Parameterized Points-to Analysis for Java based on Weighted Pushdown Model Checking

Li Xin, Ogawa Mizuhito

Japan Advanced Institute of Science and Technology

November 27, 2006
Points-to Analysis for Java

• **Purpose**
 - Approximate the set of heap objects pointed to by reference variables at runtime

• **Why points-to analysis?**
 - Essential to many other program analyses and compiler optimizations
 - Headachy issue in program verifications

• **Precision and scalability is dominated by**
 - **Context-sensitivity** calling contexts are distinguished
 - **Flow-sensitivity** execution orders are concerned
 - **Field-sensitivity** how instance fields are abstracted
A Running Example

1: A x = new A(); ...o₁
2: B y = new B(); ...o₂
3: y.f = new Object(); ...o₃
4: x = y;
 if(...){
5: z = x.m(y);
 }else{
6: x.f = new Object(); ...o₄
7: v = y.m(x);
 }

class A
 m(B a): { return a; }
class B inherits class A
 m(B b): { return b.f; }

• Declared type strategy
• Virtual method invocation (dynamic binding) at line 5 and 7
• Call-by-value
• Abstract heap objects are associated with codes in blue

Figure: An Example of Java Code Fragment
A Running Example

1: A x = new A(); ...
2: B y = new B(); ...
3: y.f = new Object(); ...
4: x = y;
 if(...){
5: z = x.m(y);
 }else{
6: x.f = new Object(); ...
7: v = y.m(x);
 }

class A
m(B a): { return a; }
class B inherits class A
m(B b): { return b.f; }

Figure: (a) Example Code Fragment (b) Pointer Assignment Graph of (a)
A Running Example

1: A x = new A(); ...o₁
2: B y = new B(); ...o₂
3: y.f = new Object(); ...o₃
4: x = y;
 if(...){
5: z = x.m(y);
 } else{
6: x.f = new Object(); ...o₄
7: v = y.m(x);
 }

class A
m(B a): { return a; }
class B inherits class A
m(B b): { return b.f; }

Figure: (a) Example Code Fragment (b) Pointer Assignment Graph of (a)
A Running Example

1: A x = new A(); ...o₁
2: B y = new B(); ...o₂
3: y.f = new Object(); ...o₃
4: x = y;
 if(...){
5: z = x.m(y);
 } else{
6: x.f = new Object(); ...o₄
7: v = y.m(x);
 }

class A
 m(B a): { return a; }
class B inherits class A
 m(B b): { return b.f; }

Figure: (a) Example Code Fragment (b) Pointer Assignment Graph of (a)
A Running Example

1: A x = new A(); ... o1
2: B y = new B(); ... o2
3: y.f = new Object(); ... o3
4: x = y;
 if(...) {
5: z = x.m(y);
5: } else {
6: x.f = new Object(); ... o4
7: v = y.m(x);
 }

class A
m(B a): { return a; }
class B inherits class A
m(B b): { return b.f; }

Figure: (a) Example Code Fragment (b) Pointer Assignment Graph of (a)
A Running Example

1: A x = new A(); ...o_1
2: B y = new B(); ...o_2
3: y.f = new Object(); ...o_3
4: x = y;
 if(...){
5: z = x.m(y);
 }else{
6: x.f = new Object(); ...o_4
7: v = y.m(x);
 }

class A
m(B a): { return a; }
class B inherits class A
m(B b): { return b.f; }

Figure: (a) Example Code Fragment (b) Pointer Assignment Graph of (a)
A Running Example

1: A x = new A(); ...
2: B y = new B(); ...
3: y.f = new Object(); ...
4: x = y;
 if(...){
5: z = x.m(y);
 } else{
6: x.f = new Object(); ...
7: v = y.m(x);
 }

class A
m(B a): { return a; }
class B inherits class A
m(B b): { return b.f; }

Figure: (a) Example Code Fragment (b) Pointer Assignment Graph of (a)
A Running Example

1: A x = new A(); ...
2: B y = new B(); ...
3: y.f = new Object(); ...
4: x = y;
 if(...){
5: z = x.m(y);
 }else{
6: x.f = new Object(); ...
7: v = y.m(x);
 }

class A
 m(B a): { return a; }
class B inherits class A
 m(B b): { return b.f; }

Figure: (a) Example Code Fragment (b) Pointer Assignment Graph of (a)
A Running Example

