
A Lightweight Integration of
Theorem Proving and Model Checking

for System Verification

Weiqiang Kong, Takahiro Seino, Kazuhiro Ogata, and Kokichi Futatsugi

Graduate School of Information Science,
Japan Advanced Institute of Science and Technology

Outline of the talk

Background and motivation
Comparison between theorem proving and model checking.
Target point in theorem proving that we focus on
Verification flow of the lightweight integration.

The translator – Cafe2Maude
Data type module translation
OTS module translation
Invariant property defining module translation
Initial state generation

Conclusion and Future work

Part I: Background and motivation

Automatic No automaticCounter-example

Tell how the system is
incorrect

Tell how the system is
correct

Obtaining insight of the
system

Fully automaticLimited automaticVerification procedure

FiniteInfiniteState space

Model CheckingTheorem proving

A general comparison of typical theorem proving and
model checking:

Our target point in theorem proving

In case that a property fails to hold
Difficult to extract enough information from the verification result

Errors exist in specifications? If so, where?
Need more guidance to complete the proof?

Considerable time is used to discover and prove auxiliary invariants.

If counter-example can be generated automatically
Easier to find out the reason for the failure
Benefit from firstly model checking the newly founded invariant:

If counter-example, then revise specifications or discard the invariant
If true, then there might exist a proof for the invariant

To able to find “bugs” in the early stage of verification (before we
write proofs manually) and ease the hard-work of theorem proving.

Verification flow when using Cafe2Maude

OTS/CafeOBJ
inputrepresent

CafeOBJ/XML Translator – Cafe2Maude

OTS/Maude

Maude LTL Model Checker

True or Counter-example

output : counter–example

output : true

Revise specificationFull-scale
proof

on infinite
state space Data

Abstraction

Why called “lightweight”

Good aspects: the formalisms of OTS/CafeOBJ and OTS/Maude
are quite similar (both based on equations).

Equations are easy to understand and use.
Similar formalisms can alleviate the burden for the users to learn two
different formalisms.

Bad aspects: the data abstraction method we used may not
preserve soundness.

The abstracted model may has some property that does not hold in the
original model.

But, this simple abstraction method is effective when aim to exposing bugs

Part II: Cafe2Maude introduction

System specification Property specification
CafeOBJ

OTS
Module InvariantsData Type

Modules

System specification Property specification
Maude

System
Module LTL formulas for propertiesFunctional

Modules

(1) T (3) T & G

Given a user’s input of data abstraction:
T : Translation G : (Initial State) Generation

(2) T

A Mutual Exclusion Algorithm

Pseudo-code of the mutual exclusion algorithm:

l1 : put(queue, i)
l2 : repeat until top(queue) = i

Critical Section
cs : get(queue)

Initially, each process i is at label l1 and queue is empty.

The algorithm is modeled as an OTS <O, I, T >:
Observers: queue and pc
Transition rules: wait, try and exit

Data type module translation

CafeOBJ Data Type Module

mod! LABEL {
[Label]
ops l1 l2 cs : -> Label
op _=_ : Label Label -> Bool {comm}
var L : Label
eq (L = L) = true .
eq (l1 = l2) = false .
eq (l1 = cs) = false .
eq (l2 = cs) = false .
}

Maude Functional Module

fmod LABEL is
sort Label .
ops l1 l2 cs : -> Label .
endfm

• Other two data type module PID and QUEUE are translated similarly.

OTS module translation (1)

CafeOBJ OTS module – signature

-- hidden sort declaration
[Sys]

-- observer declaration
bop o : Sys Vi1

… Vim
-> V -- (m >= 1)

bop o : Sys -> V -- otherwise

-- transition rule declaration
bop t : Sys Vi1

… Vim
-> Sys

Maude system module

subsort OValue TRule < Sys .
op none : -> Sys .
op _ _ : Sys Sys -> Sys [assoc comm id : none]

op (o[_,…,_] : _) : Vi1
… Vim

V -> OValue .
op (o : _) : V -> OValue .

op t : Vi1
… Vim

-> TRule .

OTS module translation (Example 1)

CafeOBJ operator declarations

-- observers
bop pc : Sys Pid -> Label
bop queue : Sys -> Queue
-- transition rules
bop want : Sys Pid -> Sys
bop try : Sys Pid -> Sys
bop exit : Sys Pid -> Sys

Maude operator declarations

*** Observers
op pc[_] : _ : Pid Label -> OValue .
op queue : _ : Queue -> OValue .
*** transition rules
op want : Pid -> TRule .
op try : Pid -> TRule .
op exit : Pid -> TRule .

OTS module translation (2)

CafeOBJ OTS module – equations

-- equations defining state transition

Given a transition rule tj1,…,jn
denoted

by t, and the observers needed and
affected (return value is changed) by
this transition rule are o1,…,ol, the
equations are translated to one
(conditional) rewrite law as follows:

Maude system module – transition rule

*** Maude rewrite law

crl [relaw] :
t(Xj1

,…,Xjn
)

(o1[Xi1
1,…,Xim1

1] : X1) … (ol [Xi1
l,…,Xim1

l] : Xl)
=>
t(Xj1

,…,Xjn
)

(o1[Xi1
1,…,Xim1

1] : X1
’) … (ol [Xi1

l,…,Xim1
l] : Xl

’)
if c-t(Xj1

,…,Xjn
, Xi1

1,…,Xim1
1, X1, Xi1

l,…,Xim1
l , Xl) .

