
Investigating Problems of Semi-Supervised
Learning for Word Sense Disambiguation

Anh-Cuong Le, Akira Shimazu, and Le-Minh Nguyen

School of Information Science
Japan Advanced Institute of Science and Technology

1-1 Asahidai, Nomi, Ishikawa, 923-1292, JAPAN

Abstract. Word Sense Disambiguation (WSD) is the problem of de-
termining the right sense of a polysemous word in a given context. In
this paper, we will investigate the use of unlabeled data for WSD within
the framework of semi supervised learning, in which the original labeled
dataset is iteratively extended by exploiting unlabeled data. This paper
addresses two problems occurring in this approach: determining a subset
of new labeled data at each extension and generating the final classi-
fier. By giving solutions for these problems, we generate some variants of
bootstrapping algorithms and apply to word sense disambiguation. The
experiments were done on the datasets of four words: interest, line, hard,
and serve; and on English lexical sample of Senseval-3.

1 Introduction

Word sense disambiguation involves the association of a given word in a text
or discourse with a particular sense among numerous potential senses of that
word. For this task, many supervised machine learning algorithms have been
used for the WSD task, including Näıve Bayes, decision trees, an exemplar-
based, support vector machines, maximum entropy, etc (see, e.g., [3]). However,
supervised methods require large labeled data for training, which are expensive
to obtain. Therefore, many researchers have recently concentrated their efforts
on how to use unlabeled data to boost the performance of supervised learning for
WSD, such as in [5, 11, 10, 7]. The process of using both labeled and unlabeled
data for training is called semi-supervised learning or bootstrapping.

In this paper, we focus on an approach that iteratively enlarges labeled data
with new labeled examples which are obtained from unlabeled data. A common
method for the extension of labeled data is to use the classifier trained on the
current labeled dataset to detect labels for unlabeled examples. Among those
new labeled examples, some highly accurate ones are selected and added to the
current labeled dataset. This process is iteratively repeated until there is no
unlabeled example left, or until the number of iterations reaches a pre-defined
number. Two well-known methods of this approach are self-training [9] and co-
training [1]. A general algorithm of this approach is sketched in Fig. 1 (it can
be considered as the general self-training algorithm). We address two problems
occurring in this algorithm as follows.



Input:
L (labeled data); U (unlabeled data); h (a supervised learning algorithm)
k = 0; K is the maximum number of iteration

Output:
Lout is the final set of labeled data
or h(Lout) is the final classifier

Algorithm:
Repeat

1. k ← k + 1
2. use h and L to train a classifier h(L)
3. use h(L) to label U , and obtain a labeled set UL

4. get L′ ⊂ UL consisting of high confident examples
5. L ← L ∪ L′; U ← U \ L′

Until U = ∅ or k > K
6. Lout ← L

Fig. 1. A General Bootstrapping Algorithm

P1: The first problem is how to determine a subset of new labeled examples
at each extension of labeled data. To obtain “good” new labeled examples, we
consider two criteria: the correctness of labeling and the number of new labeled
examples. It is clear that adding a large number of misclassified examples into
the labeled dataset will probably result in decreasing the accuracy of the classi-
fier, and increasing confidence 1 of labeling may receive a small number of new
labeled examples. Suppose that we have a new example which is assigned a label
with a detection probability, previous studies normally use a threshold for this
probability to decide whether a new labeled example will be selected or not,
such as in [9, 1]. However, choosing a high threshold will create difficulty in ex-
tending labeled data, and does not always result in correct classification. On the
contrary, choosing a lower threshold may result in more misclassified examples.
In this paper, we will increase confidence of new labeled examples by using one
more supervised classifier for the detection process.

P2: The second problem is that of how to generate the final classifier when
the process of extending labeled data is completed. According to the framework
in Fig. 1, this process will be stopped when the number of iterations reaches
a pre-specified value, or until the unlabeled dataset becomes empty. Normally,
the classifier, which is built on the labeled data obtained at the last iteration,
is chosen as the final classifier. Some studies use a development dataset to find
the most appropriate value for the number of iterations, such as in [7, 5]. Others
used an upper bound of error rate of training data as the condition for stopping
this process, such as in [2]. However, the last classifier may be built based on
new training data with some misclassified examples (related to problem P1), so
some advantages and some disadvantages are concurrently brought to the last
classifier in comparison with the initial supervised classifier (i.e. the classifier

1 The term “increasing confidence” of a classifier means using any method, by that
we hope to increase the accuracy of label detection of this classifier



which trained on the original labeled dataset). In our knowledge, this observa-
tion, which has not been observed in previous studies yet, may lead us to a
solution of combining the advantages of both the initial and the last classifiers
under classifier combination strategies.