1: A x = new A(); ...o₁
2: B y = new B(); ...o₂
3: y.f = new Object(); ...o₃
4: x = y;
 if(...){
5: z = x.m(y);
 } else{
6: x.f = new Object(); ...o₄
7: v = y.m(x);
 }

class A
m(B a): { return a; }
class B inherits class A
m(B b): { return b.f; }

Figure: (a) Example Code Fragment (b) Pointer Assignment Graph of (a)
A Running Example

1: A x = new A(); ...o1
2: B y = new B(); ...o2
3: y.f = new Object(); ...o3
4: x = y;
 if(...){
5: z = x.m(y);
 }else{
6: x.f = new Object(); ...o4
7: v = y.m(x);
 }

class A
 m(B a): { return a; }
class B inherits class A
 m(B b): { return b.f; }

Figure: (a) Example Code Fragment (b) Pointer Assignment Graph of (a)
A Running Example

1: A x = new A(); ...o₁
2: B y = new B(); ...o₂
3: y.f = new Object(); ...o₃
4: x = y;
 if(...){
5: z = x.m(y);
 }else{
6: x.f = new Object(); ...o₄
7: v = y.m(x);
 }

class A
m(B a): { return a; }
class B inherits class A
m(B b): { return b.f; }

Figure: (a) Example Code Fragment (b) Pointer Assignment Graph of (a)
A Running Example

1: A \(x = \text{new} \ A(); \ldots o_1 \)
2: B \(y = \text{new} \ B(); \ldots o_2 \)
3: \(y.f = \text{new} \ \text{Object}(); \ldots o_3 \)
4: \(x = y; \)
 \(\text{if}(...) \{
5: \quad z = x.m(y);
 \} \text{else}
6: \quad x.f = \text{new} \ \text{Object}(); \ldots o_4 \)
7: \(v = y.m(x); \)
 \}

class \(A \)

m(B \(a \)):
\{
 \text{return} \ a; \}

class \(B \) \text{ inherits class} \ A

m(B \(b \)):
\{
 \text{return} \ b.f; \}

Figure: (a) Example Code Fragment (b) Pointer Assignment Graph of (a)
A Running Example

1: A x = new A(); ...
2: B y = new B(); ...
3: y.f = new Object(); ...
4: x = y;
 if (...){
5: z = x.m(y);
 } else{
6: x.f = new Object(); ...
7: v = y.m(x);
 }

class A
m(B a): { return a; }
class B inherits class A
m(B b): { return b.f; }

Figure: (a) Example Code Fragment (b) Pointer Assignment Graph of (a)
A Running Example

1: A x = new A(); ...
2: B y = new B(); ...
3: y.f = new Object(); ...
4: x = y;
 if(...) {
5: z = x.m(y);
 } else {
6: x.f = new Object(); ...
7: v = y.m(x);
 }

class A
m(B a): { return a; }
class B inherits class A
m(B b): { return b.f; }

\[
\begin{align*}
\text{o}_2 & \quad \text{o}_1 \\
\text{o}_2 & \quad \text{o}_3 \\
\text{o}_4 & \quad \text{o}_2 \\
\text{o}_4 & \quad \text{o}_3 \\
\end{align*}
\]
What does the example tell?

• Points-to analysis and call graph construction are mutually dependent

• Call graph construction
 • On-the-fly: constructed during points-to analysis
 • Ahead-of-time: a pre-computed approximated call graph is explored for points-to analysis

• Two occasions need points-to information:
 • Call graph construction
 • Instance field abstraction
Definition

Let \(\mathcal{V} \) and \(\mathcal{O} \) be a set of abstract reference variables and a set of abstract heap objects respectively. A transitive and reflexive points-to relation is defined as \(\mapsto: \mathcal{V} \times \mathcal{H} \), where \(\mathcal{H} = \mathcal{V} \cup \mathcal{O} \). Its inverse is defined as a flows-to relation \(\rightsquigarrow \).

Definition

A pointer assignment graph is defined as \(G_a = (N_a, E_a) \), where \(N_a = \mathcal{V} \cup \mathcal{O} \) is a set of nodes, and \(E_a = \rightsquigarrow \) is a set of edges.

