## **Verifying Specifications with Proof Scores**

#### FUTATSUGI, Kokichi 二木 厚吉

JAIST
Japan Advanced Institute of Science and Technology
Japan

(this talk is based on our research results with many persons' contributions)

## I am going to talk about...

- Our perception of current situation of formal methods
- Introducing Proof Score Approaches and its realization in CafeOBJ
  - how to write formal specifications and verify properties of them with proof scores in CafeOBJ (hopefully with simple demonstration)
- What kinds of formal models are used for writing formal specifications/proof-scores in CafeOBJ
- Current achievements of the proof score approach

## Application areas of formal methods (FM)

- 1. Analysis and verification of developed program codes (post-coding)
  - -- model checking has brought many successes in code verification but ...
- 2. Analysis and verification of requirements, specifications, designs before coding (precoding) or without coding/programming

Successful application of formal methods to the area of requirements, specifications, designs (pre-coding) can bring drastic effects for system developments, but it is not well exploited and/or practiced yet

# Difficulties in req., spec, design area

- High level req., spec., design are inherently partial and evolutional
- Usually there is no established formal (mathematical) model for the problem
- It is not easy to be convinced that some important property holds for req., spec., design

Interactive developments with analyses/verifications are inevitable!

### Our perception of the current situation of FM

- Verification with formal specifications still have a potential to improve the practices in upstream (precoding) of software production processes
- Model checking has brought a big success but still has limitations
  - It is basically "model checking" for program codes
    - initially for post-coding; applied at designs/specs later
  - Infinite state to finite state transformation can be unnatural and difficult
- Established (interactive) theorem provers are not necessary well accepted to software engineers
  - especially in requirement/spec/design (pre-coding) phase

## Our approach

- Reasonable blend of user and machine capabilities, intuition and rigor, high-level planning and tedious formal calculation
  - fully automated proofs are not necessary good for human beings to perceive logical structures of real systems

**Proof Score Approach** 

# **Proof Score Approach**

- Requirement/specification engineers are expected to construct proof scores together with formal specifications
- proof scores are instructions such that when executed (or "played") and everything evaluates as expected, then the desired property is convinced to be hold (or proved)

### Specifications and Proof Scores in CafeOBJ

- Specifications are only algebraic equational specifications
- Proof score is a sequence of reduction (simplification) commands for reducing expressions (usually boolean) to its normal form in some situations
  - situations: a set of equations (axioms) with some bindings (a set of name->object relationships)
  - proof score also contains CafeOBJ codes which build an appropriate situation in which expressions are reduced

### A simple example of proof score in CafeOBJ

The definitions of two factorial functions and the proof scores for verifying that the two can compute the same function using induction

[Demonstration]

# Introducing CafeOBJ

- CafeOBJ is an algebraic formal specification language
- CafeOBJ is a formal language for writing formal models and reasoning about them with rewritings/reductions (ACIZ-rewritings)
- CafeOBJ is a successor of OBJ and developed by an international team headed by KF for last 10-15 years

## Related ongoing **Language Development Projects**

 Maude Language of SRI/UIUC is another project for following up the OBJ language

- CASL language of European researchers is an attempt of developing a common algebraic specification language
  - Two volumes of LNCS are already published

#### Two kinds of formal models in CafeOBJ

- Abstract data types with tight semantics
  - Initial algebra semantics
  - Induction based reasoning
- Abstract machines (abstract process types) with loose semantics
  - Coherent hidden algebra semantics
  - Co-induction based reasoning



Can provide unified specification style both for static and dynamic systems

#### OTS/CafeOBJ Behavioral/Observational Model



#### **OTS in CafeOBJ**

# OTS is naturally used to model distributed concurrent systems in CafeOBJ

- Typed data for specifying a system are represented as visible sorts
- The state space of a system is represented by a hidden sort

<sup>\*</sup> Behavioral/Observational equivalence need not (or can not) appear in OTS by definition

# An simple example of OTS

A Bank Account Example

-- a most simplest example of OTS

[Demonstration]

# Prerequisites for proof score writing in CafeOBJ (1)

- Algebraic modeling: development of algebraic specifications
  - defining signature for a real problem
  - expressing the problem in equations
    - more exactly, if you want to prove some property of the spec, expressing the problem in reduction rules

# Prerequisites for proof score writing in CafeOBJ (2)

- Equational logic, rewriting, and propositional calculus with complete rewriting calculus
  - equationl reasoning
    - equivalence relation, equational calculus, ...
  - reduction/rewriting
    - termination, confluence, sufficiently completeness
  - propositional calculus with "xor" normal forms which has the complete rewriting calculus

# Prerequisites for proof score writing in CafeOBJ (3)

- Proof by induction with case analyses and lemma discoveries
  - case splitting using key predicates in specifications
  - discovery of lemmas
  - decomposition of a goal predicate into an appropriate conjunctive form

These are the most difficult parts of proof score writing

## Equational proof by reduction/rewriting

### Why do we care about

### equational reasoning by reduction?

- It is simple and powerful and a good light weighted formal reasoning method
  - easy to understand and can be more acceptable for software engineers
- It supports transparent relation between specs and reasoning by reduction (good traceability)

## Traceability in proof score approach with CafeOBJ

- All reductions are done exactly using equations in specifications
  - this make it easy to detect necessary changes in specs for letting something happen (or not happen)
- Usually reductions are sufficiently fast, and encourage prompt interactions between user and system

This is a quit unique feature of the proof score approach with CafeOBJ comparing to other verification method which often involves several formalisms/logics and translations between them

# Current Achievements of OTS/CafeOBJ proof score approach

OTS/CafeOBJ approach has been applied to the following problems and found usable:

- Some classical mutual exclusion algorithms
- Some real time algorithms
   e.g. Fischer's mutual exclusion protocol
- Authentication protocol
   e.g. NSL, Otway-Rees, STS protocols
- Practical sized e-commerce protocol of SET (some of proof score exceeds 60,000 lines; specification is about 2,000 lines, 20-30 minutes for reduction of the proof score)
- UML semantics (class diagram + OCL-assertions)
- Formal Fault Tree Analyses
- Secure workflow models

#### **Future Plan**

- Develop proof score writing environment
  - Standard platforms for programming environment can be naturally used (e.g. Eclipse Env.)
    - Write specs and proof-socres as writing programs!
- Automate case analysis and lemma discovery
  - Automation of inductive proof (Crème)
    - NSLPK and STS protocol verification is already done automatically
  - Incorporation of model checking technologies into proof score approach
    - Especially for finding counter examples
- Apply to the new areas
  - business and/or social system specs and analyses/verifications
    - Secure workflows/processes
    - E-commerce domain models
  - System Biology

## **CafeOBJ Home Page**

CafeOBJ official home page:

http://www.ldl.jaist.ac.jp/cafeobj/