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Abstract. We propose the recent notion of rewriting game theory as a
tool for studying biochemical systems. Rewriting game theory is based on
a discrete and dynamic notion of Nash-style equilibria for games without
structural constraints and with arbitrary payoff values. Our aim here is
to show how the formalism can be used to characterise biological infor-
mation as logical properties of a purely chemical model. Specifically, we
address MAPK cascades through a compendium of the involved chemical
reactions, with particular focus on the known signalling pathways. We
also present preliminary computerised support for our methodology.

1 Introduction

The MAPK cascades are among the best studied biochemical processes, in part
because they assume central positions in several species, including in humans.
Evolutionary speaking, they are highly evolved and robust. Their chemical un-
derpinning is kinase, i.e., the transfer of phosphate between proteins, while their
biological role concerns cell growth, stress response, and others.

Game theory addresses situations with potential conflicts of interest. The core
concept in non-cooperative game theory is that of Nash equilibria, prescribing
compromises that satisfy all players. In evolving situations, Nash equilibria are
often interpreted as good approximations of what will happen in practice.

In the life sciences, Maynard Smith has famously recast Darwinian evolution
into game theory, with survival of the fittest amounting to the fact that they are
the dominating species in (particular kinds of) Nash equilibria [34]. We propose
to view this in the light of the central hierarchy of abstractions in the life sciences,
namely chemistry  biochemistry  biology  ecology  evolution. What
Maynard Smith showed relative to the hierarchy was that the functional units
at the evolutionary level are given as Nash equilibria at the ecological level.

In this paper, we aim to apply game theory to the bottom of the hierarchy.
In particular, we show how to characterise discrete and dynamic biochemical
issues, like the pathways that cell signals follow, by a chemical application of a
recent lightweight game-theoretic formalism called rewriting game theory [31].
The technology we discuss has been implemented in Mathematica and the source
code is available on the homepage of the corresponding author: http://www.
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jaist.ac.jp/~vester/. Throughout the article, verbatim typesetting indicates
that the text is lifted from an interactive Mathematica session.

1.1 Related Work

The MAPK cascade, in particular the ERK part, has been extensively analysed
using mathematical tools that are stochastic, algebraic, deterministic, hybrid,
etc. in nature. These have ranged from models aimed at understanding the molec-
ular interactions of the chemical species involved in the pathways as a whole
[25] and the effect that changing environmental conditions has on the kinetic
behaviour of the most important contributors to the pathways [33]. Model pre-
dictions of cellular processes using various mathematical tools exist [19]. Some
studies have concentrated on specific intrinsic pathway properties in order to
gain a deeper understanding of the complexity of signaling systems. These in-
clude specificity [15], cross-talk [9], feedback control [2, 6, 32]; ultrasensitivity
[10]; scaffolds and the complexity of formation [18]; oscillations [12] and receptor
dimerisation [33], among many others.

Game theory (in the classic, probabilistic form) has been used to study the
evolution of biochemical systems [27].

In [4], we apply rewriting game theory to Kauffman/Thomas-style gene-
regulation analysis. The concern there is to provide a mathematical foundation
for an established analytic technique that so-far has been ad hoc.

1.2 This Article

In Section 2, we discuss MAPK cascades; in Section 3, (rewriting) game-theory
background; in Section 4, we introduce cascaded proteins games ; in Section 5, we
do a medium-scale application. Appendices A and B define abbreviations and
strongly connected components and their shrunken graphs.

2 Signal Transduction Systems and MAPK Cascades

Cells respond to external stimuli using signalling pathways. These encompass
all the biological and biochemical phenomena that start with perception of an
extracellular signalling molecule (aka ligand) to the response of the cell. An
elaborate system of proteins, from trans-membrane receptor proteins via cytoso-
lic proteins to target proteins in the nucleus, enable the cell to respond to a
particular signal in a specific manner. Responses include cell growth, survival,
apoptosis, differentiation and proliferation [1, 26]. Intracellular proteins include
kinases, phosphatases and GTP-binding proteins (GTPases). Target proteins
can be ion channels, cytoskeletal and gene regulatory, just to mention a few [1].

MAPK signal transduction pathways are among the most widespread in eu-
karyotes [13] and are the focus of our present work. In mammalian systems, five
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Fig. 1. The ERK1/2, JNK, and p38 MAPK cascades

distinguishable MAPK pathways have been identified so far: extracellular signal-
regulated kinases 1 and 2 (ERKs 1/2), c-Jun N-terminal kinases 1,2 and 3 (JNK
1/2/3), p38 (α/β/γ/δ), ERKs 3/4 and ERK 5 [30]. The most widely studied,
in vertebrates, are ERKs 1/2, JNK and p38 [20]. ERKs 1/2, preferentially reg-
ulate cell growth and differentiation whilst JNK and p38 are strongly activated
by stress and inflammatory cytokines [30, 5]. Although all MAPKs have their
own unique properties, they share a number of characteristics. All have a set of
three evolutionary conserved kinases: MAPK, MAPKK (MAPK kinase), MAP-
KKK (MAPK kinase kinase). An activated MAPKKK activates an MAPKK by
donating a phosphate molecule. In turn, the MAPKK activates an MAPK down-
stream of it by phosphorylation, creating a cascade of the involved proteins. The
MAPK pathways proceed as shown in Figure 1.3

