
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.1 JANUARY 2007
1

PAPER

A New Approximation Algorithm For Computing

2-Restricted Disjoint Paths∗

Chao PENG†, Student Member and Hong SHEN††, Nonmember

SUMMARY In this paper we study the problem of how to
identify multiple disjoint paths that have the minimum total cost
OPT and satisfy a delay bound D in a graph G. This problem has
lots of applications in networking such as fault-tolerant quality of
service (QoS) routing and network-flow load balancing. Recently,
several approximation algorithms have been developed for this
problem. Here, we propose a new approximation algorithm for it
by using the Lagrangian Relaxation method. We then present a
simple approximation algorithm for finding multiple link-disjoint
paths that satisfy the delay constraints at a reasonable total cost.
If the optimal solution under delay-bound D has a cost OPT ,
then our algorithm can find a solution whose delay is bounded
by (1+ 1

k
)D and the cost is no more than (1+k)OPT . The time

complexity of our algorithm is much better than the previous
algorithms.
key words: Approximation Algorithms, Fault-Tolerant Routing,
Disjoint Paths, Lagrangian Relaxation

1. Introduction

As networks modernize and expand with the increasing
deployment of optical technology, the large bandwidth
offered by optical fiber has brought tremendous poten-
tial. The number of services offered to customers over
a fiber network is proliferating, but the risk of losing
huge volumes of data due to a span cut or node fail-
ure (due to equipment breakdown at a central office or
other events such as fires, flooding, etc.) has also esca-
lated. Thus the survivability of a network has assumed
great importance.

On the other hand, customers have come to ex-
pect the highest Quality of Service (QoS), including
sustained continuity of service during the time they
pay for the service. Such service includes multimedia
streaming, video conference and other real-time broad-
casting programs.

Survivability and QoS can be achieved by main-
taining multiple disjoint QoS-constrained paths to in-

Manuscript received March 16, 2006.
Manuscript revised August 3, 2006.
Final manuscript received October 28, 2006.
†The author is with the School of Information Science,

Japan Advanced Institute of Science and Technology, 1-1
Asahidai, Nomi, Ishikawa, 923-1292 Japan.

††The author is with the School of Computer Science,
University of Adelaide, Adelaide, SA 5005, Australia.

∗Supported by “Fostering Talent in Emergent Research
Fields” program in Special Coordination Funds for pro-
moting Science and Technology by Ministry of Educa-
tion, Culture, Sports, Science and Technology. E-mail: p-
chao@jaist.ac.jp.

crease the probability that source can reach the des-
tination via another path as the network undergoes
topological changes, thus avoiding an unreasonable loss
of service quality. Multiple QoS-constrained paths can
also be employed to achieve better load balance and im-
prove quality of service in bandwidth-constrained wire-
less networks.

Although many works have been done to find mul-
tiple node-disjoint or link-disjoint paths in a given net-
work [?], [?,], the problem of finding two disjoint QoS-
constrained paths has got little attention. Recently
Orda and Sprintson [?], [?,] proposed four algorithms
to compute two delay-constrained link-disjoint paths
with minimum total cost. If there exist two disjoint
paths in a network with total delay less than D and
total cost OPT , their algorithm 2DP-1 can find two
paths with total delay less than 3

2D and total cost
(1.5 + ε)OPT . The other three algorithms proposed
in [?,] can find two paths with total delay less than
(1 + 1

k)D and total cost (k + 2 log k + 1)(1 + ε)OPT .
Algorithm 2DP-1 has a complexity of O(MN(1

ε +
log log N)), while the complexity of Algorithm 2DP-
4 is O(MN2k2 log k

ε log(CD)) (Here C is the maximum
cost of a single edge in G). Based on their framework,
authors of [?,] further improved the approximate ratio
of the cost to (4 log k + 3.5)(1 + ε) while the delay fac-
tor is still (1 + 1/k). But the complexity increases to
O(MN4 log k/ε).

In this paper we propose a new approximation al-
gorithm for this problem which is simple and efficient.
Our algorithm can find two disjoint paths with total
delay less than (1+ 1

k)D while the total cost is no more
than the (1+k)OPT . Furthermore, either the delay or
the cost of our solution will be better than that of the
optimal solution. The complexity of our new algorithm
is O(M log1+M/N N log (k+1)C(fd)

C(fc)
) (fc and fd are the

link-disjoint path pairs with minimum total cost and
minimum total delay respectively in graph G), which is
much lower than the previous algorithms.

The remainder of the paper is organized as follows.
In Section 2, we describe the problem and the network
model. In Section 3, we present our approximation al-
gorithm to reduce the total cost and give a detail analy-
sis of its performance and complexity. In Section 4, we
present some other extensions of our method. Finally,
we conclude the paper in Section 5.

2
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.1 JANUARY 2007

2. Model and Problem Formulation

The QoS constraints in a network can be divided into
bottleneck constraints such as bandwidth, additive con-
straints such as delay or jitter and multiplicative con-
straints such as the packet loss rate or possibility. Bot-
tleneck QoS constraints can be efficiently solved by re-
moving links that violates the requirement. Multiplica-
tive constraints can be reduced to additive constraints
by a logarithm transformation. So here we only con-
sider two additive constraints and we use delay and cost
respectively to generically refer to two different additive
constraints for simplicity of exposition.

