

A Parametric Model Checking Approach for Real-Time Systems Design

Chaiwat Sathawornwichit

Katayama Lab. School of Information Science

Outline

- Background
- Parametric Model Checking
- Problems and our Approach
- Parametric Timed System Model
 - Parametric Timed Structure (PTS)
- Parametric Timed Temporal Logic
 - Parametric CTL (PARCTL)
- Deriving Parametric Condition
- Determining Optimal Factor by Constraint Solving
- Discussion & Conclusion

Background

- ☐ The majority of computer system today are real-time systems
 - Embedded in devices.
 - Running infrastructure control applications.
 - Our society relies so much on them
- □ Timing characteristic is a crucial aspect of safety
 - Correct action must be taken at the right time.
- □ Formal verification techniques have been developed for assuring the correctness of real-time systems
 - Model checking for real-time systems.

Background (2)

- □ Aspects of time make model checking approach for real-time systems seriously complicated.
 - Time is introduced to the model, and the temporal logic.
 - Correct action sequences + Correct timing.
- □ Timed model
 - Timed transition graph (a.k.a. timed Kripke structure)
 - □ Time duration in the transitions
 - □ Simple (can be model checked in linear to model size)
 - Timed automata
 - □ Automata + clocks
 - □ Transition conditions on clock values
 - □ Clocks can be set / reset
 - □ Very complicated (complexity depends on #clocks)

Parametric Model Checking and Problems

- Parametric Model Checking
 - Abstraction of time values by variables.
 - The use of variables in
 - □ Temporal logic formulas, and
 - □ Timed models
- □ The Problems
 - Determine whether *there exists a valuations* of parameters under which the model *M* satisfies the property *p*.
 - Compute the *solution set of parameters* under which the model *M* satisfies the property *p*.

The Difficulties

- □ For time automata
 - Very high computation complexity, inapplicable to large problem.
 - Undecidable when #clocks 3.
- □ For timed transition graph
 - Only the use of parameters in temporal logic has been introduced so far.
 - Parametric model for timed transition graph has not been studied.

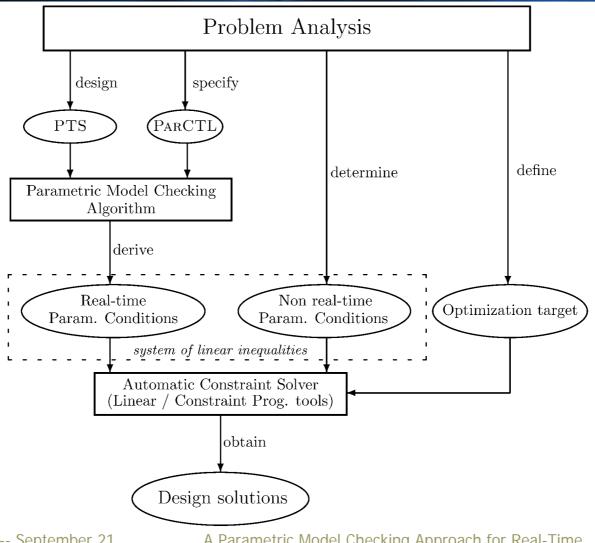
Our Approaches

- □ Instead of computing the solution set of parameters, we derive the parametric conditions over parameters (as a system of linear inequalities).
- We develop this approach for timed transition graph.
- We further propose the application of mathematical tools with this approach for determining the design for solution for an optimal criteria.

Contributions

- (1) Introduce parameters to timed transition graph model.
- (2) Define a parametric timed temporal logic for reasoning real-time properties over (1).
- (3) Provide algorithms for deriving parameter conditions satisfying real-time property and non real-time restriction, e.g. cost, development time.
- (4) Demonstrate the application of mathematical programming methods to determine the parameter values which optimize a particular objective.

Parametric Approach Framework



Parametric Time Model

Parametric Timed Structure (PTS)

- Non-deterministic finite state machine
 - With time durations labelled on transitions.
 - The durations can be linear combinations of parameters
- Extension of
 - Simply-timed model [Markey et al. 2004],
 - Timed Kripke structure [Emerson & Trefler 1999],
 - Timed transition graph [Campos & Clarke 1994].

Syntax of PTS

A parametric timed structure $\mathcal{M} = (S, S_0, \vec{x}, T, L)$ consists of

S

A finite set of states.

 $S_0 \subseteq S$

A set of initial states.

 \vec{x}

A finite vector of real-valued time variables.

 \overline{X}

The set of linear expressions over \vec{x} .

 $T\subseteq S\times \overline{X}\times S$

A finite set of parametric transition relation.