Once a receptor has been activated, in the case of ERKs 1/2, a complex
between an adaptor protein Grb-2 and a guanine nucleotide exchange factor SOS
interacts with Ras-GDP, activating Ras by exchanging the GDP with GTP. Upon
activation, Ras-GTP interacts with Raf (isoforms a,b,c), recruits it to the plasma
membrane for subsequent activation. c-Raf and a-Raf are reported to undergo
a complex series of activation steps that are not yet fully elucidated whilst it
is suggested that the association of Ras-GTP might be sufficient to activate
b-Raf [14]. Subsequent deactivating hydrolysis of GTP to GDP is catalysed

3 The figure can be arrived at through our tool, see Section 5.
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by Ras GTPase activating protein (RasGAP) [8]. Raf-activated then activates
MEKs1/2, by phosphorylating two serines [14]. Activated MEKs1/2, in turn,
activate ERKs 1/2, by phosphorylating both tyrosine and threonine residues
on a TEY motif that is in the activation loop [14]. The tyrosine phosphorylated
proteins are not active but must accumulate before phosphorylation of threonine.
Once this accumulation has been reached, the kinases are rapidly converted to
the active state, as threonine is phosphorylated [26].

The p38 pathway is triggered mainly by stress factors and inflammatory cy-
tokines. Several G-proteins are involved (Ras, Rac, Rho, Cdc42) and a tumor
necrosis factor receptor-associated factor 2, (TRAF2), all upstream of MAP-
KKKs. Of the many MAPKKKs reported to be involved in the stress/cytokine
triggered pathway, transforming growth factor-activating kinase (TAK), apoptosis-
signal regulating kinase (ASK), dual leucine zipper bearing kinase (DLK), thou-
sand and one amino acid kinase (TAO), mixed linear kinase 3 (MLK3) and
MAPKKK1 (MEKK1) are the widely reported. MAPKKKs, in turn, activate
MEKs 3 and 6. p38 isoforms are activated mainly by MEK 3 and 6 (and weakly
by MEK4 which preferentially activates JNK) by dual phosphorylation of tyro-
sine and threonine at a TGY motif in the activation loop [30].

The JNK/SAPK pathway is, in many ways, similar to the p38 pathway. Both
pathways are mainly triggered by the same signalling molecules. Further, there
is, to some extent, promiscuity by some of the MAPKKK modules (TAO, TAK,
ASK, DLK, for example) between the two pathways. Other MAPKKKs involved
in the JNK pathway are MLK3, MEKK4 and MEKK1. All phosphorylate sub-
strates MEKs4 and 7 at two serine residues [25]. The activation of JNK isoforms
is by dual phosphorylation of a tyrosine and a threonine residue at a TPY motif
[30] by MEK 4 and 7. In vitro, MEK 4 preferentially phosphorylates tyrosine
while MEK 7 prefers threonine, perhaps suggesting a form of cooperation be-
tween these MEKs in the activation of JNK [26].

After activating its downstream effector molecule, each module in the cascade
is deactivated by a phosphatase, creating a motif typified by a cascade of cycles.
Further, this negative feedback can confer, to individual loops, adaptation and
robustness to changes occuring in their environment(s) [12].

3 Game Theory

Non-cooperative game theory is based around the notion of Nash equilibrium.
Nash equilibria are defined over strategies that account for the intended be-
haviour of all agents in a game. We say that an agent is happy if he cannot
change his contribution to a strategy and generate a better overall outcome for
himself. A strategy is a Nash equilibrium if all agents are happy with it. An
example using a sequential game in extensive form is as follows, on the left.

a1

1, 0 a2

7, 5 0, 10

h1 h2

v1 0, 1 1, 0
v2 1, 0 0, 1
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A play of the game on the left is a path from the root to a leaf, where the first
(second) number indicates the payoff to agent a1 (a2). A strategy, by contrast,
is a game where a choice has been made in all internal nodes, not just in the
nodes on a considered path. While it might look like the strategy of a1 going
right and a2 going left is good, it is not a Nash equilibrium because a2 can go
right, for a better payoff. At that point, also a1 can benefit from changing his
choice and, in fact, the only Nash equilibrium in the game is a1 (a2) going left
(right), hence the non-cooperation moniker. Kuhn’s Theorem guarantees the ex-
istence of Nash equilibria in sequential games in extensive form [16, 37]. Kuhn’s
Theorem is related to the eponymous Nash’s Theorem, which addresses the sit-
uation of simultaneous games in strategic form [22, 24]. An example is above on
the right. In the example, there are two players: vertical, who chooses the row
and gets the first payoff, and horizontal, who chooses the column and gets the
second payoff. As can be seen, in no outcome are both players happy, i.e., one
player always can and wants to move away. This means that it is necessary to
consider compromises to guarantee the existence of simultaneous Nash equilibria.