We adopt the same model as used in [?,], in which
the network is represented by a directed graph G(V,E),
where V is the set of nodes and E is the set of links.
The number of network nodes and links are respectively
denoted by N = |V | and M = |E|. An (s, t)-path is a
finite sequence of distinct nodes P = (s = v0, v1, ..., t =
vn), such that, for 0 ≤ i ≤ n− 1, (vi, vi+1) ∈ E. Here,
n = |P | is the number of edges in P . A cycle is a path
whose source and destination nodes are identical.

Each link l ∈ E has a delay guarantee dl and a
cost cl which estimates the quality of the link in terms
of resource utilization. The delay D(P) of a path P is
the sum of the delays of its links, i.e., D(P) =

∑
l∈P dl.

The cost C(P) of a path P is defined to be the sum of
the costs of its links, i.e., C(P) =

∑
l∈P cl. We shall

assume that all parameters (both delay guaranties and
costs) are positive integers.

A fundamental problem in QoS routing is to iden-
tify a minimum cost path between a source s and a
destination t that satisfies more than two additive con-
straints such as delay and cost. This can be formulated
as a Restricted Shortest Path problem.

Problem RSP (Restricted Shortest Path):
Given a source node s, a destination node t and a delay
constraint D, find an (s, t)-path P such that

1) D(P) ≤ D, and
2) C(P) ≤ C(P) for any other (s, t)-path P that

satisfies D(P) ≤ D.
If we extend the Problem RSP to the case of two

link-disjoint paths, we will get the following problem:
Problem 2DP (2-Restricted Link Disjoint

Paths): Given a source node s, a destination node t
and a QoS requirement D, find two link-disjoint (s, t)-
paths P1 and P2 such that:

1) D(P1) ≤ D
2 and D(P2) ≤ D

2 ;
2) C(P1)+C(P2) ≤ C(P 1)+C(P 2) for every other

pair of link-disjoint (s, t)-paths (P 1, P 2) that satisfy
D(P 1) < D

2 and D(P 2) < D
2 .

Problem RSP is NP-hard [?,], Problem 2DP is also
NP-hard for it is an extension of Problem RSP. In addi-
tion, it was proved in [?,] that it is intractable to find a
solution that does not violate the delay constraint of at
least one of the paths. Furthermore, in most cases, we

cannot provide an efficient solution without violating
the delay constraint in both primary and restoration
paths. So we can formulate a solution to Problem 2DP
as a (α, β)− approximation.

Definition 1 ((α, β) − approximations) : Given
an instance (G, s, t,D) of Problem 2DP, an (α, β)-
approximate solution (P1, P2) to Problem 2DP is a so-
lution for which:

1) D(P1) + D(P2) ≤ αD;
2) the total cost of two paths is at most β times

more than that of the optimal solution, i.e., C(P1) +
C(P2) ≤ βOPT .

In general, the path with minimum delay among P1

and P2 serves as a primary path. Thus, the primary and
restoration paths violate the delay constraint by factors
of at most α/2 and α, respectively, i.e., D(P1) ≤ αD

2
and D(P2) ≤ αD.

Furthermore, Problem 2DP can be extend to the
minimum constrained flow (MCF) problem which seeks
a minimum cost (s, t)-flow f such that |f | = 2 and
D(f) ≤ D where D is a given delay constraint.

Problem MCF (minimum constrained flow):
Given a source node s, a destination node t and a delay
requirement D, find an (s, t)-flow f such that:

1) |f | = 2;
1) D(f) ≤ D;
2) C(f) ≤ C(f̂) for any other flow f̂ that satisfies

|f̂ | = 2 and D(f̂) ≤ D.
Since Problem MCF is a relaxation of Problem

2DP, the cost of the optimal solution to Problem MCF
is no more than that of Problem 2DP. In the next sec-
tion we will use MCF in the process of computing and
we will use OPT to denote the cost of its optimal solu-
tion for convenience.

Although Problem RSP is intractable, there ex-
ist pseudo-polynomial solutions. This give rise to
fully polynomial time approximation schemes (FP-
TAS), whose computational complexity is reasonable
[?], [?], [?,]. The most efficient scheme, presented in [?,
], has a computational complexity of O(MN/ε), and
computes a path with delay of at most D and cost of
at most (1+ ε) times the optimum, but it requires that
both the delay and the cost of each link must be pos-
itive. The algorithm in [?,] has a time complexity of
O(MN(1/ε+log log N)), it requires that both the delay
and the cost of each link must be non-negative. Since
all algorithms in [?], [?], [?,] may set the cost of a link
as zero in the residual graph, the latter algorithm was
adopted and referred as Algorithm RSP.

3. A (1+ 1
k
, 1+k) -Approximate Algorithm for

2DP by Lagrangian Relaxation

In this section we present our approximation algorithm,
which achieves an approximation ratio of (1+ 1

k , 1+k).
Previous algorithms are all based on the RSP Algo-
rithm. The 2DP-1 Algorithm in [?,] uses RSP to find

PENG and SHEN: A NEW APPROXIMATION ALGORITHM FOR COMPUTING 2-RESTRICTED DISJOINT PATHS
3

the first path and then to identify an augmenting path
in the residual graph. Based on 2DP-1, other improved
algorithms use the negative delay cancelling method to
minimize the delay constraint.

In this paper we adopt a totally different approach.
The basic idea of the algorithm is to use the Lagrangian
Relaxation method to find a solution which is “nearby”
the optimal solution.