The solutions for these two problems consequently generate variants of boot-
strapping algorithms. They were evaluated through experiments on the four
words interest, line, hard, server ; and on English lexical sample of Senseval-
3. Therefore, next section presents proposed solutions and new bootstrapping
algorithms. Section 3 presents experiments with data preparation, results and
discussion. Finally, conclusions are presented in section 4.

2 Problems and Solutions

2.1 Extending labeled data

This section presents problem P1. An usual approach to this task is using a
supervised learning algorithm to train a classifier based on the labeled dataset,
and then using this classifier to detect labels for examples in a subset U ′ of the
current unlabeled dataset U . Suppose h is the supervised classifier and l(h, e) is
the label of example e detected by h with probability P (h, e). If P (h, e) is greater
than a threshold α, then example e with new label l(h, e) will be considered to
be added to L. As mentioned previously, using a classifier with threshold α
for determining new labeled examples may cause a tradeoff problem between
the extensibility and the accuracy of label detection. Furthermore, increasing α
does not always result in an increase of accuracy in new labeled examples. To
tackle this problem, we propose a solution that uses one more classifier, h′ 2, as
follows.

Suppose that at each extension, the maximum number of new labeled ex-
amples which are added to the current labeled dataset is N . We firstly use h
and h′ to detect labels for examples in U ′, and then select the examples e such
that P (h, e) ≥ α. Among such new labeled examples, the examples which have
agreements of labelling of h and h′ are selected. If there exist more than N such
examples, we will prefer the examples with high confidence of detection of h.
In addition, if there are not enough agreements of labelling between h and h′,
we use h to select more new labeled examples, and also prefer the examples e
with high P (h, e). By this solution we can increase the confidence of new labeled
examples, and also maintain the capability of extending labeled data.

Concerning this task, we also build a procedure of retaining class distribution.
It is necessary because if a classifier is built based on the training data with a
bias in some classes (i.e. some classes dominate others), then this bias will be
increased at each extension of the labeled data. This problem is also considered
in previous studies such as [1, 8]. For a set of labeled examples, we divide it
into the subsets such that the examples in each subset have the same label. We
2 we assume that the two classifiers, h and h′, are unbiased and the errors made by

them would not fully overlap



call them class-based subsets. So that, building a procedure of retaining class
distribution for a set of new labeled examples means to resize its class-based
subsets to keep class distribution of the original labeled dataset.

2.2 Generating final classifier

There is a fact that when extending labeled data, the feature space will be ex-
tended concurrently with adding some examples which are misclabeled. There-
fore, the quality of labelling of the last classifier (trained on the last labeled
dataset) will depend on each particular test example. In comparison with the
initial supervised classifier, the final classifier may be better in detecting some
test examples if these examples contain many new features covering by the new
labeled examples. In the contrary case, if test examples can be well labeled by
the initial supervised classifier, it is not necessary and risk to use the last clas-
sifier to label these examples. A natural way to utilize advantages of both these
classifiers is to combine them when making decision of labelling. It then becomes
a classifier combination problem. Based on OWA combination rules, which were
also used for WSD, as presented in [4], we found that the median rule and max
rule are intuitively applicable for this objective. These combination rules are
recalled as follows.

For each example e, suppose Pi(h1, e), i = 1, . . . , m is the probability dis-
tribution on class set {c1, . . . , cm} of using classifier h1 to label e. A similar
definition is applied to Pi(h2, e), for classifier h2 and i = 1, . . . , m.

Combining h1 and h2 using median and max rules, we obtain new probability
distributions as follows:

Pmedian
i (h1, h2, e) = (Pi(h1, e) + Pi(h2, e))/2, i = 1, . . . , m

Pmax
i (h1, h2, e) = max{Pi(h1, e), Pi(h2, e)}, i = 1, . . . , m

Then the class ck will be assigned to example e when using median rule (or
max rule) iff:

Pmedian
k (h1, h2, e) ≥ Pmedian

i (h1, h2, e), ∀i = 1, . . . , m

Pmax
k (h1, h2, e) ≥ Pmax

i (h1, h2, e), ∀i = 1, . . . , m

2.3 A new bootstrapping algorithm

By the solutions as mentioned above, we generate a new bootstrapping algorithm
as shown in Fig. 2. In this algorithm, Resize(L1, N) is the procedure for retaining
class distribution, which returns new sizes for all class-based subsets of L1 and
satisfy that sum of all new sizes is less than or equal N ; L is the labeled data;
U is the unlabeled data; A and A′ are two supervised learning algorithms, in
which A is the primary one; α is a threshold; K is the maximum number of



iteration; N is the maximum number of added labeled examples at each iteration;
C = {c1, . . . , cm} is the set of classes; suppose S is a set of labeled examples,
define Ci(S) = {e|e ∈ S, l(e) = ci}, where l(e) is the label of example e, and
i = 1, . . . , m.

