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Abstract

We consider the non-orthodox proof rules of hybrid logic from the viewpoint of
topological semantics. Topological semantics is more general than Kripke semantics.
We show that the hybrid proof rule BG is topologically not sound. Indeed, among
all topological spaces the BG rule characterizes those that can be represented as a
Kripke frame (i.e., the Alexandroff spaces). We also demonstrate that, when the BG
rule is dropped and only the Name rule is kept, one can prove a general topological
completeness result for hybrid logics axiomatized by pure formulas. Finally, we
indicate some limitations of the topological expressive power of pure formulas. All
results generalize to neighborhood frames.
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1 Introduction

In many completeness results for hybrid logics, an important role is played by
non-orthodox rules, i.e., proof rules involving syntactic side-conditions, also
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known as Gabbay-style rules. For instance, such rules are necessary in order
to obtain general Kripke completeness for hybrid logics axiomatized by pure
formulas [3]. Various formulations of these non-orthodox proof rules for hybrid
logic have been used in the literature under names such as COV [8], Name
and Paste [4] or BG [3]. Here, we will consider the following formulation of
the rules in the language with the global modality:

Name IfFi— ¢ then - ¢, for i not occurring in ¢.

BG If HE(i A<j) — E(j A @) then - E(i A Og)
for i # 7 and j not occurring in ¢.

The Name rule is very natural. It expresses that whenever a formula ¢ is
falsifiable, one can name the falsifying world by a fresh nominal. The BG rule
also seems natural at first. Under the usual Kripke semantics, it expresses
that whenever $¢ holds at a world, one can pick a fresh nominal to name
a witnessing ¢-successor. Under the topological semantics, however, where
O expresses that ¢ holds throughout some open neighborhood around the
current point, it is not clear why the BG rule would preserve validity.

This observation forms the starting point of this paper. First, we demon-
strate that the BG rule fails to preserve validity on many topological spaces,
including the real line (Theorem 3.2). In fact, we show (Theorem 3.4) that
the BG rule characterizes those topological spaces that can be represented as
Kripke frames (i.e., the Alexandroff spaces).

Next, we prove that the BG rule can be eliminated from the axiomatization
without sacrificing completeness: every hybrid logic extending S4 by means
of pure formulas, without the BG rule, is complete with respect to some class
of topological spaces (Theorem 4.1). These results generalize to neighborhood
frames (Section 6). We do not know at present, however, whether similar
general topological completeness results can be found for weaker languages,
such as with satisfaction operators.

Of course, pure formulas have rather limited expressive power: while the
separation axioms 7Ty and 7} can be defined by means of pure formulas, many
other properties of topological spaces cannot be defined in this way. In fact,
in the absence of BG even the hybrid variant of S4 cannot be axiomatized
with pure formulas (Corollary 6.4). Nevertheless, the construction used in our
completeness proof seems to work for an interesting class of axioms, not all
of which are topologically equivalent to pure formulas. It is left as an open
question how large exactly this class is.

Concerning the main question of the workshop — what is the proper way to
hybridize a logic? — we can conclude that a crucial decision lies in the choice
of non-orthodox rules. This decision in turn should depend on whether the
intended semantics is topological or graph-like in nature. Whichever choice
you make, don’t worry: hybrid proof mechanisms are going to cater for your
needs. There are many paths to hybrid paradise.



2 Background

2.1 Hybrid logic and hybrid proof rules

The hybrid language we will consider in this paper H(E) is obtained by en-
riching ordinary modal logic with nominals, a second sort of atomic formula,
typically written ¢, j, k,..., and with the global modality E. More precisely,
given a countable set of ordinary proposition letters prop and a countable set
of nominals Nom, we define the formulas of H(E) to be

¢ w=plil=¢lond]O9[EP

where p € prop and i € nom. Sub(¢), the subformula closure of ¢ is the
set of all subformulas of ¢. A substitution instance of ¢ is defined as usual
in propositional logic with the additional requirement that nominals can be
replaced only by nominals. Nominals act as proposition letters, except that
their valuation is required to be a singleton set. Thus, for example, the hybrid
formula & (i Ap) AO(i A—p) is unsatisfiable due to the fact that ¢ is a nominal.
The global modality allows us to express that a formula holds somewhere in
the model: E¢ is true at a point w iff there is a point v (not necessarily related
to w) satisfying ¢.