For the MCF Problem, we aim to minimize the
cost C(f) of a flow f with |f | = 2 and D(f) ≤ D. In-
stead of considering the delay and the cost respectively,
we combine them together. For each link l, we attach
a new value wl = cl +α ∗ dl. Then for a flow f we have
W (f, α) = C(f)+α∗D(f). Now we need only to run a
polynomial algorithm for finding two link-disjoint paths
with minimum total cost on w-weight. Given a value
of α, we can find a corresponding optimal flow fα in G
with W (fα) = C(fα) + α ∗D(fα). Then we can check
the delay and cost of this flow, and based on them we
can adjust the value of α so that we can improve the de-
lay and cost toward the right direction. The algorithm
stops with a flow f which satisfies D(f) ≤ (1 + 1

k)D
and C(f) ≤ (1 + k)OPT .

There are several algorithms for finding the short-
est pair of link-disjoint paths[?], [?], [?,]. The basic idea
is to find the shortest path P1 in the graph at first, then
construct the residual graph (see the following defini-
tion) for this path and find the shortest path P2 in the
residual graph. Now combine the two paths and delete
the overlapping edges, then we can decompose them
into a shortest pair of link-disjoint paths.

Definition 3 (Residual Network) [?,]: Given a
network G with unit capacities and flow f , the residual
network G(f) is constructed as follows. For each link
(u, v) ∈ G for which f(u, v) = 0, we add to G(f) a
link (u, v) of the same delay and cost as in G. For each
link (u, v) ∈ G with f(u, v) = 1 and weight w(u,v) , we
add to G(f) a reverse link (v, u) to G(f) with weight
−w(u,v).

The same method can be used for finding k dis-
joint paths. In [?,], Suurballe gave a successive short-
est path algorithm to find k disjoint paths with mini-
mum total cost by recursively finding shortest paths on
residual graphs. By applying the Dijkstra’s algorithm
with d-heap [?,], this algorithm achieves a complexity
of O(M log1+M/N N) if k is a constant. We will use
DDP (α) to denote this algorithm running on G with a
modified cost of wl = cl + α ∗ dl in the remain part of
this paper.

Since our target flow should have a delay of no
more than (1 + 1

k)D and a cost which is less than or
equal to the cost of (1+k) times the optimal cost to the
MCF Problem, we need to find a way to approach the
“neighborhood” of a feasible solution. We know that
if α is fixed, then we can find an optimal flow. So we
will naturally come to the approach of testing different
values of α and try to find a feasible solution.

Theorem 1: In graph G = (V, E), let f1 be the
flow with the minimum total weight when we set wl =
cl + α1 ∗ dl and f2 be the flow with the minimum total
weight when we set wl = cl + α2 ∗ dl. If 0 < α1 ≤ α2,
then D(f1) ≥ D(f2) and C(f1) ≤ C(f2).

Proof: Since f1 is the flow with the minimum
total weight when we set wl = cl +α1 ∗dl, we have that
W (f1, α1) = C(f1) + α1 ∗D(f1) ≤ C(f2) + α1 ∗D(f2)
. Since f2 is the flow with the minimum total weight
when we set wl = cl +α2 ∗dl, we have that W (f2, α2) =
C(f2) + α2 ∗D(f2) ≤ C(f1) + α2 ∗D(f1). Add the two
inequations together and use the fact that 0 < α1 ≤ α2:

α1 ∗D(f1) + α2 ∗D(f2) ≤ α1 ∗D(f2) + α2 ∗D(f1) ⇒
D(f2) ≤ D(f1);

C(f1)/α1 + C(f2)/α2 ≤ C(f2)/α1 + C(f1)/α2 ⇒
C(f1) ≤ C(f2).

2

For the MCF problem, we assume that there is at
least one flow f∗ with D(f∗) ≤ D and C(f∗) = OPT .
To check whether there is such a flow or not, we can
run Algorithm DDP to find the flow with minimum
total delay and compare it with D. If all disjoint path
pairs have a total delay of more than D, we simply
return a message to show that there is no such solution.
Otherwise we can make sure that we will find a solution
whose performance is within a (1 + 1

k , 1 + k) factor of
the optimal solution.

In the following Figure ??, x-axis is the cost of a
flow and y-axis is the delay of a flow. For all disjoint
path pairs with the same cost C(f) and delay D(f),
we can use a point (C(f), D(f)) in the plane to denote
them. Since the weight of these disjoint path pairs will
remain the same for all different values of α, we can
deem them as a single pair. To make it clear, we divide
the first quadrant into 6 faces:

� � � �� � � �� �� �� � � �
(
OPT,D
)

Delay

Cost
(
0,0
)

D

OPT

F
A

F
B

F
E

F
D

F
C
 F
F

D(1+1/k)

OPT(1+k)

Fig. 1 The solution space for the MCF Problem, each point in
the plane corresponds to a set of flows with the same cost and
delay.

Point (OPT,D) is the unique joint point of face FC

and face FD, there will be no other solution in face FC

by the optimality of (OPT,D) while all other solutions
in face FD are dominated by (OPT, D) because their
cost is larger than OPT and their delay is larger than
D. Thus for any value of α, Algorithm DDP (α) will
never return a solution in face FC and face FD. On the

4
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.1 JANUARY 2007

other hand, any solution in face FB and face FE is a
feasible solution since it satisfies the (1+ 1

k , 1+k) bound,
but the problem is that the corresponding disjoint path
pair may be blocked by other disjoint path pairs in face
FA and face FF when we are running DDP (α) with a
given value of α. Fortunately, we are sure that we can
always find a point in either face FB or face FE (or, the
optimal solution) by the following theorem.