3.1 Rewriting Game Theory

A recent lightweight version of Nash’s Theorem due to the corresponding author
et al aims to facilitate a wider range of technical applications of game theory, in
part by introducing a notion of equilibrium that is discrete and dynamic and in
part by removing any and all structural constraints of strategic-form games [31].
The arrived-at notion of conversion/preference (C/P) game is intended as the
most general structure for which we can define the notion of Nash equilibrium.

Definition 1 (C/P Games [31]) Gcp are 4-tuples 〈A,S, ( //
a )a∈A, (⊳a)a∈A〉:

– A is a non-empty set of agents.
– S is a non-empty set of synopses (read: outcomes of the game).
– For a ∈ A, //

a
is a binary relation over S, associating two synopses if

agent a can convert the first to the second.
– For a ∈ A, ⊳a is a binary relation over S, associating two synopsis if agent a

prefers the second to the first.

The idea behind the definition is to make explicit the parts of strategic-form
games that are relevant to the definition of Nash equilibria. To illustrate, we
note that the example we considered earlier amounts to the following C/P game
(with implicit preference relation).

0, 1 1, 0

1, 0 0, 1

h

h

v v

As mentioned, C/P games are set up to facilitate the definition of Nash
equilibria in a clean manner.
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s //
a

s′ s⊳a s′

s →a s′

Fig. 2. The (free) change-of-mind relation for agent a in Gcp

Definition 2 ((Abstract) Nash Equilibrium [31]) Given Gcp.

EqaN
Gcp(s) , ∀a ∈ A, s′ ∈ S . s //

a s′ ⇒ ¬(s⊳a s′)

The first benefit of the more abstract view on simultaneous games that we
capture in the C/P game formalism comes from the eponymous fact that con-
version and preference facilitates a rewriting characterisation of Nash equilibria.

Definition 3 ([31]) Given Gcp, the change-of-mind relation, →a, for agent a
is given in Figure 2. Let → ,

⋃
a∈A →a.

With this, we see that a Nash equilibrium is a synopsis for which there is no
outgoing change-of-mind step, i.e., an →-irreducible (aka a →-normal form).

Proposition 4 ([31]) EqaN(s) ⇔ s ∈ IrR→

The benefits of the changed perspective on game theory are partly concep-
tual, in the first instance for people that like rewriting, but, secondly, it also
captures the informal decision procedure for Nash equilibria that we have em-
ployed: a synopsis is a Nash equilibrium if all agents are happy with it, i.e., if no
agent wants to move away from it. We account for the technical benefits next.

3.2 Change-of-Mind Equilibria

For our rewriting/graph-theoretic view on game theory, we note that for ar-
bitrary finite graphs only cycles can prevent the existence of terminal nodes.
We show in this section how that simple observation suffices for underpinning
a discrete version of Nash’s Theorem for arbitrary finite C/P games (including
strategic-form games). The relevant graph-theoretic notion we need for captur-
ing all cycles is strongly connected components (SCC), ⌊−⌋, and the shrunken
graph, y, defined over them, see Appendix B.

Theorem 5 ([31]) For any finite C/P game, 〈A,S, ( //
a )a∈A, (⊳a)a∈A〉,

– 〈A, ⌊S⌋, (ya)a∈A, (ya)a∈A〉 has a Nash equilibrium,4

– all of which can be found in linear time in the size of S and →.

Proof The strongly connected components of a finite graph can be found
with the stated complexity [35] and so can the shrunken graph and its terminal
nodes [21]; the latter are guaranteed to exist in the finite case because a shrunken
graph is anti-symmetric (i.e., has no cycles) by construction. �

4 In Nash’s Theorem [22, 24], the strategies are probabilised, rather than SCCed.
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Contrary to Nash’s Theorem, Theorem 5 does not benefit from instinc-
tive reader recognition of the “shrunken” qualifier of the guaranteed Nash-
equilibrium. While Nash’s use of probabilities to collect together several strate-
gies/outcomes in his equilibria might instinctively appear better than our ap-
proach, we will show shortly that that assessment is not technically justified.
In order to make the comparison, we first characterise the Nash equilibria of
Theorem 5 directly.

Definition 6 (Change-of-Mind Equilibrium) Write
S
→ for → ∩ (S × S).