Input: L, U , A, A′, α, K, N .
Output: classifier H
Algorithm:

initial: k ← 0; L0 ← L; create a pool U ′ ∈ U (randomly selected )
Repeat

1. k ← k + 1; L1 ← ∅; L2 ← ∅
2. training A and A′ on L and generate classifiers h and h′, respectively
3. for each example e ∈ U ′ do

if P (h, e) ≥ α then add e with new label l(h, e) to L1

4. Resize(L1, N)
obtaining ni which is the new size of subset Ci(L1), for i = 1, . . . , m

5. for each class ci ∈ C do
5.1 sort examples of Ci(L1) in descending order, following the function f(e):

if l(h, e) = l(h′, e) then f(e) ← 1 + P (h, e) else f(e) ← P (h, e)
5.2. add first ni examples of Ci(L1) to L2

6. L ← L ∪ L2; rebuild U ′ from U and L1 \ L2

Until k > K or |L2| = 0
7. Let A(L0) and A(L) be classifiers obtained by train A on L0 and L, respectively

then return H is the combination between A(L0) and A(L)

Fig. 2. A New Bootstrapping Algorithm

In fact, the new algorithm is an extension of the general self-training by
providing solutions for problems P1 and P2. For experiment, we consider four
variants of the bootstrapping algorithm as follows: A1 is the general self-training
algorithm; A2 is the self-training algorithm with the solution for problem P2

(we separate this by A2a and A2b respect to median and max rules for the
combination step); A3 is the self-training algorithm with the solution for problem
P1; A4 is the self-training algorithm with the solutions for problem P1 and P2

(i.e. the new algorithm; we separate this by A4a and A4b respect to median and
max rules for the combination step).

3 Experiment

3.1 Data

The first experiment was carried out on the datasets of the four words, namely
interest, line, serve, and hard, which were obtained from Pedersen’s homepage3.
All examples in these datasets were tagged with the right senses. The sizes of
3 http://www.d.umn.edu/∼tpederse/data.html



these data are 2369, 4143, 4378, and 4342 for interest, line, serve, and hard,
respectively. These datasets are large enough for dividing into labeled and un-
labeled data sets. Furthermore, because we knew the tagged senses of examples
in unlabeled dataset, we could evaluate the correctness of the new labeled ex-
amples (for problem P1). We randomly extract 100 examples for labeled data,
300 examples for test data, and the remaining examples are treated as unlabeled
examples.

The second test was carried out on English lexical sample from Senseval-3
data4. Unlabeled data in this experiment was collected from the British National
Corpus (BNC) with about 3000 examples for each ambiguous word. Note that
because the English lexical sample was also retrieved from BNC, so for a fair
test, we removed all contexts from unlabeled dataset which also appear in the
training or test datasets.

3.2 Feature selection

Two of the most important kinds of information for determining the senses of an
ambiguous word are the topic of the context and the relational information rep-
resenting the structural relations between the target word and the surrounding
words in a local context. A bag of unordered words in the context can represent
the topic of the context, while collocation can represent grammatical informa-
tion as well as the order relations between the target word and neighboring
words. We also use more information about local context represented by words
assigned with their positions, and their part-of-speech assigned with positions.
These kinds of features are investigated in many WSD studies such as [6, 5].
Particulary, all features used in our experiment fall in the kinds: a set of con-
tent words that include nouns, verbs, and adjectives, in a context window size
50; a set of collocations of words (we selected a set of collocations as presented
in [3]); a set of words assigned with their positions in a window size 5; and a set
of part-of-speech tags of these word also assigned with their positions, also in
window size 5.

3.3 Parameters and Results

For the new algorithm, we chose naive Bayes (NB) as the primary supervised
learning algorithm and support vector machines (SVM) as the second algorithm.
Because SVM is a discriminative learning algorithm while NB is a generative one,
so this difference will make SVM as an independent and confident classifier to
verify the correctness of NB classifier’s detection.

For the remaining parameters, we fix the maximum size of unlabeled dataset
used at each iteration |U ′| = 800 and the maximum size of new labeled examples
which are added to the labeled dataset N = 300. The number of iteration K
runs from 1 to 15 when testing on datasets of the four words, and then the best
was used for testing on Senseval-3.
4 http://www.senseval.org/senseval3



Fig. 3. Test problem P1 using one classifier and two classifiers

Table 1. Test on Senseval-3.