Theorem 2: In graph G = (V,E), if there is an
optimal flow f∗ with D(f∗) ≤ D and C(f∗) = OPT ,
then there exists a flow fα with minimum total weight
when we set wl = cl + α ∗ dl and satisfies D(fα) ≤
(1 + 1

k)D and C(fα) ≤ (1 + k)OPT .
Proof: Let fc be the disjoint path pair with its

total cost minimized and fd be the disjoint path pair
with minimum total delay, their corresponding points
in the plane are (C(fc), D(fc)) and (C(fd), D(fd)) re-
spectively. If we connect the points of all possible solu-
tions returned by DDP (α) with different α(Figure ??),
then it will form a line which connects (C(fc), D(fc))
and (C(fd), D(fd)) in the plane (Figure ??). There will
be no other solution which is left to or below this line,
since else it will be better than all solutions on the line
for some α and cause a contradiction.

If there is no solution in face FB and face FE , then
for any other solutions in face FA and face FF (we need
not to consider face FC and face FD), either its delay
is larger than (1 + 1

k)D or its cost is larger than (1 +
k) ∗ OPT . Set α = k∗OPT

D , then W (f∗, α) = OPT +
D ∗ k∗OPT

D = (1 + k)OPT . While for a flow f in face
FA and face FF , either W (f, α) = C(f) + D(f) ∗ α >
C(f) + (1 + 1

k)D ∗ k∗OPT
D > (1 + k)OPT or W (f, α) =

C(f) + D(f) ∗ α > (1 + k) ∗ OPT + D ∗ k∗OPT
D >

(1 + k)OPT . So W (f∗, α) is the optimal solution for
α = k∗OPT

D and will be found by DDP (k∗OPT
D).

If there are some other solutions in face FB and
face FE , we can still set α = k∗OPT

D and identify a
near optimal solution. This is because we know that
all solutions in face FA and face FF will be dominated
by f∗ when α = k∗OPT

D . So if DDP (k∗OPT
D) returns

back a solution, it is either f∗ itself or another solution
in face FB or face FE . 2

Notice that we set α = k∗OPT
D in the above proof,

this will be enough as an evidence of the capability of
the Lagrangian Relaxation method for finding a feasi-
ble solution. But since OPT is not a given parameter,
we cannot use it directly in our algorithm. Actually to
calculate the exact value of OPT itself is intractable.
So we have to find another practical criterion to mea-

FA 0 < Cost < OPT k+1
k

D < Delay

FB 0 < Cost < OPT D < Delay ≤ k+1
k

D

FC 0 < Cost ≤ OPT 0 < Delay ≤ D
FD OPT ≤ Cost D ≤ Delay
FE OPT < Cost ≤ (1 + k)OPT 0 < Delay < D

FF (1 + k) ∗OPT < Cost 0 < Delay < D

(
OPT,D
)

Delay

Cost

(
0,0
)

D

OPT

Delay = D(1+1/k)

Cost = OPT(1+k)

X

Y

x
 y

Z

OPT(1+k)

D(1+1/k)

Fig. 2 If we connect all solutions that can be found by Algo-
rithm DDP, then they will form a convex and piecewise-linear
line.

(
OPT,D
)

Delay

Cost

(
0,0
)

D

OPT

Delay = D(1+1/k)

Cost = OPT(1+k)

(
C(f
c
),D(f
c
)
)

(
C(f
d
),D(f
 d
)
)

OPT(1+k)

D(1+1/k)

Fig. 3 The solution line will start from (C(fc), D(fc)) and end
at (C(fd), D(fd)).

sure the performance of a solution returned back by
DDP (α).

Since a feasible solution needs to satisfy the (1 +
1
k)D bound for its delay, we may think of increasing
the value of α if D(fα) > (1 + 1

k)D and decreasing it
when D(fα) < D by adjusting the value of α. If we
increase(decrease) the value of α by a certain amount,
there will be an expected decrease(increase) of the total
delay. And after enough rounds of iterations, we may
fix the total delay to be no more than (1+ 1

k)D. But the
problem here is that we still cannot figure out whether
its cost is within (1 + k) ∗OPT or not since we do not
know the value of OPT . And although we can make
sure C(fα) < (1 + k)OPT if we have D < D(fα) ≤
(1 + 1

k)D, there is a possibility that all such solutions
will be blocked by the flows in face FA and face FE and
thus can never be found by Algorithm DDP.

Let us reconsider the solution returned back when
we set α = k∗OPT

D , its modified total cost will be
W (f, α) = C(f)+D(f)∗ k∗OPT

D ≤ W (f∗, α) = C(f∗)+
D(f∗)∗ k∗OPT

D = OPT ∗ (1+k) = D ∗α ∗ (1+ 1
k). This

means we can compare the total cost of the solution re-
turned back by DDP (α) with the value of D∗α∗(1+ 1

k)
to see whether it is close enough to the optimal solution
or not. The following theorem establishes a sufficient
condition for finding a feasible solution which will sat-
isfy both requirements.

Theorem 3: Let f be the flow returned by
DDP (α) which satisfies W (f, α) = D ∗ α ∗ (1 + 1

k),
then D(f) ≤ (1 + 1

k)D and C(f) ≤ (1 + k)OPT .
Proof: According to the assumption we have

C(f) + D(f) ∗ α = W (f, α) = D ∗ α ∗ (1 + 1
k). Thus

D(f)∗α ≤ D∗α∗ (1+ 1
k) ⇒ D(f) ≤ D∗ (1+ 1

k). Let
f∗ be the optimal flow with D(f∗) ≤ D and C(f∗) =

PENG and SHEN: A NEW APPROXIMATION ALGORITHM FOR COMPUTING 2-RESTRICTED DISJOINT PATHS
5

OPT , then

D ∗ α ∗ (1 +
1
k

) = W (f, α) ≤ W (f∗, α)

= C(f∗) + α ∗D(f∗) ≤ OPT + α ∗D

⇒ D ∗ α ∗ 1
k
≤ OPT ⇒ D ∗ α ≤ OPT ∗ k

⇒ C(f) ≤ W (f, α) ≤ OPT + α∗D ≤ (k+1)∗OPT.