Definition

Let \(\mathcal{F} \) be a set of fields and \(\mathcal{L} \) be a set of local variables. A field sensitive analysis abstracts an instance field \(l.f(l \in \mathcal{L}, f \in \mathcal{F}) \) as pairs of \(\{(o, f) \mid f \mapsto o\} \).
Work Summary

• Program Analysis = Abstract Interpretation + Model Checking
• Context-sensitive points-to analysis algorithms based on weighted pushdown model checking
• Parameterized flow-sensitivity so that the abstraction design is easily tuned
• Variations of points-to analysis algorithms based on the following dimensions:
 • On-the-fly vs. Ahead-of-time call graph construction
 • Lightweight semiring operations vs. Smaller pushdown transitions in the abstraction design
• Evaluation within the SOOT framework
• Model: Pushdown System (PDS)
• A PDS + (e.g. Simple) Valuation
 \[\cong \text{A Pushdown Automaton} \]
 \[\cong \text{Context-free Language} \]
• The intersection of context-free language and regular language
 is closed (context-free)
• The automata-theoretic approach works

\[\mathcal{M} \models S \iff L(\mathcal{M}) \cap L(S)^C = \emptyset \]

• Efficient algorithms are developed due to the fact that:
 “Regular sets of configurations are closed under forward and
 backward reachability”
Weighted Pushdown Model Checking

- Associate a weight from a bounded idempotent semiring to each pushdown transition rule
- Solve the Generalized Pushdown Reachability (GPR) problem: “Compute weights over paths in a pushdown graph leading from a pushdown configuration to a regular set of pushdown configurations”

Definition

A bounded idempotent semiring S is a semiring $(D, \oplus, \otimes, 0, 1)$, s.t.

- \oplus is idempotent, i.e. $a \oplus a = a$.
- A partial order \sqsubseteq is defined: $\forall a, b \in D, a \sqsubseteq b$ iff $a \oplus b = a$.

That is, no infinite descending chain on weight space is required.
Application of Pushdown Systems to Program Analyses

- Suitable for modeling interprocedural program analyses
 - Calls and returns are correctly paired (context-sensitivity)
 - No limitation on recursion steps (vs. K-CFA)

- Pushdown model checking
 - Model program’s data domain
 - Demand finite domain abstraction (by automata-theoretic approach)

- Weighted pushdown model checking
 - Model program’s flow function space
 - Demand infinite descending chains on the weight space, but infinite domain abstraction is possible
 - Regular pushdown configurations as an abstraction of calling contexts (context-sensitivity)
Intention Behind the Semiring Design

• **Weight space** ⇒ Flow function space

• A **weight** intends a function to represent how a property is carried at each step of program execution.

• 1 ⇒ Properties keep unchanged by this transition step

• 0 ⇒ The program execution is interrupted by some error

• \(f \otimes g \) ⇒ Function composition of \(g \circ f \)

• \(f \oplus g \) ⇒ Conservative approximation over two control flows at their meet

• The optional commutativity of \(\otimes \) facilitates modeling a flow-sensitive analysis
Abstraction of Heap Memory

Definition

Let \mathcal{O} be a set of run-time objects allocated in the heap memory. Functions $\eta_\tau : \mathcal{O} \rightarrow \mathcal{T}$ and $\eta_\iota : \mathcal{O} \rightarrow \mathcal{L}$ are defined respectively, where \mathcal{T} is a set of types (class names) of heap objects, and \mathcal{L} is a set of memory allocation sites in the program.

Definition

Let $\mathcal{O} \subseteq \mathcal{T} \times \mathcal{L} \cup \{\diamond\}$ be a set of abstract heap objects, where \diamond represents null reference. An abstraction on \mathcal{O} is defined as $\tilde{\alpha} : \mathcal{O} \rightarrow \mathcal{O}$, s.t. $\forall o \in \mathcal{O}, \tilde{\alpha}(o) = (\tau, \iota)$, where $\tau = \eta_\tau(o) \in \mathcal{T}, \iota = \eta_\iota(o) \in \mathcal{L}$.