The nominals and the global modality make it possible to define properties
that are not definable in the basic modal language. For instance, no formula
of the basic modal language can define the class of irreflexive Kripke frames,
but it is easy to see that i — =<4 is valid on a Kripke frame iff the frame is
irreflexive. Note that valid here means true at all worlds in the frame under
all valuations that make nominals true at a unique world. Observe that this
formula contains no proposition letters, only nominals. We call such formulas
pure.

One of the great merits of hybrid logic is that there is a general complete-
ness result for logics axiomatized by pure formulas. This result relies on the
use of non-orthodox proof rules: rules that involve syntactic side-conditions.
The full axiomatization of minimal logic in H(E) is given in Table 1. For
any set of formulas I", define Kg?,;“ ®BGT {0 be the smallest set of formulas
containing I' and closed under all the axioms and rules from Table 1.

Theorem 2.1 Let T be any set of pure formulas. Then Kg?é’;e’BGF is strongly

complete for the class of Kripke frames defined by T.

This result crucially depends on the use of non-orthodox proof rules: every
axiomatization of which each pure extension is complete must contain either
infinitely many proof rules or non-orthodox ones. [3]

2.2 Topological Semantics

Topological spaces are usually defined as pairs (7, O), consisting of a non-
empty set T' (“the points”), and a set O of subsets of T' (“the open sets”),



Table 1
Axioms and rules for H(E)

CT F ¢, for all classical tautologies ¢
Dual F Op « —O-p

K FO(p — q) — Op — Og

Dualy, FEp«— -A-p

Ka FA(p—q) — Ap — Aq

Refe Fp— Ep

Transg + EEp — Ep

Symg Fp— AEp

Incle F<op — Ep

Incl; HE:

Nom FE(@Ap) — Al — p)

MP IfF¢ — ¢ and F ¢ then F ¢
Nec If - ¢ then - O¢
Necp If - ¢ then - A¢

Subst  If - ¢ then F ¢o, where ¢ is a substitution that uniformly replaces
proposition letters by formulas and nominals by nominals.

Name If ¢ — ¢ then | ¢, for ¢ not occurring in ¢.
BG If-EGEAOT) — E(J A @) then F E(i A O¢),
for i # j and j not occurring in .

such that @, T € O and such that O is closed under arbitrary unions and finite
intersections. For present purposes, it is convenient to use a slighly different
presentation.

Definition 2.2 A topological space is a pair (T, 7), consisting of a non-empty
set T, and a function 7 that assigns to each = € T a set of subsets of T' (“the
basic open neighborhoods around x”) satisfying the following properties:

non-emptiness there is some X € 7(x),

filter X,Y € 7(z) if X NY € 7(x),

T for all X € 7(z),z € X,

dforall X er(x),{yeT | X et(y)} € 1(x).
In presence of the filter condition, non-emptiness is equivalent to the re-
quirement that 7' € 7(z). For every x € T, 7(x) is called the neighborhood

base of x. For any X C T, we define the interior of X, 0,.X, to be the set
{r €T | X €7(x)}. Thus, 4 says that for all X € 7(z),0,X € 7(x).

It will become clear in Section 6 why we use this definition of topological
spaces. The two versions are equivalent, though (cf. any textbook on set-
theoretic topology):

Fact 2.3 Given any topological space T := (T,T) in the sense of Defini-



tion 2.2, the family of open sets O, = {0,X | X C T} contains O and T
and is closed under arbitrary unions and finite intersections. Conwversely, if
O C o(T) contains O and T and is closed under arbitrary union and finite
intersections, then

(Ty7o:T22x—{XCT|3Y €0 suchthatx €Y andY C X}) C (7))

is a topological space in the sense of Definition 2.2. Moreover, (T, 0.} is the
same topological space as (T, T).