– Eqcom(s) , ∀s′ ∈ S . (s→∗s′ ⇒ s′ ∈ ⌊s⌋)

– Eqcom(
⌊s⌋
→) , Eqcom(s)

We refer to the former notion as change-of-mind equilibrium points and the
latter simply as change-of-mind equilibria. The concept of change-of-mind equi-
librium is well-defined because “membership-in-⌊−⌋” is an equivalence relation
and the core result is that they coincide with the Nash equilibria in Theorem 5.

Lemma 7 ([31]) Consider 〈A,S, ( //
a )a∈A, (⊳a)a∈A〉, 〈A, ⌊S⌋, (ya)a∈A, (ya)a∈A〉.

Eqcom(
⌊s⌋
→) ⇔ EqaN(⌊s⌋)

Change-of-mind equilibria, in other words, are areas where game-play cannot
leave, once it has arrived there. Agents are still allowed to change their mind but
they remain within a set perimeter (in fact, the smallest such perimeters [31]).
More, it is always in some agent’s interest to go towards a perimeter/equilibrium.

3.3 Examples

Seen as a C/P game, the strategic-form game at the beginning of Section 3 has
one change-of-mind equilibrium.

0, 1
��

1, 0oo

1, 0 // 0, 1

OO

By comparison, we note that it also has one probabilistic Nash equilibrium,
arising when both agents choose between their two options with equal probability
for expected payoffs of a half to each. In particular, note that the probabilistic
Nash equilibrium also uses5/compromises between all four outcomes.

The trade-off between Nash’s probabilistic approach and our discrete and
dynamic approach is that Nash prescribes a definite expected pay-off while we
make it clear why the four cells are in the equilibrium. The following two exam-
ples illustrate how the two notions differ. Both strategic forms, left and right,
have the same change-of-mind equilibrium, centre, when seen as a C/P game.

5 The technical term ‘use’ with the given meaning is due to Nash [22, 24].
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h1 h2 h3

v1 0, 1 0, 0 1, 0
v2 1, 0 0, 1 0, 0
v3 0, 0 1, 0 0, 1

0, 1
��

1, 0oo

1, 0 // 0, 1
��

1, 0 // 0, 1

OO
h1 h2 h3

v1 0, 1 −7, 0 1, 0
v2 1, 0 0, 1 −7, 0
v3 −7,0 1, 0 0, 1
v4 0, 0 0, 0 0, 0

The only probabilistic Nash equilibrium for the strategic-form game on the
left arises when both agents choose between their three options with equal prob-
ability, for expected payoffs of a third, using all nine strategies. The change-of-
mind equilibrium carves out just six of the strategies, for an average payoff of a
half to each. In the game on the right, all probabilistic Nash equilibria involve
‘vertical’ putting full weight on the last row, for expected payoffs of naught to
each, using strategies that are disjoint from the six strategies involved in the
only change-of-mind equilibrium, centre.

4 Cascaded Protein Games

In this section, we propose a general way of using the C/P game formalism of
Section 3.1 to model situations like the one considered in Section 2. Specifi-
cally, we will focus on the signalling effect of protein-protein interactions. The
methodology will consist of two main steps, described in separate subsections
below. We formulate the formal framework using the terminology of signal trans-
duction systems but it is fully algebraic and (in principle) has wider applicability.

Our starting point will be a compendium of chemical data, specifically a list
of catalyst -indexed reactions from substrates to products. Here is an example.

ERK+ ATP
MEK-PP
−→ ERK-P+ ADP (1)

ERK-P+ H2O
Pase3−→ ERK+ Pi (2)

4.1 Protein Games

As C/P games have few constraints, we can model the listed reactions directly.

Agents Our first step is to extract the set of catalysts from the given set of
reactions and consider it as the C/P game’s set of agents.

A = {MEK-PP, Pase3}

The justification for this is that given a reaction like (1), also the following
reaction (without MEK-PP-catalysis) is possible.

ERK+ ATP −→ ERK-P+ ADP (3)
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In other words, catalysts do not enable previously unenabled reactions. In-
stead, they change the affinity for the reaction in question, typically leading to
an increase in the rate of reaction by 106 to 1012 times [38]. It is our thesis that
this effect is so significant that narrowly focusing on the control exercised by
the enzymes by constructing a C/P game revolving around their “game play”
and subjecting that game to an equilibrium analysis will reveal significant in-
formation about the expected behaviour of a solution that is accounted for by a
considered compendium of chemical reactions.

Synopses The synopses (read: game situations) of the C/P game we are con-
structing will essentially be defined as a “solution language”, encompassing at
least all substrates and products in the compendium. Avoiding all issues of an
overtly detailed formalism that makes unjustified distinctions between chemical
solutions we might not wish to distinguish, we pursue a simplified language. It
takes as starting point a classification of the compounds in the compendium as
in-focus vs auxiliary and we simply let the former be the set, S, of synopses. More
precisely, we let each in-focus compound be the characteristic representative of
a synopsis, with all other compounds available as needed. The set of in-focus
compounds will typically consist of proteins but it need not be exhaustive.

