding al-
gebras. It means that behaviour of ! on all sets is completely determined by
its behaviour on admissible individuals. There is, however, nothing in the
translation which prevents semantics of more topological character. In these
semantics, constraints on ! imposed by paste-like rules are not natural.

But the situation with NameH and NameD seems to be different. These
rules apparently capture something very fundamental about the nature of
the difference operator and nominals. Let us consider briefly what could
happen if we delete these rules. Of course, we could not take weak named-
ness and atomicity for granted anymore. So, in the hybrid case the set of
admissible singletons could become arbitrarily small. And in the ML(D, !)
case, as was already noted, these rules are also necessary to ensure that we
can restrict our attention to frames where RD is irreflexive. So, the idea
of translation based on non-standard semantics for such weak deductive
systems would be to treat exactly the set of those points for which RD is ir-
reflexive as the set of admissible singletons. However, the axiom Incli poses
an immediate problem. In the H(E, !)-case, it forces non-emptiness of the
collection of admissible singletons. In the ML(D, !)-case, this would cor-
respond to the requirement that every frame contains at least one point on
which RD is irreflexive. But this condition cannot be forced on non-standard
semantics by any modal formula.

Balder ten Cate suggested two ways out of this predicament. One was
to retain a very weak form of NameD for ML(D, !), with Op replaced
by EOp. Another was to remove the problematic axiom from the hybrid
axiomatization. The present author is not happy with either choice. The
first one, while sacrificing a nice completeness result, would fail to achieve
the main goal of eliminating non-standard rules from both languages. The
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second option feels, if anything, even worse. It would remove not only the
axiom whose roots in hybrid logics can be traced back to Prior, but also
the underlying fundamental idea: that nominals should behave like genuine
individual names and hence be true not just at at most one point, but at
exactly one point. Still more unacceptably, Incli would not make these
pseudo-semantics specialize to standard semantics in hybrid logic: Ei would
define an empty class of frames

And it is doubtful anyways that either of bad solutions would restore
the isomorphism result. An interested reader may investigate this question.
The present author feels contended with the conclusion that every general
(meta-)theory of logics with individual names has to take the non-orthodox
rules seriously.
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