A topological model (¥, V') consists of a topological space ¥ and a valuation
function V assigning subsets of T' to propositional variables and elements of

T to nominals. Satisfaction of a formula ¢ at a point x in a topological model
(Z,V) (notation: (T, V), x |= ¢) is defined as follows:

TV, kEp iff z € V(p)

TV, xEi iff x="V(i)

TVeE-¢p it TV, 2F O

TVreEoNY it TV, eEpand T, V,xE¢
TV,eFOp iff xe0{yeT|%,V,ykE ¢}
TV, eEAp iff foreveryyeT, T, V.yE ¢

It straightforward to see that the S4 axioms Op — p and Op — OOp hold
regardless of the valuation (i.e., are valid). Since the work of McKinsey and
Tarski [12], it is known that in the basic modal language (i.e., without universal
modality and nominals) S4 is not only sound but also complete with respect
to topological spaces. Before we prove a more general version of this theorem
for hybrid logic, let us recall why adding nominals is an attractive step from
topological perspective.

Example 2.4 The following properties are definable in H(E):

o Ty, i.e., for all x # y, either there is an X € 7(z) such that y ¢ X, or there
is an X € 7(y) such that © ¢ X

is defined by E(i A =7) — E(: A O=yj) V E(j A O—i)
o Ty, i.e., for all z # y, there is an X € 7(z) such that y ¢ X
is defined by &1 — 4
o density-in-itself, i.e., for every z, {z} & 7(x)
is defined by &

These properties are not definable in the basic modal language [12,7].



We mentioned earlier that topological spaces generalize Kripke frames.
Every reflexive and transitive (that is, quasi-ordered) Kripke frame § = (W, R)
gives rise to a topological space: simply take 7(z) = {X C W | Vy(xRy —
y € X)}. Not every topological space can be represented by a Kripke frame in
this way. In fact, a space is representable by means of a Kripke frame iff every
7(x) contains a smallest element. Such spaces are called Alexandroff spaces.

Fact 2.5 A space is Alexandroff iff for arbitrary family {X;}icr of subsets of
I,0,N X = 0.X; or, dually, O, | X; = U O-X.
iel iel i€l i€l
There is in fact a category-theoretical equivalence between quasi-orders
and Alexandroff spaces (cf. [6,13]), but we will not go into the details here.

3 Hybrid proof rules from topological perspective

Topological semantics for hybrid logic has received some attention in recent
literature, where it is noticed that several modally undefinable properties of
topological spaces are definable using nominals. However, not much is known
about axiomatics for hybrid logic under the topological semantics. It is not
hard to see that all axioms of hybrid logic are also sound under the topological
interpretation. The Name rule is also topologically sound:

Theorem 3.1 The Name rule preserves validity on every topological space.

Proof. If ¢ is falsified on a topological space ¥ at a point z, then 1 — ¢ is
falsified under the same valuation extended by sending i to x. O

The BG rule, on the other hand, is topologically dangerous even on the
most well known topology, the real line, as the following shows:

Theorem 3.2 The BG rule does not preserve validity on the real line, and,
indeed, on any non-discrete T1 space.

Proof. By Example 2.4, &i — ¢ defines the T} separation property: for all
x # vy, there is an open around z to which y does not belong. Clearly, this
formula is valid on the real line. Using the axioms of hybrid logic, and classical
modal inference rules — which are all topologically sound — we can derive
from this
E(j A Gi) — E(@A(E(j Ap) — p))
This indeed defines the same class as <i — 4. A single application of the BG
rule now yields
E(j AD(E(G Ap) — )

This formula defines the same class of topological spaces as p — Op, namely
the class of all spaces with discrete topology, i.e., topology in which the set
of opens is the full powerset. To see it, assume that €, V,x ¥ p — Op. It
is enough to set V(j) := « to refute the above formula. Conversely, assume
E( ANO(E(j A p) — p)) is refuted by V. It can happen only if V(j) € V(p)



— otherwise E(j A p) — p has a false antecedent and hence is true at every
point in the space — and yet V(j) ¢ OV(p). But it means p — Op is
refuted. Alternatively, one can prove syntactically that these two formulas
are equivalent using the Name rule, which is topologically sound by Theorem
3.1.