S = {ERK, ERK-P}

The auxiliary compounds in any given analysis are simply ignored. The notion
of characteristic representative is part of the level of abstraction captured by
our game-theoretic formalisation. For what it is, namely a first/Ockham-razor
approximation, the above “solution language” proposal works remarkably well,
see Section 5, but looking into alternatives is naturally part of our future work.

Change-of-Mind In defining the conversion and preference relations, we make
the (natural) distinction that conversion is about the chemical reality of the
compounds we consider while preference accounts for the catalysing effects of
the enzymes. Concretely, we stipulate that there is only one conversion relation
shared by all agents and that it comprises reactions like (3). The catalysed reac-
tions will make up the preference relation for that particular catalyst. We would
thus typically read (1) to say that MEK-PP prefers (a solution with characteristic
protein) ERK-P to (a solution with characteristic protein) ERK. For the example
compendium considered at the start of this section, i.e., (1) and (2), the default
protein game might therefore be accounted for by the following set of agents, set
of synopses, and change-of-mind relation.

〈{MEK-PP, Pase3}, {ERK, ERK-P}, {ERK →MEK-PP ERK-P, ERK-P →Pase3
ERK}〉

Presented graphically, it looks as follows.

ERK ERK-P

MEK-PP

Pase3

The whole graph is the only change-of-mind equilibrium of the game.
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4.2 Composition and Cascading

We will now consider the situation of a chemical compendium consisting of (1)
and (2) as well the following two reactions.

ERK-P+ ATP
MEK-PP
−→ ERK-PP+ ADP (4)

ERK-PP+ H2O
Pase3−→ ERK-P+ Pi (5)

As a graphically-presented protein game, the compendium looks as follows,
with the two pairs of reactions composed by virtue of their overlap on ERK-P.

ERK ERK-P ERK-PP

MEK-PP

Pase3

MEK-PP

Pase3

As above, the whole graph is the only change-of-mind equilibrium of the
constructed game. We now add two more reactions.

MEK-P+ ATP
c-Raf∗

−→ MEK-PP+ ADP (6)

MEK-PP+ H2O
Pase2−→ MEK-P+ Pi (7)

As a protein game (with overlapping A and S), the six reactions look as follows.

MEK-P MEK-PP

ERK ERK-P ERK-PP

c-Raf∗

Pase2

MEK-PP

Pase3

MEK-PP

Pase3

In the figure, we have two disconnected graphs for which we can observe that
the reaction from ERK to ERK-P will be triggered by the production of MEK-PP

above it, because MEK-PP is a catalyst for the reaction. This phenomenon occurs
regularly and is what is referred to as cascading. We will internalise the triggering
effect by constructing, for a given protein game, a cascaded protein game that
collapses, e.g., MEK-PP and ERK.

MEK-P
MEK-PP

ERK
ERK-P ERK-PP

c-Raf∗

Pase2

MEK-PP

Pase3

MEK-PP

Pase3

Technically speaking, we topologically sort the change-of-mind relation of
each enzyme and collapse the node of that enzyme with each of the found roots,
as exemplified in Figure 5.6 In our experiments we have only encountered change-
of-mind relations that are acyclic — a prerequisite of topological sorting. We
cannot imagine what it might mean for an enzyme to catalyse cyclically and we
shall therefore not propose an alternative course of action if the topological sort
fails. Future work includes more elaborate schemes for implementing cascading.

6 Note that cascading can occur as one enzyme to many reactions and as many to one.
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ASK1 + ATP
CDC42-GTP
−→ ADP + ASK1*