Remarks:

- $\forall (\tau_i, \iota_i), (\tau_j, \iota_j) \in \mathcal{O}, \iota_i = \iota_j \Rightarrow \tau_i = \tau_j$
- $\forall o_i, o_j \in \mathcal{O}, \tilde{\alpha}(o_i) = \tilde{\alpha}(o_j)$ iff the allocation sites for them are the same.
- An array is approximated with a single element with its base type.
An Algorithm with Lightweight Semiring Operations

Approaches:

- Reachability analysis on the product of G_a and G_f.
- For efficiency, a variation of “exploded supergraph” is explored

Definition

A weighted pointer assignment graph is defined as $G_l = (N_l, E_l, L_l)$ from G_a, where $N_l = \{\Lambda\} \cup \mathcal{V}$ is a set of nodes, $E_l \subseteq N_l \times L_l \times N_l$ is a set of edges, and $L_l = \{\lambda x.x\} \cup \{\lambda x. o \mid o \in \mathcal{O}\}$ is a set of labels, such that

- $(v_1, \lambda x. x, v_2) \in E_l$ if $(v_1, v_2) \in E_a$, $v_1, v_2 \in \mathcal{V}$
- $(\Lambda, \lambda x. o, v) \in E_l$ if $(o, v) \in E_a$, $o \in \mathcal{O}$, $v \in \mathcal{V}$

Remarks:

- Λ: an environment that allocates new heap objects
- Heap objects are labeled on the edges
The Underlined Model for Model Checking

Definition

A weighted flows-to graph $G_p = (N_p, E_p, L_p)$ is the product of G_l and G_f, where $N_p = N_l \times N_f$ is a set of nodes, $E_p \subseteq N_p \times L_p \times N_p$ is a set of edges, and $L_p = L_l$ is a set of labels.

Algorithm

Let $A[\cdot] : S \rightarrow \mathcal{P}(\sim)$, and $N_l = \{\Lambda\} \cup V_g \cup V_l$ ($V_g \subseteq \mathcal{V}$ represents global variables and $V_l \subseteq \mathcal{V}$ represents local variables), s.t. $\forall e_f = (n_1, n_2) \in E_f$

| $e_f \in E_i$ | $\{(((v, n_1), \lambda x.x, (v, n_2)) | v \in V\}$ \cup
| | $\{(((v_1, n_1), \lambda x.x, (v_2, n_2)) | (v_1, \lambda x.x, v_2) \in E_l, (v_1, v_2) \in F, v_1 \in \mathcal{V}\}$ \cup
| | $\{(((\Lambda, n_1), \lambda x.o, (v, n_2)) \cup (\Lambda, \lambda x.o, v) \in E_l, (c, v) \in F, o \in \mathcal{O}\} \subseteq E_p$
| where $F = A[\text{StmtOf}(n_2)]$, $V = N_l - \{v | (h, v) \in F\}$ |
| $e_f \in E_t$ | $\{(((v, n_1), \lambda x.x, (v, n_2)) | v \in V_l\} \subseteq E_p$
| $e_f \in E_c$ | $\{(((v, n_1), \lambda x.x, (v, n_2)) | v \in V_g \cup \{\Lambda\}\} \cup$
| | $\{(((h, n_1), \lambda x.x, (v, n_2)) | (h, v) \in F\} \subseteq E_p$
| where $F = A[\text{StmtOf}(n_1)]$
| $e_f \in E_r$ | $\{(((v, n_1), \lambda x.x, (v, n_2)) | v \in V_g \cup \{\Lambda\}\} \subseteq E_p$ |
Part of G_p for the Running Example
Part of G_p for the Running Example

\[
\begin{align*}
 n_0 & \quad \{\Lambda\} \\
 n_1 & \quad \{\Lambda \ x\} \\
 n_2 & \quad \{\Lambda \ y \ x\} \\
 n_3 & \quad \{\Lambda \ o_2.f \ y \ x\} \\
 n_4 & \quad \{\Lambda \ o_2.f \ y \ x\} \\
 n_5 & \quad \{\Lambda \ o_2.f \ y \ x\} \\
 n_6 & \quad \{\Lambda \ o_2.f \ y \ x \ r\} \\
 n_7 & \quad \{\Lambda \ o_2.f \ y \ x \ r \ z\}
\end{align*}
\]

\[
\begin{align*}
 m_0 & \quad \{\Lambda \ o_2.f \ a \ x\} \\
 m_1 & \quad \{\Lambda \ o_2.f \ r \ a \ x\}
\end{align*}
\]

\[
\begin{align*}
 n_0 & \quad \emptyset \\
 n_1 & \quad \{1\} \\
 n_2 & \quad \{2\} \\
 n_3 & \quad \{3\} \\
 n_4 & \quad \{4\} \\
 n_5 & \quad \{x.m(y)\} \\
 n_6 & \quad \emptyset \\
 n_7 & \quad \{z = r\}
\end{align*}
\]
A Semiring Design