OTS module translation (Example 2)

CafeOBJ equations defining action

op c-want : Sys Pid -> Bool
eq c-want(S,I) = (pc(S,I) = l1) .
ceq pc(want(S,I),J) =

(if I = J then l2 else pc(S,J) fi)
if c-want(S,I) .

ceq queue(want(S,I)) = put(queue(S),I)
if c-want(S,I) .

ceq want(S,I) = S if not c-want(S,I) .

Maude rewrite law defining action

crl [want] :
want(I) (pc[I] : LABEL) (queue : QUEUE)

=>
want(I) (pc[I] : l2) (queue : put(QUEUE,I))
if LABEL == l1 .

• Equations defining transition rules try and exit are translated similarly.

Property translation (1)

Procedure of model checking OTS using Maude.

Given a Maude system module, say M
Defining a new module, say M-PREDS that defines state predicates.

Defining a new module, say M-CHECK that defines LTL formulas for
properties.

Given an initial state init, model check defined properties
Maude> red modelCheck(init, property)

predicates

Property translation (2)

Properties to be proved for the mutual exclusion algorithm

mod INV {
Pr (QLOCK)
… -- constant, operator and variable declarations
eq inv1(S,I,J) = (pc(S,I) = cs and pc(S,J) = cs implies I = J) .
eq inv2(S,I) = (pc(S,I) = cs implies top(queue(S)) = I) .
eq inv3(S,I) = (pc(S,I) = l2 or pc(S,I) = cs implies not empty?(queue(S))) .
eq inv4(S,I) = (pc(S,I) = l2 implies I /in queue(S)) .

An invariant consists of a set of predicates and logical
connectives.
What we need to do is to firstly extract these predicates and
then define state predicates in the module M-PREDS

Property translation (3)

Assumption: Each predicate has at most one observation
operator. Predicates with two (or more) observation operators
should be written separately. Such as pc(S,I) = pc(S,J), should
be written as pc(S,I) = VAR and pc(S,J) = VAR.

Predicates without observation operator (such as I = J):
bool(V1,…,Vm) => S |= prop(V1,… Vm) = true if bool(V1,… Vm) .

Example
T => S |= prop(T) = true if T .
I = J => S |= prop(I,J) = true if I = J .

Property translation (4)

Predicates with observation operator
In the form of normal observation equation
o(S,V1,…,Vm) = term
=>
(o[V1,…,Vm] : term) S |= prop(V1,…,Vm , X1,…Xn) = true .

* term contains no observation operator due to the assumption.

Example:
pc(S,I) = cs => (pc[I] : cs) S |= prop(I) = true .

Property translation (5)

Predicates with observation operator
Other non-normal ones
pred(…,o(S,V1,…,Vm),…)
=>
(o[V1,…,Vm] : VAR) S |= prop(V1,…,Vm,X1,…,Xn) = true
if pred(…,VAR,…) .

Example:
top(queue(S)) = I => (queue : VAR) S |= prop(I) = true

if top(VAR) = I .

I /in queue(S) => (queue : VAR) S |= prop(I) = true
if I /in VAR .

Property translation (Example)

Translate the properties based on the declared props.
eq inv1(S,I,J) = (pc(S,I) = cs and pc(S,J) = cs implies I = J) .

eq (pc[I] : cs) S |= prop1(I) = true .
eq (pc[J] : cs) S |= prop2(J) = true .
eq S |= prop3(I,J) = true if I = J .

“and” ----> “/\”
“implies” ----> “->”
“[]” ----> “Always”

eq property1(I,J) = [] (prop1(I) /\ prop2(J) -> prop3(I,J)) .

Data abstraction for translated properties

Simple data abstraction (reduction or valuation): reducing the
infinite domain of each sort to some concrete values, where
variables belonging to this sort occur in the formula for
property.

[] (prop1(I) /\ prop2(J) -> prop3(I, J)) .

sort Pid p1, p2

[] (((prop1(p1) /\ prop2(p1)) -> prop3(p1, p1))
/\ ((prop1(p1) /\ prop2(p2)) -> prop3(p1, p2))
/\ ((prop1(p2) /\ prop2(p2)) -> prop3(p2, p2))
/\ ((prop1(p2) /\ prop2(p1)) -> prop3(p2, p1))) .

Initial state generation

CafeOBJ equations defining initial
state, say init

eq pc(init,I) = l1 .
eq queue(init) = empty .

• Information about
• transition rules
• data abstraction

Maude equations defining initial state

eq init = want(p1) try(p1) exit(p1)
want(p2) try(p2) exit(p2)
(pc[p1] : l1) (pc[p2] : l1)
(queue : empty) .

Part III: Conclusion and future work

Conclusion
Designed and implemented a translator from OTS/CafeOBJ to
OTS/Maude. (using Java, currently about 4000 line codes)
Proposed a simple method to make theorem proving task easier by
taking advantage of model checking.

Future work
Doing more non-trivial case studies to convince people that our
integration is useful

Secure workflow
Authentication and ecommerce protocols

Formally prove the correctness of the translation.

Thanks!