ASK1 + ATP
Rac-GTP
−→ ADP + ASK1*

ASK1 + ATP
TRAF2
−→ ADP + ASK1*

ASK1* + H20
Pase1
−→ Pi + ASK1

b-Raf + ATP
Rap1-GTP
−→ ADP + b-Raf*

b-Raf* + H20
Pase1
−→ Pi + b-Raf

COT1 + ATP
cat.COT1
−→ ADP + COT1*

COT1* + H20
Pase1
−→ Pi + COT1

c-Raf + ATP
Ras-GTP
−→ ADP + c-Raf*

c-Raf* + H20
Pase1
−→ Pi + c-Raf

DLK + ATP
PAK
−→ ADP + DLK*

DLK* + H20
Pase1
−→ Pi + DLK

ERK + ATP
MEK-PP
−→ ADP + ERK-P

ERK-P + ATP
MEK-PP
−→ ADP + ERK-PP

ERK-P + H20
Pase3
−→ Pi + ERK

ERK-PP + H20
Pase3
−→ Pi + ERK-P

JNK + ATP
MEK4-PP
−→ ADP + JNK-P

JNK + ATP
MEK7-PP
−→ ADP + JNK-P

JNK-P + ATP
MEK4-PP
−→ ADP + JNK-PP

JNK-P + ATP
MEK7-PP
−→ ADP + JNK-PP

JNK-P + H20
Pase3
−→ Pi + JNK

JNK-PP + H20
Pase3
−→ Pi + JNK-P

MEK + ATP
b-Raf*
−→ ADP + MEK-P

MEK + ATP
c-Raf*
−→ ADP + MEK-P

MEK3 + ATP
ASK1*
−→ ADP + MEK3-P

MEK3 + ATP
MEKK4*
−→ ADP + MEK3-P

MEK3 + ATP
MLK3*
−→ ADP + MEK3-P

MEK3 + ATP
TAK1*
−→ ADP + MEK3-P

MEK3 + ATP
TAO*
−→ ADP + MEK3-P

MEK3-P + ATP
ASK1*
−→ ADP + MEK3-PP

MEK3-P + ATP
MEKK4*
−→ ADP + MEK3-PP

MEK3-P + ATP
MLK3*
−→ ADP + MEK3-PP

MEK3-P + ATP
TAK1*
−→ ADP + MEK3-PP

MEK3-P + ATP
TAO*
−→ ADP + MEK3-PP

MEK3-P + H20
Pase2
−→ Pi + MEK3

MEK3-PP + H20
Pase2
−→ Pi + MEK3-P

MEK4 + ATP
ASK1*
−→ ADP + MEK4-P

MEK4 + ATP
COT1*
−→ ADP + MEK4-P

MEK4 + ATP
DLK*
−→ ADP + MEK4-P

MEK4 + ATP
MEKK1*
−→ ADP + MEK4-P

MEK4 + ATP
MEKK4*
−→ ADP + MEK4-P

MEK4 + ATP
MLK2*
−→ ADP + MEK4-P

MEK4 + ATP
MLK3*
−→ ADP + MEK4-P

MEK4 + ATP
TAK1*
−→ ADP + MEK4-P

MEK4-P + ATP
ASK1*
−→ ADP + MEK4-PP

MEK4-P + ATP
COT1*
−→ ADP + MEK4-PP

MEK4-P + ATP
DLK*
−→ ADP + MEK4-PP

MEK4-P + ATP
MEKK1*
−→ ADP + MEK4-PP

MEK4-P + ATP
MEKK4*
−→ ADP + MEK4-PP

MEK4-P + ATP
MLK2*
−→ ADP + MEK4-PP

MEK4-P + ATP
MLK3*
−→ ADP + MEK4-PP

MEK4-P + ATP
TAK1*
−→ ADP + MEK4-PP

MEK4-P + H20
Pase2
−→ Pi + MEK4

MEK4-PP + H20
Pase2
−→ Pi + MEK4-P

MEK6 + ATP
ASK1*
−→ ADP + MEK6-P

MEK6 + ATP
MEKK4*
−→ ADP + MEK6-P

MEK6 + ATP
MLK3*
−→ ADP + MEK6-P

MEK6 + ATP
TAK1*
−→ ADP + MEK6-P

MEK6 + ATP
TAO*
−→ ADP + MEK6-P

MEK6-P + ATP
ASK1*
−→ ADP + MEK6-PP

MEK6-P + ATP
MEKK4*
−→ ADP + MEK6-PP

MEK6-P + ATP
MLK3*
−→ ADP + MEK6-PP

MEK6-P + ATP
TAK1*
−→ ADP + MEK6-PP

MEK6-P + ATP
TAO*
−→ ADP + MEK6-PP

MEK6-P + H20
Pase2
−→ Pi + MEK6

MEK6-PP + H20
Pase2
−→ Pi + MEK6-P

MEK7 + ATP
MEKK1*
−→ ADP + MEK7-P

MEK7-P + ATP
MEKK1*
−→ ADP + MEK7-PP

MEK7-P + H20
Pase2
−→ Pi + MEK7

MEK7-PP + H20
Pase2
−→ Pi + MEK7-P

MEKK1 + ATP
CDC42-GTP
−→ ADP + MEKK1*

MEKK1 + ATP
Rac-GTP
−→ ADP + MEKK1*

MEKK1 + ATP
TRAF2
−→ ADP + MEKK1*

MEKK1* + H20
Pase1
−→ Pi + MEKK1

MEKK4 + ATP
CDC42-GTP
−→ ADP + MEKK4*

MEKK4 + ATP
Rac-GTP
−→ ADP + MEKK4*

MEKK4 + ATP
RhoA
−→ ADP + MEKK4*

MEKK4 + ATP
RhoA-GTP
−→ ADP + MEKK4*

MEKK4 + ATP
TRAF2
−→ ADP + MEKK4*

MEKK4* + H20
Pase1
−→ Pi + MEKK4

MEK-P + ATP
b-Raf*
−→ ADP + MEK-PP

MEK-P + ATP
c-Raf*
−→ ADP + MEK-PP

MEK-P + H20
Pase2
−→ Pi + MEK

MEK-PP + H20
Pase2
−→ Pi + MEK-P

MLK3 + ATP
CDC42
−→ ADP + MLK3*

MLK3 + ATP
