Perspective of Verifiable and Evolvable e-Society

Takuya Katayama Leader, COE Program School of Information Science Japan Advanced Institute of Science and Technology

COE Program "Verifiable and Evolvable e-Society" (1/3)

• COE Program - Overview

- Targeted Support for Creating World-level Research and Education Bases, Started FY 2002
- National recognition of excellent group
- "Verifiable and Evolvable e-Society" Program
 - Started FY 2004
 - One of 12 computer science related programs so far granted
 - Granted in 2004 in "Revolutionary Area" (28 out of 330)
 - Only one program in software engineering and dependability area
- Establish research and education bases on the science and technology for Trustworthy e-Society from two standpoints:
 - Verification and Evolution of e-Society
 - Formal logic, software engineering and artificial intelligence
 - Infrastructures for Trustworthy e-Society
 - Algorithm , human interface, network and hardware

COE Program "Verifiable and Evolvable e-Society " (2/3)

- Create a research base on Trustworthy e-Society
 - Formal description of e-Society
 - Trustworthy requirements and their verification methods
 - Modeling of e-Society
 - Verification and simulation mechanisms
 - Evolution of e-Society
 - Trustworthy infrastructures for e-Society

COE Program "Verifiable and Evolvable e-Society " (3/3)

- Create an education base in Trustworthy e-Society area
 - Train Ph.D level researchers and engineers in the design, verification and implementation of e-Society / e-Government
 - Establish curriculum
 - 15 courses that we have on trustworthy information systems
 - Logic, formal systems, verification, software design, security, networks, hardware ...
 - New courses in e-Government / e-society (NTT Data Corp.)
 - Large scale information system
 - Social information systems
 - 30 Ph.D students in 5 years

Collaborations

- National collaborators
 - NTT Data Corporation
 - Research on verification of enterprise information systems
 - Collaborated Unit on "e-Society Systems" in School of Information Science
 - INTEC Corporation and Toyama Prefecture
 - Study on the legal reasoning in the administration of Toyama prefecture
 - Hokuriku NES Corporation
 - Formal methods for security protocol verification
 - CVS, AIST
 - Verification technologies
- International collaborators
 - AT&T Labs-Research, EPFL, Politecnico di Milano,
 - NICTA, Tsinghua University

e-Society

- Can you trust e-Society infrastructure information system and leave your life to it ?
 - Realize fundamental part of our social activities
 - Politics, administration, business, judicature, education, medical service
 - Infrastructure of our society

Requirements for Trustworthy e-Society

1. Correctness

Are the functions correct? ("Is my tax amount correctly calculated?")

2. Accountability

Can the information system answer questions about it?

3. Security

No illegal data access, Privacy protected...

4. Fault Tolerance

Can tolerate failures and accidents?

5. Evolvability

Can e-society system be changed according to the change of society?

6. Trustworthy infrastructures

Supported by reliable network and hardware systems

Correctness

- Requires that e-Society information system correctly implements our real society.
 - Are the structures and functions of e-Society made consistent with the laws and systems of our society?
 - Is the tax amount correctly calculated ?
- The most important requirement to e-Society

Accountability

- Requires that e-Society information system itself is possible to answer questions or explain about e-Society ?
 - Why is the tax amount calculated in that way?
 - Does the function violate the equal opportunity law ?
- Full details of e-Society is hidden inside its information system.

Why?

 No single parson can understand them Our Societ

Social Infrastructere Information System

Security

- Requires that information security is observed according to what are explicitly or implicitly defined in our social systems and laws.
 - Is your private data illegally accessed or altered?
 - Is it possible for enterprise data to be stolen?

Fault Tolerance

 Requires that e-Society continues to operate its fundamental functions and services despite failures and accidental events of individuals, organizations and underlying network and hardware systems.

Evolvability

- Could e-Society information system be changed according to the change of our society ?
 - Lack of evolvability will make e-Society obsolete, and prevents the progress of our society.

Trustworthy e-Society and Computer Science

- A large body of computer science has been formed and used to construct complex social infrastructure information systems.
 - Software, network, hardware, AI, algorithms, logic,....
 - They support and continue to support fundamental part of our lives.
- Still,...
 - They are not trustworthy enough to leave our lives in the coming e-Society age.
 - More computer science has to be put into the development of information system,
 - At the same time
 - More social structures have to be explicitly considered in the design of e-Society systems.

Build trustworthy e-Society on advanced computer science and sociological considerations.

Model Driven Approach to Trustworthy e-Society

Verification of e-Society, An Example

Research Topics

Research Overview

Formal Description of e-Society

Legal Reasoning and Related Language Processing

- How formal specification P could be obtained from legal documents L?
 Natural language processing + Manual work
- Check if P consistent? If not, how to remove inconsistency? Use of theorem proving/inference engine
- How a question Q about P be answered?
 - Conduct inference P|-Q.

Generate explanation about the results in natural language?

Modeling e-Society

- Methods for obtaining M from S
 - Modeling should reflect social structures
 - •Object-Oriented / Workflow
- Robust modeling again evolution
- •Preparation for accountability
- Representation of rules and policies in real word S

Verification of Correctness of M against P

Conduct inference M|-P

Apply conventional program/software verification techniques e-Society specific verification methods have to be developed.

- Model checking M for correct workflows
- Verification may be easier than for programs ?

Yes: Level of abstraction of M is much higher than programs and its size will be smaller.

No: It has to handle social concepts which may be hard to formalize.

Accountability

- Answering a question Q about e-Society model M Why is my tax so calculated ?
- Very important as everything is hidden inside information system in e-Society.
- May be formulated as an inference
 - M, D|-Q, where D is relevant knowledge about real S Generate explanation from the proof
- It may require a very long inference and not be easy to be done mechanically. M has to be prepared to make accountability easier.

Object with accountability mechanism

Security

- Need to show information leak or illegal data access could not happen in M.
- Cryptography, secure protocols, wiretapping protection, ...
- Legal information access and its verification

Given the structure or description of e-Society model M,

how to express the security requirements R given by security related laws or rules ? => formal logic

how to prove M |- R using verification techniques?

Simulating e-Society

Evolution of e-Society

• In the change P=>P' of social specification,

how to find and remove inconsistency in P'?

 How should model evolution M=>M' be done according to P=>P' ? Aspects, Ontology, Versioning, Components, ... Need to investigate how P and M are related. How individuals, organization and their relations are modeled in M ?

Dependability

- M needs to continue its functions despite failures and accidents occurred to individuals and organizations in M.
 - Apply FT technologies for distributed systems
 - Group membership, Consensus, atomic broadcast,...
 - What are e-Society specific problems, which are not found in the computer/network systems ?
- What is the implication of the e-Society dependability requirements to infrastructure networks and computer systems supporting it.

Infrastructures for Trustworthy e-Society

- Mathematical infrastructure
 - Algorithmic study for efficient reasoning systems
- Advanced human interface infrastructure
 - Secure exchange of information between people and the e-Society, multimedia-based interactive access system, human interface for disabled people, shared intelligent spaces that make use of robots
- High-reliability network infrastructure
 - Reliability and security technologies for constructing and operating heterogeneous internet and ubiquitous network infrastructures for e-Society
- High-reliability hardware infrastructure
 - Processor design through fully automated synthesis, based on a specification description; fault tolerant architecture; and a highly reliable real-time operating system