We will further prove that we can find such an α
by the following theorem.

Theorem 4: In graph G = (V,E), if there is an
optimal flow f∗ with D(f∗) ≤ D and C(f∗) = OPT ,
then there exists an α0 such that the flow f0 returned
back by DDP (α0) satisfies W (f0, α0) = D∗α0∗(1+ 1

k).
Proof: For any given link-disjoint path pair f in

G, W (f, α) = C(f)+D(f) ∗α is a linear function of α.
So if we define W ′(f, α) = W (f, α) − D ∗ α ∗ (1 + 1

k),
then it is also a linear function of α.

Denote U(α) = W (DDP (α), α) as the modified
weight of the flow returned back by DDP (α) and fur-
ther define U ′(α) = U(α)−D ∗α ∗ (1 + 1

k). We can see
that U ′(α) is the minimum of W ′(f, α) over all possible
link-disjoint path pairs, thus it is piecewise-linear and
continuous.

Given α1 < α2, let f1 and f2 be the flow returned
back by DDP (α1) and DDP (α2) respectively, then we
have C(f1)+D(f1)∗α1 ≤ C(f2)+D(f2)∗α1 < C(f2)+
D(f2) ∗ α2 ≤ C(f1) + D(f1) ∗ α2. Thus

U ′(α1) = C(f1) + D(f1) ∗ α1 −D ∗ α1 ∗ 1 + k

k
;

U ′(α2) = C(f2) + D(f2) ∗ α2 −D ∗ α2 ∗ 1 + k

k
;

C(f1) + D(f1) ∗ α1 ≤ C(f2) + D(f2) ∗ α1

⇒ C(f1)− C(f2) ≤ D(f2) ∗ α1 −D(f1) ∗ α1;
C(f2) + D(f2) ∗ α2 ≤ C(f1) + D(f1) ∗ α2

⇒ C(f1)− C(f2) ≥ D(f2) ∗ α2 −D(f1) ∗ α2.

U ′(α1)− U ′(α2)

= C(f1) + D(f1) ∗ α1 −D ∗ α1 ∗ 1 + k

k

−C(f2)−D(f2) ∗ α2 + D ∗ α2 ∗ 1 + k

k
≤ D(f2) ∗ α1 −D(f1) ∗ α1 + D(f1) ∗ α1

−Dα1
1 + k

k
−D(f2) ∗ α2 + Dα2

1 + k

k

≤ D(f2)α1−Dα1
1+k

k
−D(f2)α2+Dα2

1+k

k

≤ (α1 − α2)(D(f2)−D
1 + k

k
).

U ′(α1)− U ′(α2)

= C(f1) + D(f1) ∗ α1 −D ∗ α1 ∗ 1 + k

k

−C(f2)−D(f2) ∗ α2 + D ∗ α2 ∗ 1 + k

k

≥ D(f2) ∗ α2 −D(f1) ∗ α2 + D(f1) ∗ α1

−Dα1
1 + k

k
−D(f2) ∗ α2 + Dα2

1 + k

k

≥ D(f1)α1−Dα1
1+k

k
−D(f1)α2+Dα2

1+k

k

≥ (α2 − α1)(D
1 + k

k
−D(f1)).

Since α1 < α2, we have that D(f1) > D(f2) by
Theorem 1. If D(f2) ≥ 1+k

k D, then (α1 − α2)(D(f2)−
D∗ 1+k

k) < 0. Thus U ′(α) is monotone increasing when
D(fα) ≥ 1+k

k D and similarly it will be monotone de-
creasing when D(fα) ≤ D ∗ 1+k

k (see Figure ??.b). As
before, we use fc and fd to denote the disjoint path
pair with minimum total cost and minimum total de-
lay respectively. If we set αUB = k C(fd)

D and let fUB be
the corresponding flow, then:

U ′(αUB) = C(fUB) + D(fUB)αUB −DαUB

1 + k

k

≤ C(fd) + D(fd)αUB − k
1 + k

k
C(fd)

≤ C(fd)+Dk
C(fd)

D
−k

1 + k

k
C(fd) = 0.

Since U ′(0) = C(fd) > 0 and U ′(α) is continuous
over [0, k C(fd)

D], we are sure that there exists an α0

which satisfies U ′(α0)=0 and W (f0, α0)=α0
k+1

k D. 2

Based on the above analysis, we present the fol-
lowing algorithm.