CDC42-GTP
−→ ADP + MLK3*

MLK3 + ATP
Rac-GTP
−→ ADP + MLK3*

MLK3* + H20
Pase1
−→ Pi + MLK3

p38a + ATP
MEK3-PP
−→ ADP + p38a-P

p38a + ATP
MEK6-PP
−→ ADP + p38a-P

p38a-P + ATP
MEK3-PP
−→ ADP + p38a-PP

p38a-P + ATP
MEK6-PP
−→ ADP + p38a-PP

p38a-P + H20
Pase3
−→ Pi + p38a

p38a-PP + H20
Pase3
−→ Pi + p38a-P

p38b + ATP
MEK3-PP
−→ ADP + p38b-P

p38b + ATP
MEK6-PP
−→ ADP + p38b-P

p38b-P + ATP
MEK3-PP
−→ ADP + p38b-PP

p38b-P + ATP
MEK6-PP
−→ ADP + p38b-PP

p38b-P + H20
Pase3
−→ Pi + p38b

p38b-PP + H20
Pase3
−→ Pi + p38b-P

p38d + ATP
MEK6-PP
−→ ADP + p38d-P

p38d-P + ATP
MEK6-PP
−→ ADP + p38d-PP

p38d-P + H20
Pase3
−→ Pi + p38d

p38d-PP + H20
Pase3
−→ Pi + p38d-P

p38g + ATP
MEK6-PP
−→ ADP + p38g-P

p38g-P + ATP
MEK6-PP
−→ ADP + p38g-PP

p38g-P + H20
Pase3
−→ Pi + p38g

p38g-PP + H20
Pase3
−→ Pi + p38g-P

TAK1 + ATP
Rac-GTP
−→ ADP + TAK1*

TAK1 + ATP
TRAF2
−→ ADP + TAK1*

TAK1* + H20
Pase1
−→ Pi + TAK1

TAO + ATP
cat.TAO
−→ ADP + TAO*

TAO* + H20
Pase1
−→ Pi + TAO

Fig. 3. 113 reactions and 72 compounds involved in the mammalian MAPK cascades

5 A Chemical Compendium and its Equilibria

In this section, we apply our proposed game-theoretic analysis to a medium-sized
example, namely all chemical reactions stated in [3, 7, 11, 13, 25, 28, 29, 36] to be
involved in MAPK cascades. The articles list a total of 113 distinct reactions,
see Figure 3. The reactions involve a total of 72 compounds of which 4 are non-
proteins and 14 are proteins that only catalyse. Figure 4 lists the 54 proteins
that occur in a substrate or a product. Figures 3 and 4 have been extracted from
the content of the variables MAPKreactions and MAPKproteins used below.

MAPKcomEq = findCoMEq[constructCPG[MAPKreactions, MAPKproteins]]
Creating vertices : {2006, 5, 17, 14, 44, 0.1875000}
53 vertices ... {2006, 5, 17, 14, 44, 0.2656250} Done.

11



ASK*, ASK1, ASK1*, b-Raf, b-Raf*, COT1, COT1*, c-Raf, c-Raf*, DLK, DLK*, ERK, ERK-P, ERK-PP, JNK,

JNK-P, JNK-PP, MEK, MEK3, MEK3-P, MEK3-PP, MEK4, MEK4-P, MEK4-PP, MEK6, MEK6-P, MEK6-PP, MEK7, MEK7-P,

MEK7-PP, MEKK1, MEKK1*, MEKK4, MEKK4*, MEK-P, MEK-PP, MLK3, MLK3*, p38a, p38a-P, p38a-PP, p38b, p38b-P,

p38b-PP, p38d, p38d-P, p38d-PP, p38g, p38g-P, p38g-PP, TAK1, TAK1*, TAO, TAO*

Fig. 4. The 54 proteins occurring in a substrate or a product in Figure 3

Fig. 5. ERK pathway in the MAPK cascades, reconstituted from our analysis (insert)

Creating Change-of-Mind relations : {2006, 5, 17, 14, 44, 0.2656250}

64 (113 enzyme-specified) Change-of-Mind ... {2006, 5, 17, 14, 44, 0.3125000} Done.
Creating collapsed vertices : {2006, 5, 17, 14, 44, 0.3125000}

Find a new graph with Collapse/Duplicate {2006, 5, 17, 14, 44, 0.3125000}
56 collapsed vertices... {2006, 5, 17, 14, 44, 0.3906250} Done.
Creating collapsed Change-of-Mind : {2006, 5, 17, 14, 44, 0.3906250}

128 (291 enzyme-specified) Change-of-Mind ...{2006, 5, 17, 14, 44, 0.4375000} Done.
{2006, 5, 17, 14, 44, 0.4531250} Done.