R ¥ p — Op and the conclusion follows. O

Incidentally, by the same argument, almost all interesting topological hy-
brid logics are Kripke incomplete:

Corollary 3.3 The hybrid logic of the real line, and in fact the hybrid logic of
any class of T\ spaces containing a non-discrete space, is Kripke incomplete.

Not surprisingly, the BG rule is sound for Alexandroff topologies, which
can be represented as Kripke frames. In fact, it turns out that the BG rule
characterizes exactly the Alexandroff topologies. Let us say that a space
admits BG if every valuation falsifying the consequent of the BG rule can be
extended to a valuation falsifying the antecedent.

Theorem 3.4 A space is Alexandroff iff it admits BG.

Proof. Assume the space is Alexandroff and let T,V = E(i A O¢). Then
there is some y which belongs to the smallest element of 7(V (7)) and does not
belong to V(¢). Define V'(j) := y, valuations of all other variables unchanged.
It follows that V'(i) € V'(<j) and not j € V'(¢). Thus, the antecedent of the
rule is falsified.

On the other hand, suppose the space is non-Alexandroff. Then there is
a point z s.t. 7(x) contains no smallest element. Define f : 7(z) 3 X
{y € X | 3IX’' € 7(x).y & X} € p(T). This is a sequence of sets indexed
by elements of 7(x) whose all elements are non-empty and hence — by the
Axiom of Choice — it has a choice function 7(z) 3 X — ¢g(X) € T. We
may think of {g(X)}xer@) as of a sequence of elements approximating x s.t.
(1) for every X € 7(z), v ¢ <. {g(X)} and yet (2) 2 € O,g[r(x)]. Define
V(i) :=x, V(p) =T — g[7(X)] (complement of the range of ¢g). Then by (2)
T, V,x ¥ E(i AOp) but by (1) for no valuation V' agreeing with V' on i and p
it is the case that T, V' x E E(i A Cj) — E(j A p). O

Alexandroff spaces do not form a particularly interesting class of spaces,
and therefore, from a topological perspective, the BG rule is rather ad hoc. In-
spired by Theorem 3.4, one could consider variations of the rule. For instance,
it can be naturally weakened as follows:

BG' From E(i A Oj) — E(j A O9¢) for j & Sub(¢), infer E(i A OOg)

4 This definition is inspired somewhat by similar notions used in [3,14]. An alternative
would be to require only that the logic of the class in question is closed under the BG rule.
However, under this weaker notion of admittance, rules such as the BG rule are not likely
to characterize any interesting semantic property.



Indeed, this new rule turns out to define a strictly weaker property than that
of Alexandroffness.

Theorem 3.5 All Alexandroff spaces admit the BG' rule but not vice versa.
Not every space admits BG'.

Proof. One direction of the first claim is trivial. The other direction: consider
the real numbers and as non-trivial open sets take all intervals (r,r") with
r < 0 < r’. This space is easily seen to admit BG’. It fails to be Alexandroff
though, as the element 0 has no smallest open neighborhood.

To see that not every space admits BG', consider the real line with stan-
dard topology. The element 0 is in the closure of the open interval (0, 1) but
it is not in the closure of any singleton subset. O

Still, topologically the most natural move is to drop the BG rule com-
pletely. As the next section shows, this is indeed a feasible option. Every
hybrid logic axiomatized by pure formulas is topologically complete without
the BG rule.