Let $S = \mathcal{P}(\mathcal{O})$, $D_1 = \{\lambda x. s \mid s \in S\}$ and $D_2 = \{\lambda x. x \cup s \mid s \in S\}$

Definition

A bounded idempotent semiring $S = (D, \oplus, \otimes, 0, 1)$ is defined as

- The weight space $D = D_1 \cup D_2$
- 1 is defined as $\lambda x. x$ and 0 is defined as $\lambda x. \emptyset$
- The \otimes operator is defined as

$$\forall d_i, d_j \in D \setminus \{0, 1\}, \quad d_i \otimes d_j = d_j$$

- The \oplus operator equals set union \cup, defined as

$$\forall d_i = \lambda x. s_i, d_j = \lambda x. s_j \in \tilde{D}, \quad d_i \oplus d_j = d_j \oplus d_i = \lambda x. s_i \cup s_j$$

$$\forall d_i = \lambda x. s_i \in \tilde{D}, \quad d_j = \lambda x. x \cup s_j \in \tilde{D}, \quad d_i \oplus d_j = d_j \oplus d_i = \lambda x. x \cup s_i \cup s_j$$

$$\forall d_i = \lambda x. x \cup s_i, \quad d_j = \lambda x. x \cup s_j \in \tilde{D}, \quad d_i \oplus d_j = d_j \oplus d_i = \lambda x. x \cup s_i \cup s_j$$

Distributivity of \otimes over \oplus is easily checked.
Parameterized Flow-sensitivity

- Problems: G_p will explode for large-scale programs
- Solutions: G_f is firstly shrunk by grouping nodes into blocks
 - One node possibly associated with a set of program statements
 - Each node has an unique entry after shrinking
- Parameterized flow-sensitivity by shrinking
 - Shrinking is NOT arbitrary to keep soundness (loops, branches)
 - An extreme shrinking collapses each method into a single node
 (flow-insensitive)
Parameterized Flow-sensitivity

- **Problems:** G_p will explode for large-scale programs
- **Solutions:** G_f is firstly shrunk by grouping nodes into blocks
 - One node possibly associated with a set of program statements
 - Each node has an unique entry after shrinking
- **Parameterized flow-sensitivity by shrinking**
 - Shrinking is NOT arbitrary to keep soundness (loops, branches)
 - An extreme shrinking collapses each method into a single node
 (flow-insensitive)
Parameterized Flow-sensitivity

- Problems: G_p will explode for large-scale programs
- Solutions: G_f is firstly shrunk by grouping nodes into blocks
 - One node possibly associated with a set of program statements
 - Each node has an unique entry after shrinking
- Parameterized flow-sensitivity by shrinking
 - Shrinking is NOT arbitrary to keep soundness (loops, branches)
 - An extreme shrinking collapses each method into a single node (flow-insensitive)
Encoding to Weighted PDS

Given a weighted flows-to graph \(G_p = (N_p, E_p, L_p) \), with \(N_p = \{\Lambda\} \cup \mathcal{V} \times N_f \)

- \(\{\Lambda\} \cup \mathcal{V} \Rightarrow \) control states
- \(N_f \Rightarrow \) stack alphabets
- \(E_p \Rightarrow \) pushdown transition rules
Evaluation within the SOOT Framework (On-the-fly + Lightweight Semiring Operation)

- Obstacle: restriction from the interaction of soot and weighted PDS library
- Bottleneck: weighted PDS constructed from scratch for each model checking request
- An incremental model construction is promising when possible

<table>
<thead>
<tr>
<th>software</th>
<th>LOC</th>
<th>MCR</th>
<th>time (s)</th>
<th>TMCR(s)</th>
<th>TMC(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>jetty</td>
<td>≈3000</td>
<td>1173</td>
<td>632.23</td>
<td>619.57 (97.99%)</td>
<td>468 (75.5%)</td>
</tr>
</tbody>
</table>
Points-to Analysis with Ahead-of-time Call Graph Construction