Algorithms Average accuracy(%)

NB 70.13
SVM 69.45

A1 (self-training) 70.6

A2 median rule (A2a) 71.80
(self-training with P2 solution) max rule (A2b) 71.76

A3 (self-training with P1 solution) 71.03

A4 median rule (A4a) 72.07
(self-training with P1 and P2 solutions) max rule (A4b) 71.97

In the first experiment, we investigated the problem P1 through various values
of α, and the effectiveness of using one classifier (NB) and two classifiers (NB and
SVM). The threshold α received values in {0.5, 0.6, 0.7, 0.8, 0.9}. The result in
Fig. 3 shows that using one more classifier much decrease error rate (from about
25% to 10%). In addition, this result also suggests the choice of α = 0.6, which
may ensure both the correctness and the extendibility of labeled data.

Table 1 shows a test on English lexical sample of Senseval-3 5 where we ran
the bootstrapping algorithms 10 times and got the average. The algorithm A3

is better than the algorithm A1 (71.03% in comparison with 70.6%) shows the
effectiveness of problem P1. In addition, it should be noted that the algorithm
with solution for problem P2 still improves much the accuracy of self-training
in the case not using solution for problem P1 (the algorithm A2). It can be ex-
plained that: permitting a high error rate of new labeled examples will expand
more feature space which results in recognizing more new examples, and the pro-
posed combination strategies keep its advantage and decrease its disadvantage.

5 We used the recall measure of fine-grained scoring for the evaluation.



In summary, combining the solutions for both problems P1 and P2 gives the best
result, and it increases about 1.9% of accuracy in comparison with supervised
learning using NB.

4 Conclusion

In this paper, we have showed two problems of semi-supervised learning, partic-
ularly for self-training algorithm. They include the problem of extending labeled
data and that of generating the final classifier. These problems have been inves-
tigated in WSD problem, and corresponding solutions were given. For the first
problem, we used one more classifier to decrease error rate of new labeled exam-
ples. And for the second problem, we used two strategies of classifier combination
including median and max rules to utilize both advantages of the last classifier
(built based on the extended labeled data) and the initial supervised classifier.
With those solutions, a new bootstrapping algorithm with several variants were
generated. The experiments show that the proposed solutions are effective for
improving semi-supervised learning. In addition, it also showed that unlabeled
data significantly improves supervised learning in word sense disambiguation.

Acknowledgement

This research is partly conducted as a program for the “Fostering Talent in
Emergent Research Fields” in Special Coordination Funds for Promoting Science
and Technology by the Japanese Ministry of Education, Culture, Sports, Science
and Technology.

References

1. Blum A., and Mitchell T., 1998. Combining labeled and unlabeled data with co-
training. In Proc. COLT, pages 92–100.

2. Goldman S. and Zhou Y., 2000. Enhancing supervised learning with unlabeled
data. In Proc. ICML, pages 327–334, 2000.

3. Lee Y. K., and Ng H. T., 2002. An empirical evaluation of knowledge sources and
learning algorithms for word sense disambiguation. In Proc. EMNLP, pages 41–48.

4. Le C. A., Huynh V-N, Dam H-C, Shimazu A., 2005. Combining Classifiers Based
on OWA Operators with an Application to Word Sense Disambiguation. In Proc.
RSFDGrC, Vol 1, pages 512–521.

5. Mihalcea R., 2004. Co-training and Self-training for Word Sense Disambiguation.
In Proc. CoNLL, pages 33–40.

6. Ng H. T. and Lee H. B., 1996. Integrating multiple knowledge sources to Disam-
biguate Word Sense: An exemplar-based approach. In Proc. ACL, pages 40–47.

7. Pham T. P., Ng H. T., and Lee W. S., 2005. Word Sense Disambiguation with
Semi-Supervised Learning. In Proc. AAAI, pages 1093–1098.

8. Pierce D., and Cardie C., 2001. Limitations of co-training for natural language
learning from large datasets. In Proc. EMNLP, pages 1–9.



9. Yarowsky D., 1995. Unsupervised Word Sense Disambiguation Rivaling Supervised
Methods. In Proc. ACL, pages 189–196.

10. Yu N. Z., Hong J. D., and Lim T. C., 2005. Word Sense Disambiguation Using
Label Propagation Based Semi-supervised Learning Method. In Proc. ACL, pages.
395–402.

11. SU W., CARPUAT M., and WU D., 2004. Semi-Supervised Training of a Kernel
PCA-Based Model for Word Sense Disambiguation. In Proc. COLING, pages 1298–
1304.