Remark 3.6 The Name and BG rules are admissible in the basic hybrid
logic Kg?g *BGG4 and in any extension of it with modal Sahlqvist formulas:
using the techniques of [5], it can be shown that these logics are all Kripke
complete, hence complete with respect to a class of Alexandroff topologies,
even without the Name and BG rules. It follows by Theorem 3.1 that the
Name rule is admissible, and by Theorem 3.4 that the BG rule is admissible

in these logics.

4 Completeness of pure extensions

In this section, we show that all hybrid logics axiomatized by pure formulas are
topologically complete. This generalizes known results for Kripke semantics.
The most important difference with these known results is that, in the topo-
logical semantics, we cannot make use of the BG rule, as it is topologically
unsound. Instead, we will only use the Name rule. Recall that Kzaén e’BGT,
was defined to be the smallest set of formulas containing I" and closed under
all the axioms and rules from Table 1. Kﬁf‘g‘ef is defined similarly, but we
don’t require closure under BG.

We say that a hybrid logic K%?é‘)‘ef‘ is strongly complete with respect to a

class K of topological spaces if every K%?ger—consistent set of formulas can
be jointly satisfied (at some point, under some valuation) on a space in K.

Then, the main result of this section is the following:

Theorem 4.1 FEwvery pure KE(E) -extension of S4 is strongly complete with
respect to some class of topological spaces.

We will make use of the following variant of The Lindenbaum Lemma [11].



Lemma 4.2 Let I' be any set of hybrid formulas. Fvery Kgf‘é’;‘ef—wnsistent
set of formulas A can be extended to a KNa3meT -consistent set of formulas At

H(E)
satisfying the following conditions:
o AT contains all formulas from Kﬁf‘g‘eF and a fresh nominal 7,

o for every ¢, exactly one of {¢p, ¢} belongs to AT,

o for every Evp € AT, there is a nominal i which does not appear in v such
that E(i N) € AT,

The last condition could be baptized weak namedness. We may also say
that A™ is pasted for E-modality.

The proof of Theorem 4.1 we will give resembles the well-known Henkin
construction in first-order completeness proofs.

Proof of Theorem 4.1. Let I" be any set of pure formulas, and A a Kﬁf‘ge(sw
I')-consistent set of formulas. Let AT be obtained from A using Lemma 4.2.
We will construct a topological model 7 = (T, 7, V') out of equivalence classes
of nominals in A*,

As the universe T' , we pick the set of all =+-equivalence classes of nom-
inals, where i =+ j iff E(¢ A j) € AT. The reader may check that this is
indeed an equivalence relation.

For every [i] € T, we define 7([i]) as the set of all X C T for which there
exists a formula ¢ such that E(iAO¢) € AT and {[j] € T | E(jA¢) € AT} C X.
In other words, X is open if every point of X has an open neighborhood
contained in X: namely, a suitable neighborhood of the equivalence class of i
is defined by some O¢ s.t. according to A1 (a) D¢ holds at ¢ and (b) every
equivalence class where ¢ holds belongs to X.

The valuation V' is defined by letting V(p) = {[i] € T | E(i Ap) € AT}

Claim 4.3 7 satisfies the non-emptiness and filter conditions.
Proof. Tt follows from the definition of 7 that, for every [i], T € 7([i]). Next,

assume that X, Y € 7([7]). It means there are appropriate formulas ¢x and
¢y witnessing the membership. But then ¢x A ¢y shows that X NY € 7([i]).0

Claim 4.4 7 satisfies conditions T and 4.
Proof. Assume [i] € OX. This means that there is a suitable ¢x s.t. E(i A
O¢x) € Gt. Now:

(i) Because of the T axiom and the assumption on ¢y, it means [i] € X,
thus OX C X.

(ii) To show that OX C OOX, it is enough to set ¢ox := O¢x and use the
axiom 4.
O

Claim 4.5 (Truth) For every ¢ and i, T,[i] E ¢ iff E(i A ¢) € AT.