Algorithm 1: Lag-2DP(G, s, t,D, k)
Input:

G: the directed graph G=(V,E);
s : source node;
t : destination node;
D: the delay constraint;
k : the approximation index;

Output:
{P̃1, P̃2}: two link disjoint paths from s to t in G;

1 Compute the minimum total cost flow fc and the
minimum total delay flow fd in G;

2 if D(fd) > D then return ”No Such Solution!”;
3 αLB ← 0, αUB ← k C(fd)

D ;
4 fLB ← fc, fUB ← fd;
5 while αUB − αLB ≥ 1

D do
6 α ← α

UB
+α

LB

2 ;
7 Set wl = cl + α ∗ dl for each link l;
8 f ← DDP(α);
9 if W (f, α)−D ∗ α(1 + 1

k) > 0
then α

LB
← α, f

LB
← f ;

10 else α
UB

← α, f
UB

← f ;
11 if D(f

LB
) ≤ D ∗ (1 + 1

k) then
12 f

UB
← f

LB
;

13 Break the “while” loop;
14 if D(f

LB
) = D(f

UB
) then Break;

6
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.1 JANUARY 2007

15 Decompose flow f
UB

into 2 link disjoint paths

P̃1 and P̃2 with D(P̃1) ≤ D(P̃2);
16 return {P̃1, P̃2} ;

Theorem 5: In graph G = (V,E), if there is an
optimal flow f∗ with D(f∗) = D and C(f∗) = OPT ,
then Algorithm Lag-2DP will return a flow f of two
link-disjoint paths which satisfies D(f) ≤ (1+ 1

k)D and
C(f) ≤ (1 + k)OPT .

Proof: By Theorem 4 we know that there exists
an α0 such that the flow f0 returned by DDP (α0) sat-
isfies U ′(α0) = 0, which means that D(f0) ≤ (1 + 1

k)D
and C(f0) ≤ (1 + k)OPT by Theorem 3. Now let
us consider the following three different situations that
bring Algorithm Lag-2DP to an end:

1): D(f
LB

) ≤ D ∗ (1 + 1
k). In this situation, the final

solution f
UB

= f
LB

(line 12). Since U ′(α
LB

) ≥ 0
while U ′(α0) = 0, we have that α

LB
≤ α0. Thus

C(fLB) ≤ C(f0) ≤ (1 + k)OPT by Theorem 1.
2): D(fLB) = D(fUB). In this situation we have fLB =

fUB = f0, since DDP (αLB) and DDP (αUB) re-
turn the same flow and αLB ≤ α0 ≤ αUB . So
fUB satisfies D(fUB) ≤ (1 + 1

k)D and C(fUB) ≤
(1 + k)OPT .

3): αUB−αLB ≤ 1
D . In this situation we can also prove

that fUB satisfies the requirement (Figure ??.a).

C(fUB) + D(fUB) ∗ αUB ≤ D
1 + k

k
∗ αUB

⇒ D(fUB) ≤ 1 + k

k
D;

C(fLB) + D(fLB) ∗ αLB > D
1 + k

k
∗ αLB

⇒ W (f∗, α
LB

) > D
1 + k

k
∗ α

LB

⇒ W (f∗, α
LB

)=OPT + Dα
LB

> D
1+k

k
α

LB

⇒ k ∗OPT > D ∗ α
LB

⇒ C(fUB) < D
1+k

k
αUB < D

1+k

k
(αLB +

1
D

)

=
1+ k

k
(DαLB +1)≤k

1+k

k
OPT =(1+k)OPT.

Thus we have C(f
UB

) ≤ (1+k)OPT and D(f
UB

) ≤
(1 + 1

k)D.

Since in all three situations Algorithm Lag-2DP
will return a feasible solution, we conclude that this
theorem is correct. 2

Notice that a solution f returned back by Algo-
rithm Lag-2DP not only satisfies the (1 + 1

k , 1 + k)
bound, but also has the following very nice property:
C(f) ≥ OPT implies D(f) < D and if D(f) ≥ D, then
C(f) < OPT . This means that either the delay or the
cost of f will be better than that of the optimal solution
(but of course not both).

α1 α2 α

Fig. 4 (a) The situation when fLB and fUB are close to the
flow fα which satisfies U ′(α) = 0. (b) Function U ′(α) will be
monotone increasing when D(fα) ≥ 1+k

k
D and monotone de-

creasing when D(fα) ≤ 1+k
k

D.

Theorem 6: Let fc and fd be the link-disjoint
path pairs with minimum total cost and minimum total
delay respectively in graph G = (V, E), Algorithm Lag-
2DP will terminate in O(M log1+M/N N log C(fd)(k+1)

C(fc)
)

time.
Proof: According to the proof in [?,], the com-

plexity of Algorithm DDP for finding two link disjoint
paths is O(M log1+M/N N).

Since we set αLB = 0 and αUB = k C(fd)
D ,

while the loop condition is α
UB

− α
LB

≥ 1
2D , we

instantly have that Algorithm Lag-2DP will end in
log(kC(fd)) rounds and the time complexity is within
O(M log1+M/N N log(kC(fd))).

Now let’s check line 11 in Algorithm Lag-2DP, we
find that this step will decrease the complexity of the
whole algorithm. By Theorem 4, we know that U ′(α) is
monotone increasing when D(fα) ≥ 1+k

k D and mono-
tone decreasing when D(fα) ≤ 1+k

k D (see Figure ??.b).
Let α1 be the value when U ′(α1) is maximum and

α2 be the value when U ′(α2) = 0. Then D(fα1) =
1+k

k D, and D(fα
LB) ≤ 1+k

k D if α
LB

≥ α1. Since
α

LB
≤ α2 ≤ α

UB
, we will have α

LB
≥ α1 if α

UB
−α

LB
<

α2 − α1. Thus D(fα
LB) ≤ 1+k

k D and Algorithm Lag-
2DP will be able to return a feasible solution by line
11. So we need to analyze the time complexity to make
α

UB
− α

LB
< α2 − α1. But we do not know the ex-

act value of α1 and α2, fortunately we can estimate
their difference via its relationship between U ′(α1).
Let us first consider the difference between U ′(α) and
U ′(α− 1):

U ′(α)− U ′(α− 1)

= C(fα) + D(fα)α−D ∗ α ∗ 1 + k

k
− C(f (α−1))

−D(f (α−1))(α− 1) + D ∗ (α− 1) ∗ 1 + k

k

= C(fα)+D(fα)α−C(f (α−1))−D(f (α−1))(α−1)− 1+k

k
D.