There are 2 SCCs.
There are 2 non-trivial, and 0 singleton CoM Eq (TSCC).

As can be seen, when analysing the reactions in Figure 3 with focus on all
reacting proteins, Figure 4, we find 2 change-of-mind equilibria. The second,
containing 14 reactions, is reproduced (as output by Mathematica) in the in-
sert in Figure 5. The main part of the figure is a graphical representation of
the chemical reactions that lead to the cascaded version seen in the insert. In
fact, the computed change-of-mind equilibrium is exactly the classical MAPK
cascade: the ERK pathway, i.e., the core part of the transduction system used
for signalling cell growth for example, see Figure 1. Seen game-theoretically, this
can be read to say that invocation of the ERK pathway is inevitable, i.e., it is the
best compromise for what the enzymes prefer to do when given a suitable input,
cf. Theorem 5. It can also be read more directly to say that the ERK pathway
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is a good candidate for a central building block of a living organism because it
is sustainable, i.e., no enzyme can defect “play” from the pathway once it has
arrived there, see Lemma 7.

The second change-of-mind equilibrium found above contains the JNK and
p38 pathways and is rather more complex because of the crosstalk that exists
between them, see Figure 1. Although we do not discuss it here, we note that
our tool allows us to disambiguate the two pathways by focusing away or onto
proteins that are particular to one or the other pathway. Similarly, the crosstalk
between the two pathways can be analysed by focusing, e.g., on the proteins
that sit on direct/no-loop paths between JNK and p38 (and we note that our
tool has complementary support for direct-path analysis).

6 Conclusion

We have proposed a lightweight Nash Theorem with discrete and dynamic equi-
libria as a seemingly suitable starting point for a practically useful tool for the
biochemical study of signal transduction systems. The core idea is that the pre-
scribed change-of-mind equilibria will amount to likely end-configurations of
evolution, i.e., the backbone signalling mechanisms that sustain life (in the ulti-
mate instance). The key concept of the underlying theory is dynamic equilibria.

Our proposal comes with preliminary computerised support. We do not con-
sider the proposed technology to have been proven. At best, we believe we have
gathered encouraging evidence that is worth pursuing. One issue needing atten-
tion are the parameters of our construction of cascaded protein games. Another
issue is application to raw data that has not been pre-sorted. Theoretically,
we also need to extend rewriting game theory to accommodate reaction kinet-
ics explicitly. The main advantages of our proposal are conceptual and technical
simplicity, low computational complexity (Theorem 5), and perceived generality.

A Abbreviations

K kinase ADP adenosine diPhosphate
ASK apoptosis-signal regulating K ATP adenosine triphosphate
DLK dual leucine zipper bearing K EGF epidermal growth factor
ERK extracellular signal-regulated K GCK germinal center K
GCKR germinal center K receptor GDP guanosine diphosphate
GLK GCK-like K Grb2 growth receptor bound proteins
GTP guanosine triphosphate GTPase GTP phosphatase
HGK HPK/GCK-like K HPK1 hematopoetic progenitor K 1
JNK c-Jun N-terminal K MAP mitogen-activated protein
MAPK MAP K MLK Mixed lineage K
RasGAP Ras GTPase activating protein SAPK stress activated protein K
SOS son of sevenless TAO thousand and one amino acid K
TGF-β transforming growth factor-β TGY threonine, glycine, tyrosine
TPY threonine, proline, tyrosine TEY threonine, glutamic acid, tyrosine

MEK/MAPKK/MAP2K MAP kinase kinase
MEKK/MAPKKK/MAP3K MAP kinase kinase kinase
PTK/TPK protein tyrosine K/tyrosine protein kinase
TAK transforming growth factor-activating kinase
TKR/RTK tyrosine K receptor/receptor tyrosine kinase
TRAF tumor necrosis factor receptor-associated factor
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B Strongly Connected Components, Shrunken Graphs

– A graph is a binary relation on a carrier set, called vertices: →⊆ V × V.
– The reflexive, transitive (or pre-order) closure, →∗, of a graph, →, is

v1 → v2

v1 →∗

v2 v →∗

v

v1 →∗

v v →∗

v2

v1 →∗

v2

– The strongly connected component (SCC) of a vertex, v, in a graph is

⌊v⌋ , {v′ | v →∗

v
′ ∧ v

′ →∗

v}

(The relation “is in the ⌊−⌋-class of” is an equivalence relation.)
– The set of SCCs of a graph is

⌊V⌋ , {⌊v⌋ | v ∈ V}

– The shrunken graph of →⊆ V × V is y⊆ ⌊V⌋ × ⌊V⌋, defined by

Va y Vb , Va 6= Vb ∧ (∃va ∈ Va, vb ∈ Vb . va → vb)
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