Proof. By induction. The only clause that requires proof is the clause for O.
It follows from the definition of 7 that ¥, [;] F O¢ holds iff

there is ¢ such that E(i A Ov) € AT and for every j, E(j A¢Y) € AT implies
TlUlE¢

Using the induction hypothesis and the weak namedness of A™ (cf. Lemma 4.2)
one can show that this holds iff there is ¢ such that E(: A O¢) € AT and
A(p — ¢) € AT, Clearly, the latter holds iff E(: AO¢) € A™ (in one direction,
pick ¥ = ¢, and in the other direction, use the Ka and Incle axioms). O

In particular, it follows that the point [j] satisfies all formulas in A.

All that remains is to check that all substitution instances of formulas in
I' hold at every point in ¥. But each such substitution instance ¢ belongs
to the logic, and hence, by the Neca rule and the fact that A* is an MCS,
A¢p € AT and hence, by Claim 4.5, ¥ = ¢. O

It is not immediately clear whether this argument can be adapted to weaker
hybrid languages that lack the global modality, such as H(@).

This proof is a hybrid of the Henkin-style technique of named models and
the original McKinsey-Tarski topological completeness result for S4 in the
basic modal language [12]. Aiello et al. [1] give a proof analogous to the one
of McKinsey and Tarski, but formulated directly in terms of MCS’s rather than
in the language of algebra. The topological space T, := (17, 71) is constructed
out of MCS’s in the basic modal language without any non-standard rules. For
every such MCS T, 7, (T") :={X C T, | {A | O¢p € A} C X for some O¢ € T'}.
Both our proof and the one for the basic modal language take 'to be a base
open set” to mean 'to be an extension of some O¢’, but instead of dealing with
all MCS'’s, we work only with equivalence classes of nominals. The relationship
of our named topological models with those canonical topological ones can be
compared then to the one between named Kripke models (in the language
with the BG rule) and the standard canonical model construction

Remark 4.6 % is a subtopology of the Stone topology and hence must be,
for example, dense-in-itself (see, e.g., [1]). However, as follows from Example
2.4, density-in-itself is definable in H(E). Hence, the K%I?,?)‘e—logic of spaces
which are dense-in-itself is a proper sublogic of Kgf‘,;’e84. This alone shows
that topology defined in the proof of Theorem 4.1 has different properties than

%1 and is not always homeomorphic to it.

5 Euclidean spaces

Probably the most well known examples of topological spaces are the real line
R and its finite powers R" equipped with Euclidean topology. McKinsey and
Tarski [12] proved that the modal logic of each of these spaces is S4, which is
also the modal logic of the class of all topological spaces. In particular, none
of the interesting topological properties of the real line can be detected in the



basic modal language. In hybrid logic, the situation is quite different: the
lower separation properties T and T} are definable using nominals and the
global modality, and Corollary 3.3 shows that logics of Euclidean spaces are
not even Kripke complete.

At present, we do not have a complete axiomatization of the hybrid logic
of the real line. However, for n > 2 Kudinov [9] presents an axiomatization of
the logic of R™ in the language equipped with the difference modality. These
two languages (viz. the modal language with the difference modality and the
hybrid language with the global modality) are closely related. In particular,
they have the same expressive power on topological spaces [11]. The axioms
proposed by Kudinov can be translated into the hybrid language as follows:

Ti-separation <& — 1,

density-in-itself &—i,

connectedness A(dp vV O-p) — Ap V A-p,

11-connectedness i A O(—i — Og V O-q) — O(—i — ¢) V O(—i — —q)

The proof of Kudinov’s completeness result has not yet been published.
But even without access to the details of this proof, we can apply the corre-
spondence results of [11] in order to derive that the hybrid logic axiomatized by
the above four axioms (and with the Name rule) must also be complete with
respect to the same topological spaces as the logic of Kudinov — assuming,
of course, that this logic is topo-complete as intended.