 $L: S \to 2^{AP}$

A labeling function which assigns to each state the set of atomic propositions hold in the state.

$$L(s) = \{ f \mid f \in AP \land s \models f \}$$

Syntax of PTS

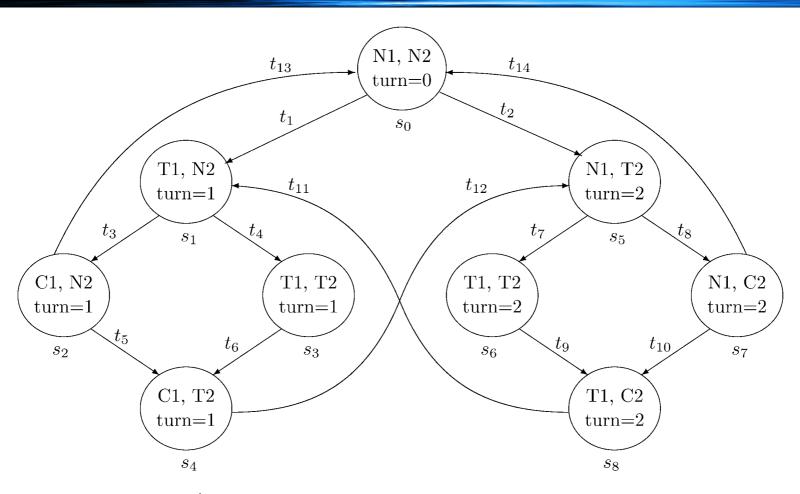
A PTS \mathcal{M} with time variable vector $\vec{x} = (x_1, \dots, x_n) \in \mathbb{R}_{0^+}^n$

- The size n of \vec{x} is the degree of \mathcal{M}
- A *linear expression* over \vec{x} is of the form,

$$\sum_{i=1}^{n} c_i x_i + c$$

• When all $c_i = 0$, the expression become a constant c.

PTS Examples



A mutual exclusion protocol example

Basic Constructs

Constraint, Condition, and Predicate

- A *linear constraint* over \vec{x} is a combination of the form $(\alpha \sim \beta)$
 - $-\alpha, \beta$ are linear expression
 - $\sim \in \{<, \leq, =, \geq, >\}.$
 - Ex., $x_1 + x_2 \le 5$ is a constraint over (x_1, x_2)
- A *linear condition* over \vec{x} is a finite *conjunction* of linear constraints over \vec{x} .
 - $\text{ ex. } (x_1 + x_2 \le 5 \land x_1 \le 5 \land x_3 \ge 2x_1)$
- A *linear predicate* over \vec{x} is a finite disjunction of linear conditions over \vec{x} .
 - $\text{ ex. } (x_1 + x_2 \le 5) \lor (x_1 \le 5 \land x_3 \ge 2x_1)$

Assignment and Evaluation

For a linear expression e with parameters $\vec{x} = (x_1, x_2)$

- $e_{[\vec{x} \leftarrow \vec{v}]}$ is an evaluation of e by assignment \vec{v} - ex 1. $e = 2x_1 + x_2$; $e_{[\vec{x} \leftarrow (1,2)]} = 2 \cdot 1 + 2 = 4$ - ex 2. $e = 2x_1 + x_2$; $e_{[\vec{x} \leftarrow (1,x_2)]} = 2 + y$
- $e_{[\vec{v}]}$ abbreviates $e_{[\vec{x} \leftarrow \vec{v}]}$
- For a linear expression, evaluation results in another linear expression.

Assignment and Evaluation

For a linear condition or linear predicate q with $\vec{x} = (x_1, x_2)$

•
$$q_{[\vec{x}\leftarrow\vec{v}]}$$
 is an evaluation of q by assignment \vec{v}
- ex 1. $q = (x_1 + x_2 \ge 2x_2 + 1);$

$$q_{[(x_1,2)]} = (x_1 + 2 \ge 2 \cdot 2 + 1)$$

$$x_1 \geq 3$$

$$- \operatorname{ex} 2.$$
 $q_{[(2,1)]} = (2+1 \ge 2 \cdot 1 + 1)$
 $3 > 3$

- ex 3.
$$q' = (x_2 \ge x_1 + 1);$$
$$q_{[(x_1,2)]} = (2 \ge x_1 + 1)$$
$$1 > x$$

$$- \text{ ex } 4. \ q'' = (q \land q'); \ q''_{\lceil (x_1, 2) \rceil} = (x_1 \ge 3 \ \land \ 1 \ge x) = \mathsf{False}$$

Assignment and Evaluation

- For linear predicate, evaluations results in another predicate which equivalent to a region in \mathbb{R}^n_{0+})
- Evaluations in the previous examples result in:
 - 1. region $(x \ge 3 \land y = 2)$
 - 2. region (a point at $(x = 2 \land y = 1)$)
 - 3. region $(x \le 1 \land y = 2)$
 - 4. empty region (intersection of region in 1. and 3. $= \emptyset$)