- Target: reduce frequent model checking demands
- Approaches
 - A pre-computed approximated call graph is explored
 - Invalid pathes are “removed” during model checking
 - Extra relations to model instance field accesses
- A semiring design with smaller pushdown transitions
 - \(\hat{S} \subseteq \mathcal{P}(\mathcal{V} \times \mathcal{H}) = \mathcal{P}(\rightarrow) \), s.t. \(\forall s \in \hat{S} \)
 \[
 \forall (v_1, h_1), (v_2, h_2) \in s, \ h_1 = h_2 \text{ if } v_1 = v_2
 \]
 - “\(x = y; y = z \)” \(\Rightarrow \) \{\(x \mapsto y, y \mapsto z \)\} instead of \{\(x \mapsto z, y \mapsto z \)\}
 \(v_1 \mapsto v_2 \implies v_1 \mapsto v'_2 \) (flow-sensitive)
 - e.g. \{\(x \mapsto y, y \mapsto o, z \mapsto x \)\} \(\implies \) \{\(x \mapsto y', y \mapsto o, z \mapsto x' \)\} (i.e. A transitive closure on \(s \in \hat{S} \) does not make sense)
A bounded idempotent semiring $S = (D, \oplus, \otimes, 0, 1)$ is defined as:

- The weight space $D = \mathcal{P}(\mathcal{D})$, where $\mathcal{D} = \hat{S} \cup \{\text{ID}\} \setminus \emptyset$
- $0 = \emptyset$ and $1 = \{\text{ID}\}$
- $\forall w_1, w_2 \in D$, $w_1 \otimes w_2 = \{d_1 \circ d_2 \mid d_1 \in w_1, d_2 \in w_2\}$, where

 $d_1 \circ d_2 = \begin{cases}
 d_1 \ (\text{resp. } d_2) & \text{if } d_2 = \text{ID} \ (\text{resp. } d_1 = \text{ID}) \\
 f_0(d_1, d_2) \cup f_1(d_1, d_2) & \text{o.w.}
 \end{cases}$

 $f_0(d_1, d_2) = d_1 \setminus \{ (v, h_1) \in d_1 \mid \exists h_2 \ s.t. \ (v, h_2) \in d_2 \}$

 $f_1(d_1, d_2) = \{ (v_2, h'_2) \mid \forall (v_2, h_2) \in d_2, h'_2 = \begin{cases}
 h_1 & \text{if } \exists h_1 \ s.t. \ (v_1, h_1) \in d_1, v_1 = h_2 \\
 h_2 & \text{o.w.}
 \end{cases} \}$

- $\forall w_1, w_2 \in D$, $w_1 \oplus w_2 = w_1 \cup w_2$

Remarks on $w_1 \otimes w_2$: ① f_0: Relations in w_1 are changed by subsequent operations in w_2 (flow-sensitive); ② f_1: The second components of relations in w_2 are substituted w.r.t w_1.
Path Elimination

- \(\mathcal{C} \subseteq \mathcal{P}(\mathcal{V} \times \mathcal{T}) \): represent expected types of method receivers
- \textbf{type} : \(\mathcal{O} \rightarrow \mathcal{T} \): get types of abstract heap objects
 \textbf{loc} : \(\mathcal{O} \rightarrow \mathcal{L} \): get allocation sites of abstract heap objects
- \(\propto : \mathcal{C} \times \mathcal{D} \rightarrow \{\text{TRUE, FALSE}\} \) is introduced as a judgement relation. That is, \(\forall d \in \mathcal{D}, c \in \mathcal{C}, c \propto d \iff \exists (v, t) \in c, \text{ and } (v, o) \in d, \text{ such that } t' \succ t, \text{ where } t' = \text{type}(o) \).
- \(\bowtie : \mathcal{T} \times \mathcal{T} \rightarrow \{\text{TRUE, FALSE}\} \) defines a relation among classes. \(\forall t, t' \in \mathcal{T}, t' \bowtie t \iff \)

 \begin{align*}
 r1. & \quad t' \neq t \\
 r2. & \quad a) \quad t' \text{ does not inherit from } t; \text{ or } \\
 & \quad b) \quad t' \text{ inherits from } t, \text{ but } t' \text{ redefines the method to be invoked.}
 \end{align*}

- \(\bowtie \) is defined as the reverse of \(\bowtie \). That is,

\[\forall t, t' \in \mathcal{T}, t' \bowtie t \iff t' \bowtie t = \text{FALSE} \]
A Semiring Design with Path Elimination

Definition

The previous semiring S is extended to be $S_e = (D_e, ⊕_e, ⊗_e, 0_e, 1_e)$, where