Remark 5.1 In an already published paper, Kudinov [10] proves an interme-
diate result: that the difference logics of dense-in-itself spaces and dense-in-
itself T spaces are axiomatizable by the difference analogues of H(E)-formulas
above. As the suitable hybrid formulas are pure, this can be obtained as a
corollary of Theorem 4.1, Example 2.4 and translation results of Litak [11].
However, Kudinov’s axiomatization does not use any non-standard rules: not
even the difference version of Name. It is also worth mentioning that for all
systems under consideration [10] proves also the finite model property with
respect to a certain non-standard semantics.

Note that the two last formulas in the above list are not pure. Indeed,
for any n € w, the hybrid logic of R™ is not axiomatizable using only pure
formulas. This is a consequence of the following more general result.

Theorem 5.2 No two dense-in-itself Ti-spaces are distinguishable by means
of pure formulas. In particular, connectedness is not definable by means of
pure formulas.

Proof. Let ¥ and ¥’ be dense-in-itself T}-spaces, and suppose for the sake of
contradiction that ¥ = ¢ and T’ |~ ¢ for some pure formula ¢. Then there are
V' and w’ such that T V' w' [~ ¢. Let V be any valuation for ¥ that sends
any two nominals to the same point iff V' does, and let w be any element
of ¥ such that w and w’ agree on the nominals they satisfy. An induction



argument shows that the following facts hold for all pure formulas ):

(i) Both in (%, V) and (¥, V'), ¥ holds either at finitely or at cofinitely
many points

(i) T,LVEQYIF T V' EY

(iii) 7 holds at cofinitely many points at (¥, V') iff ¢ holds at cofinitely many
points at (T, V")

(iv) % holds at finitely many points at (T, V) iff ¢ holds at finitely many
points at (T, V')

v) TLLVE it T V'E

For atomic formulas this follows by construction of the valuation. The induc-
tive steps for the Boolean connectives and E are straightforward. For <, we
use the fact that in every T3 dense-in-itself space, &, X = T for every cofinite
set and &, X = X for every finite set.

It follows that T, V,w [~ ¢, and hence ¥ = ¢. A contradiction.

For the second part of the result, note that some T} dense-in-itself spaces
are connected (like R), others are not. Take for example the set [0,1) U [2,3)
with the topology induced from R. O

Corollary 5.3 The logic of R™ for any n € w is not aziomatizable by pure
formulas.

6 Neighborhood semantics

While the topological semantics clearly generalizes Kripke semantics, it does
so only for logics above S4. In this section, we consider another semantics
for modal and hybrid logics, that coincides with the topological semantics for
logics above S4, but that also applies to logics below S4. This semantics is
known as (normal) neighborhood semantics or Scott-Montague semantics. In
this section, we will show that our results can be generalized to this setting.

A (normal) neighborhood frame (T, T) consists of a non-empty set T and
a function 7 : T +— o(p(T)) s.t. for every z € T, 7(z) # 0 and X, Y € 7(x)
iff X NY € 7(x). Definitions of valuation and satisfaction in a neighborhood
model are the same as in the topological case. In other words, we require
that 7 assigns to every element a filter over W. This makes the frames under
consideration suitable for normal modal logics, hence the name we use here.
Neighborhood frames, however, have been particularly useful in a non-normal
setting, i.e., for logics which do not contain some instance of K or are not
closed under Nec. Remark 6.5 below discusses the possibility of weakening
KyiEre as the minimal #(E) system.

A careful inspection of the proof of Theorem 4.1 reveals that there was only
one place where we used the S4 axioms: in the proof of Claim 4.4. It follows
that Theorem 4.1 can be generalized to neighborhood semantics, obtaining
neighborhood completeness of all hybrid logics axiomatized by pure formulas,
not necessarily extending S4. More precisely,



Theorem 6.1 FEvery pure extension of K%f‘é’)“e 1s complete with respect to

neighborhood semantics.