Linear Predicate and Assignment

Let C be a linear condition which is a conjunction of linear constraints $c \in Q$

- [C] denotes a set of assignment (which is region in $\mathbb{R}^n_{0^+}$)
- Such that, any assignment v in $[\![C]\!]$ satisfies the predicate C ($v \models C$).
- That is for an assignment \vec{v} :

$$\vec{v} \in [\![\mathtt{C}]\!] \quad \text{iff} \quad q_{[\vec{x} \leftarrow \vec{v}]} \neq \emptyset$$

• The assignment set $[\![\mathbf{C}]\!]$ is determined by $[\![\mathbf{C}]\!] = \bigcap_{\mathbf{c} \in Q} [\![\mathbf{c}]\!]$

Parametric Timed Logic

Syntax of Parametric CTL(ParCTL)

PARCTL formulas inductively defined by the grammar

$$f ::= p \mid \neg f \mid f \land f \mid f \lor f$$
$$\mid f \mathsf{EU}^{\sim \alpha} f \mid f \mathsf{AU}^{\sim \alpha} f$$

- $\alpha \in \overline{X}$: a linear expression $(\sum_i c_i x_i + c)$
- $\sim \in \{<, \leq, =, \geq, >\}$
- Now, we consider only < and \le cases.
- $p \in AP$: an atomic proposition

Semantics of ParCTL

$$\begin{array}{lll}
-s \models_{\vec{v}} p & \text{iff } p \in L(s) \\
-s \models_{\vec{v}} \neg f & \text{iff } s \not\models_{\vec{v}} f \\
-s \models_{\vec{v}} f_1 \wedge f_2 & \text{iff } s \models_{\vec{v}} f_1 \text{ and } s \models_{\vec{v}} f_2 \\
-s \models_{\vec{v}} f_1 \vee f_2 & \text{iff } s \models_{\vec{v}} f_1 \text{ or } s \models_{\vec{v}} f_2 \\
-s \models_{\vec{v}} f_1 \text{ EU}^{\sim \alpha} f_2 & \text{iff there exists a path } \pi \in \Pi(s), \\
i, j \in \mathbb{N} \text{ such that}
\end{array}$$

$$\exists i. \left[\left(s_{(i)} \models_{\vec{v}} f_2 \right) \land \left(\lambda(\pi, i) [\vec{v}] \sim \alpha[\vec{v}] \right) \land \forall j < i. \left[\left(s_{(j)} \models_{\vec{v}} f_1 \right) \land \left(s_{(j)} \not\models_{\vec{v}} f_2 \right) \right] \right]$$

$$-s \models_{\vec{v}} f_1 \mathsf{AU}^{\sim \alpha} f_2$$
 iff for all paths $\pi \in \Pi(s)$, $i, j \in \mathbb{N}$, such that

$$\exists i. \left[\left(s_{(i)} \models_{\vec{v}} f_2 \right) \land \left(\lambda(\pi, i) [\vec{v}] \sim \alpha_{[\vec{v}]} \right) \land \forall j < i. \left[\left(s_{(j)} \models_{\vec{v}} f_1 \right) \land \left(s_{(j)} \not\models_{\vec{v}} f_2 \right) \right] \right]$$

Semantics of ParCTL (2)

- For a path $\pi = s_0 \stackrel{x_0}{\to} s_1 \stackrel{x_1}{\to} s_2 \cdots \stackrel{x_{i-1}}{\to} s_i \cdots$ in \mathcal{M}
- $\lambda(\pi, i)$ denotes duration function:

$$\lambda(\pi, i) \stackrel{\text{def}}{=} \sum_{i=0}^{i-1} e_j$$

Derivation of Parametric Condition

Parametric Condition Derivation

- $Parametric\ condition\ \mathcal{P}$ is a linear condition over parameters \vec{x} of a PTS \mathcal{M} to satisfy a PARCTL property.
- \bullet \mathcal{P} defines a set of assignments

$$\llbracket \mathcal{P}(s,f) \rrbracket \stackrel{\text{def}}{=} \{ \vec{v} \mid s \models_{\vec{v}} f \}$$

such that, any assignment \vec{v} in $[\![\mathcal{P}(s,f)]\!]$

$$\vec{v} \models \mathcal{P}(s, f) \text{ iff } \mathcal{M}, s \models_{\vec{v}} f$$

Parametric Predicate

Parametric predicate $\mathcal{P}(s, f)$ is compute inductive on the subformula of f.