- $D_e = \mathcal{P}(\mathcal{D})$, where $\mathcal{D} = \{(d, c) \mid d \in D, c \in C\}$
- $1_e = \{(1D, \emptyset)\}$ and $0_e = \emptyset$
- $\forall w_1, w_2 \in D_e, w_1 \otimes_e w_2 = \{d_1 \otimes_e d_2 \mid d_1 \in w_1, d_2 \in w_2\}$, such that $\forall d_1 = (d_1, c_1), d_2 = (d_2, c_2) \in \mathcal{D}$,

$$d_1 \otimes_e d_2 = \begin{cases} 0_e & \text{if } c_2 \preceq d_1 \\ (d_1 \otimes d_2, c_1 \uplus c_2) & \text{o.w.} \end{cases}$$

where $c_1 \uplus c_2 = c_1 \cup f_8(c_2 \setminus c, d_1)$, and $c = f_7(c_2, d_1)$. $\forall c \in C, d \in \mathcal{D}$,

$$f_7(c, d) = \{(v, t) \in c \mid \exists o \in C, \text{ s.t. } (v, o) \in d, t' = \text{type}(o), t' \times t\}$$

$$f_8(c, d) = \{(\tilde{v}, t) \mid \forall (v, t) \in c, \tilde{v} = \begin{cases} v' & \text{if } \exists (v, v') \in d, v' \in \mathcal{V} \\ v & \text{o.w.} \end{cases} \}$$

- $\forall w_1, w_2 \in D_e, w_1 \oplus_e w_2 = w_1 \cup w_2$
Remarks on Path Elimination

- \((v, t) \in c \iff (v', t)\), where \(c \in \mathcal{C}\)
- \(c_1 \cup c_2\)
 - \(f_7\): remove constraints of \(c_2\) satisfied by \(d_1\)
 - \(f_8\): substitute variables of relations in \(c_2\) w.r.t \(d_1\)
- Examples
 - \(\{(x, o), \emptyset\} \odot_e \{\text{ID}, (x, A)\} = 0_e \text{ if } (x, A) \propto (x, o)\)
 - \(\{(x, o)(y, x), \emptyset\} \odot_e \{\text{ID}, (x, A)\} = \{(x, o)(y, x), \emptyset\} \text{ if type}(o) \propto A\)
 - \(\{(y, x), \emptyset\} \odot_e \{\text{ID}, (y, A)\} = \{(y, x), (x, A)\}\)
- Associativity of \(\otimes_e (\odot_e)\) is not obvious but proved
Model Field Accesses

Definition

Let \mathcal{L} be a set of local variables of reference type, and \mathcal{F} be a set of field names. Let $\hat{\mathcal{H}} = \mathcal{L} \cup \mathcal{O}$. A field read relation is defined as $\mathbb{R} : \hat{\mathcal{H}} \times \mathcal{F} \times \hat{\mathcal{H}}$. A field write relation is defined as $\mathbb{W} : \hat{\mathcal{H}} \times \mathcal{F} \times \hat{\mathcal{H}}$. The points-to relation is redefined as $\mathbb{P} : \mathcal{L} \times \hat{\mathcal{H}}$.

Remarks:

- $(h_1, f, h_2) \in \mathbb{R}$ models the field read access “$h_2 = h_1.f$” ($h_2 \rightarrow h_1.f$)
- $(h_1, f, h_2) \in \mathbb{W}$ models the field write access “$h_1.f = h_2$” ($h_1.f \rightarrow h_2$)
- $(h_1, f, h_2) \in \mathbb{R} \Rightarrow (h'_1, f, h_2)$
- $(h_1, f, h_2) \in \mathbb{W} \Rightarrow (h'_1, f, h'_2)$

A flow-sensitive analysis concerning field accesses seems intractable in this setting:
- $\{h_2 \rightarrow h_1.f\} \otimes \{h_3.f \rightarrow h_2\} \Rightarrow \{h_3.f \twoheadrightarrow \prime h_1.f\}$
- $\{h_2 \rightarrow h_1.f\} \otimes \{h_3 \rightarrow h_2.f\} ?$
Conclusions

- Weighted pushdown model checking enables a fast design of interprocedural context-sensitive program analyses
- Pushdown systems provides us with handy context-sensitivity for program analyses
- Promising for developing a scalable analysis when the implementation allows
- Some future work
 - Evaluation on the ahead-of-time construction
 - Efficient data structures (like BDD) or other decision procedures could be explored
Thanks!
li-xin@jaist.ac.jp