Proof. It is just the proof of Theorem 4.1 with Claim 4.4 removed. Details
are left to the reader. O

One might wonder if Theorem 4.1 could have been derived as a corollary of
Theorem 6.1. Recall that Kgf‘ge’BG{Dp — p,0p — O0Op} = Kg?ge’BG{i —
&i, OO — i}, That is, the class of quasi-orders is definable in the class of
all Kripke frames by means of pure formulas. The surprising thing is that this
statement is no longer true when Kripke frames are replaced by neighborhood

frames and quasi-orders by topological spaces. The axiom T is unproblematic:

Fact 6.2 The following are equivalent for every neighborhood frame T :=
(T, 7):

(i) TFOp—p,
(il) TEi— Oi,
(iii) For every x € T and every X € 7(z), x € X.
The situation with the axiom 4 is different, though.

Theorem 6.3 No two neighborhood frames where i «— 1 and O—i hold are
distinguishable by pure formulas.

Proof. Exactly the same as Theorem 5.2. O

Corollary 6.4 Neither the condition 4 nor the property of being a topological
space are definable by means of pure formulas.

Proof. Fix an infinite sequence of disjoint infinite subsets of natural numbers
{A; }nen. For every A, there exists a non-principal ultrafilter F,, containing
A,. For every n, let 7(n) :== {{n} UX | X € F,}. For every n, O,~{n} =
N — {n} and O,{n} = 0, and thus (N, 7) validates the same pure formulas as
every T} dense-in-itself topological space. In particular, it validates v« @
and O—i. But O,({n} U A,) = {n} and hence O0,0,({n} U A4,) = 0. Thus,
(N, 7) ¥ Op — OOp and (N, 7) is not a topological space. a

Hence, the construction used in the proof of Theorems 4.1 and 6.1 applies
also to important logics which are not axiomatizable by means of pure formulas
— like Kg?é;‘eél or KEE“S‘SS4. As was mentioned in the introduction, it would
be interesting to investigate how large exactly this class is. It is worth noting
that Theorem 5.2 in [2] suggests that the McKinsey-Tarski construction in the
basic modal language can easily fail for proper extensions of S4. As we see, in
the hybrid case the situation is more interesting at least for pure extensions

of S4 — and possibly not only for them.

Remark 6.5 It is possible to generalize this completeness result to a reason-
ably well-behaved class of hybrid non-normal logics. Dropping or weakening
K and/or Nec on the syntactic side would simply correspond to dropping or



weakening non-emptiness and filter conditions on the semantic side. The
only problem is with the last step in the proof of Claim 4.5. What we really
used there is that both the underlying logic and its MCS’s were closed under
the following weak rule:

from A(¢ — Ov) and A(y) — x), infer A(¢ — Ox).

It is not hard to see that, as long as the axioms and rules for A remain the
same, this rule is sound exactly when the underlying logic satisfies:

Mon IfF v — y, then - Oy — Oy.

Such logics are called regular. So, in this way we can prove that every regular
H(E)-logic axiomatized with pure formulas is complete with respect to a class
of non-normal neighborhood frames.

Let us now round off our discussion and ask what is the role of BG in
neighborhood semantics. After everything we learned about its role in topo-
logical spaces, the answer should be easy to guess.

A neighborhood frame is augmented if for arbitrary family {X;};c; of sub-
sets of I, O, N X; = () O0,X; or, dually, . | X; = J ¢-X;. Just like in

iel iel icl iel
case of Alexandroff spaces, it is easily seen to be equivalent to the following
formulation:

Fact 6.6 A neighborhood frame is augmented iff every 7(z) contains a small-
est element.

The relationship between Kripke frames and augmented neighborhood
frames is exactly the same as relationship between quasi-orders and Alexan-
droff spaces. In other words, there is a category-theoretical equivalence be-
tween Kripke frames and augmented neighborhood frames. We refer the reader
to [6,13] for details.

Theorem 6.7 A neighborhood frame is augmented iff it admits BG.
Proof. Exactly the same as the proof of Theorem 3.4 O

Again, one could look for variations or weakenings of the BG rule, analo-
gous to the BG’ rule discussed in Section 3.
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