If fα = f (α−1), then U ′(α)−U ′(α− 1) = D(fα)−
1+k

k D. Else then D(fα) < D(f (α−1)) (by Theorem 1).
Since C(fα) + D(fα)α < C(f (α−1))−D(f (α−1))α, we

PENG and SHEN: A NEW APPROXIMATION ALGORITHM FOR COMPUTING 2-RESTRICTED DISJOINT PATHS
7

have U ′(α) − U ′(α − 1) < D(f (α−1)) − 1+k
k D; while

C(f (α−1))+D(f (α−1))(α− 1) < C(fα)+D(fα)(α− 1)
implies that D(fα)− 1+k

k D < U ′(α)−U ′(α−1). Now we
have U ′(α)−U ′(α− 1) < D(f (α−1))− 1+k

k D < U ′(α−
1)−U ′(α−2), so the value of U ′(α)−U ′(α−1) will be
monotone non-increasing when α < α1 and the value
of U ′(α − 1) − U ′(α) will be monotone non-decreasing
when α > α1.

Now if we adjust α from α1 to α2, then the value
of U ′(α) will fall down from its maximum to zero at a
“speed” of no more than the speed around U ′(α2−1)−
U ′(α2) = −(U ′(α2) − U ′(α2 − 1)) ≤ 1+k

k D − D(fα2).
This means that each time we increase α by 1, the value
of U ′(α) will decrease by less than 1+k

k D−D(fα2). So
we have (α2−α1) ∗ (1+k

k D−D(fα2)) ≥ U ′(α1)− 0 ⇒
α2 − α1 ≥ U ′(α1)

1+k
k D−D(fα2)

. Since originally α
UB
− α

LB
=

k C(fd)
D and we can find a solution when αUB − αLB <
U ′(α1)

1+k
k D−D(fα2)

≤ α2 − α1, Algorithm Lag-2DP will ter-

minate in log{k C(fd)
D

1+k
k D−D(fα2)

U ′(α1)
} rounds (by binary

search). Since U ′(α1) > C(fc) while k(1+k
k D−D(fα2))

D =
D∗(1+k)−k∗D(fα2)

D < D∗(1+k)
D = (k + 1), we

have log{k C(fd)
D

1+k
k D−D(fα2)

U ′(α1)
} < log (k+1)C(fd)

C(fc)
=

log C(fd)(k+1)
C(fc)

.
Thus we can conclude that Algorithm Lag-2DP

will end in O(M log1+M/N N log C(fd)(k+1)
C(fc)

) time. 2

4. Some Extensions

The method developed in the previous chapter is very
simple and efficient. Whet’s more, we can apply the
same method for solving other problems. A very nat-
ural extension is to solve the problem of finding t link-
disjoint delay-restricted paths with shortest total cost.
We need only to let Algorithm DDP find t paths instead
of 2 in Algorithm Lag-2DP. Let this modified algorithm
be Algorithm Lag-TDP, we instantly get the following
theorem.

Theorem 7: In graph G = (V,E), if there is an
optimal flow f∗ of t link-disjoint paths with D(f∗) = D
and C(f∗) = OPT , then Algorithm Lag-TDP will re-
turn a flow f of t link-disjoint paths which satisfies
D(f) ≤ (1 + 1

k)D and C(f) ≤ (1 + k)OPT . Let fc

and fd be the t link-disjoint paths with minimum to-
tal cost and minimum total delay respectively in graph
G = (V, E), Algorithm Lag-TDP will terminate in
O(tM log1+M/N N log (k+1)C(fd)

C(fc)
) time.

We can also use this method to compute the total-
delay-restricted spanning tree with minimum total cost.
The modification is to replace Algorithm DDP with
Algorithm MST.

Algorithm 2: Lag-2MST(G,D, k)
Input:

G: the directed graph G=(V,E);
D: the total delay constraint;
k : the approximation index;

Output:
T : a spanning tree of G which satisfies D(T) ≤

(1 + 1
k)D and C(T) ≤ (1 + k)OPT ;

1 Compute the MST Tc with minimum total cost
and Td with minimum total delay in G;

2 if D(Td) > D
then return ”No Such Solution!”;

3 α
LB
← 0, α

UB
← k C(Td)

D ;
4 T

LB
← Tc, T

UB
← Td;

5 while α
UB
− α

LB
≥ 1

D do
6 α ← α

UB
+α

LB

2 ;
7 Set wl = cl + α ∗ dl for each link l;
8 T ← MST(α);
9 if W (T, α)−D ∗ α(1 + 1

k) > 0
then αLB ← α, TLB ← T ;

10 else αUB ← α, TUB ← T ;
11 if D(TLB) ≤ D ∗ (1 + 1

k) then
12 TUB ← TLB ;
13 Break the “while” loop;
14 if D(TLB) = D(TUB) then Break;
15 return TUB ;

Theorem 8: In graph G = (V,E), if there is
a spanning tree T ∗ with D(T ∗) = D and C(T ∗) =
OPT , then Algorithm Lag-2MST will return a span-
ning tree T which satisfies D(T) ≤ (1 + 1

k)D and
C(T) ≤ (1 + k)OPT . Let Tc and Td be the spanning
trees with minimum total cost and minimum total delay
respectively in graph G = (V, E), Algorithm Lag-2MST
will terminate in O(tM log log∗N log (k+1)C(Td)

C(Tc)
) time.