$$\begin{array}{lll} \mathcal{P}(s,p) &:= & \mathcal{M}, s \models p \\ \\ \mathcal{P}(s,\neg f) &:= & \neg \mathcal{P}(s,f) \\ \\ \mathcal{P}(s,f_1 \land f_2) &:= & \mathcal{P}(s,f_1) \land \mathcal{P}(s,f_2) \\ \\ \mathcal{P}(s,f_1 \lor f_2) &:= & \mathcal{P}(s,f_1) \lor \mathcal{P}(s,f_2) \\ \\ \mathcal{P}(s,f_1 \mathsf{AU}^{\sim \alpha}f_2) &:= & \{\mathcal{P}(s,f_2) \land (0 \sim \alpha)\} \lor \{\mathcal{P}(s,f_1) \\ & & \land \bigwedge_{(t,s') \in AC(s)} \mathcal{P}(s',f_1 \mathsf{AU}^{\sim \alpha - t}f_2)\} \\ \\ \mathcal{P}(s,f_1 \mathsf{EU}^{\sim \alpha}f_2) &:= & \{\mathcal{P}(s,f_2) \land (0 \sim \alpha)\} \lor \{\mathcal{P}(s,f_1) \\ & & \land \bigvee_{(t,s') \in AC(s)} \mathcal{P}(s',f_1 \mathsf{EU}^{\sim \alpha - t}f_2)\} \end{array}$$

Example: Railroad Crossing Gate

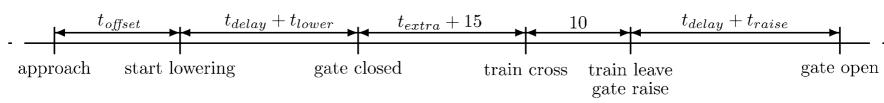
Gate control system:

- 1 controller, and
- 2 gates.
- Minimize the cost,

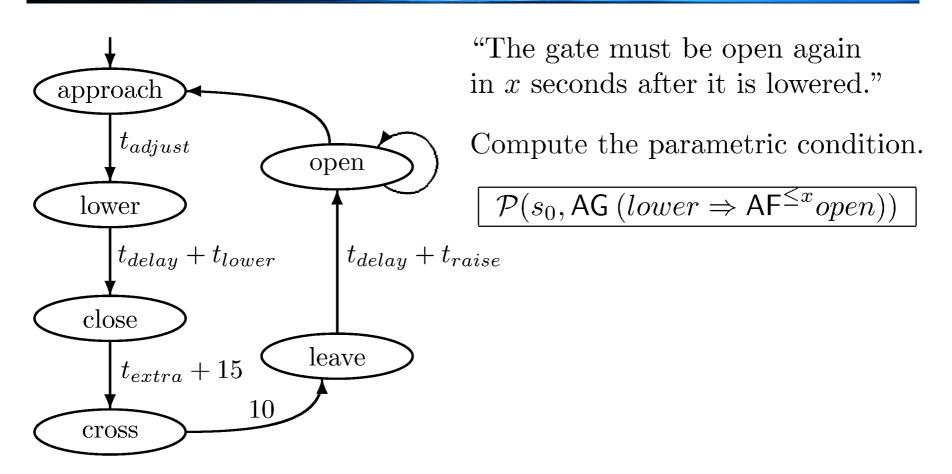
controller	t_{offset}	t_{extra}	cost
c_1	4	6	2,000
c_2	8	2	3,000

$total\ cost = controller$	$cost + 2 \times gate\ cost$
----------------------------	------------------------------

gate	t_{lower}	t_{delay}	t_{raise}	cost
g_1	12	8	16	400
g_2	6	5	12	600
g_3	4	3	10	800



Example: Railroad Crossing Gate



The PTS for railroad crossing gate controller system.

Example: Bridge Crossing Problem

Applying the algorithm, we obtain the parametric condition:

$$t_{lower} + t_{extra} + t_{raise} + 2 t_{delay} \le x - 25$$

If the requirements for a crossing are settled that the waiting time x should be less than one minute. The condition becomes:

$$t_{lower} + t_{extra} + t_{raise} + 2 t_{delay} \le 35$$

Using the condition with information from the previous tables as input to a linear programming solver (LP_solve).

The minimum cost is choosing
$$c_1$$
 and g_2
 $min\ cost = 2000 + (2 \times 600) = 3200$

Disscusion

- The same parametric condition for the gate controller system is applicable to controller systems at different locations by just adapt some parameters or cost factors.
- We implemented the algorithm by graph-based representation in Java.
- The complexity of derivation algorithm is linear to the PTS model size.
- The existing linear programming / integer programming solvers are sophisticated and able to solve large system of inequality as many as hundreads thousands inequalities.

Conclusion

- (1) Introduce parameters to timed transition graph PTS.
- (2) Define a parametric timed temporal logic PARCTL for reasoning real-time properties over PTS.
- (3) Provide algorithms for deriving parametric conditions satisfying real-time property and non real-time constraints.
- (4) Demonstrate the application of mathematical programming methods to determine the parameter values which optimize a particular criteria.