Proof: We adopt the algorithm presented in [?,]
as MST() to compute the minimum spanning tree, the
complexity of this algorithm is O(M log log∗N). Other
proof is the same as that in Theorem 6. 2

5. Conclusion

The major contribution of this paper is a polynomial
time approximation algorithm for finding two Delay-
Restricted Link Disjoint Paths with minimum total
cost. Our algorithm maintains the delay performance
of no more than (1 + 1

k)D and reduces the cost factor
to (k + 1) times the optimum, and either the delay or
the cost of our solution will be better than that of the
optimal solution.

Cost Time Complexity

[?,] (k + 2 log k + 1)(1 + ε) O(MN2k2 log k
ε log(CD))

[?,] (4 log k + 3.5)(1 + ε) O(MN4 log k/ε)

We 1 + k O(M log1+ M
N

N log
(k+1)C(fd)

C(fc))

From the above table we can see that the complex-

8
IEICE TRANS. FUNDAMENTALS, VOL.E90–A, NO.1 JANUARY 2007

ity of our new algorithm is much lower than previous al-
gorithms. Our algorithm can be easily extended to find
more than two edge-disjoint 2-restricted paths. What’s
more, we adopt the Lagrangian Relaxation method as
a new technique to find 2-restricted link disjoint paths
and trees, which can be applied to other problems with
similar characterizations.

Acknowledgment

We thank the anonymous referees for their careful
reading and many useful comments.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Networks
Flows, Prentice-Hall, 1993.

[2] Ramesh Bhandari, Survivable Networks - Algorithms for
Diverse Routing, Kluwer Academic Publishers, 1999.

[3] E.W. Dijkstra, “A Note on Two Problems in Connexion
with Graphs”, Numer. Math., vol. 1, pp. 269-271, 1959.

[4] F. Ergun, R. Sinha, and L. Zhang, “An Improved FPTAS
for Restricted Shortest Path”, Information Processing Let-
ters, vol. 83, no. 5, pp. 237-293, September 2002.

[5] H. N. Gabow, Z. Galil, T. H. Spencer, and R. E. Tarjan,
“Efficient algorithms for finding minimum spanning trees in
undirected and directed graphs”, Combinatorica, vol. 6(2),
pp. 109-122, 1986.

[6] Michael R. Garey , David S. Johnson, Computers and In-
tractability: A Guide to the Theory of NP-Completeness,
W. H. Freeman and Company, New York, NY, 1979.

[7] R. Hassin, “Approximation Schemes for the Restricted
Shortest Path Problem”, Mathematics of Operations Re-
search, vol. 17, no. 1, pp. 36-42, February 1992.

[8] D.H. Lorenz and D. Raz, “A Simple Efficient Approxima-
tion Scheme for the Restricted Shortest Path Problem”,
Operations Research Letters, vol. 28, no. 5, pp. 213-219,
June 2001.

[9] A. Orda and A. Sprintson, “Efficient Algorithms for Com-
puting Disjoint QoS Paths”, in Proceedings of IEEE Info-
com’2004, Hongkong, March 2004.

[10] A. Orda and A. Sprintson, “Efficient Algorithms for Com-
puting Disjoint QoS Paths”, IEEE/ACM Transactions on
Networking, vol. 13, no.3, pp. 648-661, 2005.

[11] C. Peng and H. Shen, “An Improved Approximation Algo-
rithm for Computing Disjoint QoS Paths”, in Proceedings
of the 5th IEEE International Conference on Networking
(ICN’06), Mauritius, April 2006.

[12] J.W. Suurballe. “Disjoint Paths in a Network”, Networks,
vol. 4, pp. 125-145, 1974.

[13] J.W. Suurballe and R. Tarjan. “A Quick Method for Find-
ing Shortest Pairs of Disjoint Paths”, Networks, vol. 14, pp.
325-336, 1984.

Chao Peng received his B.S. degree
from East China Normal University in
1999 and M.S. diploma from Fudan Uni-
versity in 2002. He is currently working
toward his Ph.D. degree in School of In-
formation Science, Japan Advanced Insti-
tute of Science and Technology. His re-
search interests include optimization algo-
rithm design, game theory, mobile ad hoc
networking and wireless sensor networks.

Hong Shen is Professor (Chair) of
Computer Science in the School of Com-
puter Science, University of Adelaide. He
received his B.Eng. degree from Bei-
jing University of Science and Technology,
M.Eng. degree from University of Science
and Technology of China, Ph.Lic. and
Ph.D. degrees from Abo Akademi Uni-
versity, Finland, all in Computer Science.
He has extensive academic experiences in-
ternationally including 9 years service at

Griffith University (Australia) from Lecturer to Professor and
5 years service at the Japan Advanced Institute of Science and
Technology (JAIST) as Professor and Chair of the Computer Net-
works Laboratory. With main research interests in parallel and
distributed computing, algorithms, high performance networks,
data mining and multimedia systems, he has published more than
200 papers, including over 100 papers in major journals such as
a variety of IEEE and ACM Transactions. He has been an edi-
tor/associate editor /editorial-board member for 7 international
journals; chaired numerous international conferences; served on
Program Committee for more than 100 international conferences.
He was the co-recipient of the 1991 National Education Commis-
sion Science and Technology Progress Award and 1992 Chinese
Academy of Sciences Natural Sciences Award.

