Model Checking Infinite State Machines - Who's who in Ogawa lab -

小川瑞史(JAIST) mizuhito@jaist.ac.jp 2008.3.3

The aim of the talk

 Brief overview on model checking on infinite states, based on decidable results.

 Who's who in Ogawa lab.; what we have done, are doing, and will do (would like to do).

Model checking: idea

MC is the inclusion : L(M) ⊆ L(S)
 ⇔ L(M) ∩ L(S)^c = φ

M: FA, S: FA
Decidable

M: PDA, S: FA
Decidable

M: PDA, S: PDA
Undecidable

M: PDA, S: SPDA
Decidable (1967)

M: VPA, S: VPA
Decidable (2004)

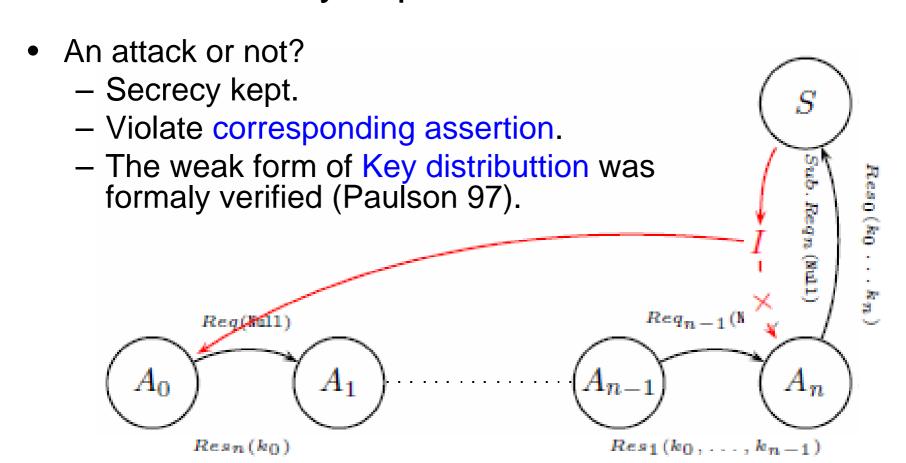
What we have done/doing at a glance

Determinization fails for extensions of VPA (Nguyen Van Tang)

- Possible directions for extensions
 - Multi-stack
 - Stack automata (Ginsburg, et.al. JACM67)
- k-VPA (DLT07, LICS07): emptiness is undecidable
 - k-MVPA (LICS07): closure holds
 - k-ordered VPA (DLT07): determinization claimed

Visibly Stack Automata

Decidable emptiness; determinization fails



Verifying Recursive Protocol: On-the-fly MC (Li Guoqiang)

- Lazy instantiation on messages, i.e., message content that does not effect on protocol actions will be replaced with a variable and left uninstanciated.
 OFMC (Basinm et.al. 05)
- Lazy instantiation on names, i.e., names are extended to terms, and left uninstanciated until actual principals are assigned during sessions.
- Identification of fresh messages by context, i.e., since the RA protocol does not repeat the same context, each nonce in a session is identified by the stack content.

Works for recursive protocols without parallel compositions

An attack in Recursive Authentication Protocol - Found by experiments on Maude -

protocols	protocol spec.	states	times(s)	flaws
recursive authentication protocol	32	416	0.82	detected
fixed recursive authentication protocol	32	416	1.07	secure

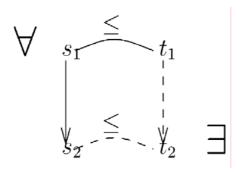
Implementing Java context-sensitive analyses by weighted pushdown MC (Li Xin)

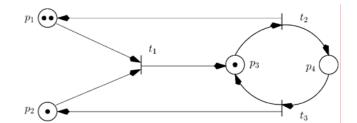
- Weighted Pushdown Model Checking (Reps 05)
 - Control flow : pushdown model
 - Dataflow: bounded idempotent semiring
 - Product = composition of flows
 - Summation = meeting of flows

- Java context-sensitive analysis by weighted PMC
 - Integrate existing tools (SOOT, Weighted PDS)
 - Interprocedural control flow graph is mutually dependent to points-to information.

Java Relevance Analysis for Symbolic Execution

- Symbolic execution: Java PathFinder extension
 - Old technique (from early 70s)
 - Constraints (Presburger Arithmetic, 1st order logic) are computed for dynamically decided variables.
 - Test data with full coverage will be generated.
- Relevance analysis:
 - Reduce variables that require symbolic execution.
 - Based PTA (we developed), weighted PDS is applied with PER-based abstraction.
 - Collaboration with FLA (2007.10~)




What we would like to do

Yet another infinite state transition systems

- A well-structured transition system (WSTS) has:
 - S: finite set of control states
 - D: WQO (D,≦) (infinite set of data on cont. states)

- Safeness of monotonic WSTS: decidable
 - Inclusion problem of timed automata on finite words where specification has a single clock
 - Coverability of Petri net.

Yet another infinite state transition systems

- Liveness of WSTS: undecidable
 - Inclusion problem of timed automata on infinite words where specification has a single clock.
- Restricted Liveness of WSTS: decidable?
 - Non-Zeno inclusion problem of timed automata on infinite words where specification has a single clock?
 - Reachability of Petri net? (Coming phd candidate?)

Developing deduction engines

- Diophantine Constraint Solver (DCS):
 - Needs from automatic termination prover.
 - SMT : decidable imported theories/engines
 - DCS : specialized to bounded Diophantine constraints (Nao Hirokawa)
- VPA model checker:
 - Only preliminary one known in France.
 - "Complete-pre" approach (backward on-the-fly algorithm, Nguyen Van Tang)
- Enhance Weighted PDS library (?):
 - Needs for efficient integration of tools.

SMT-like approach for Weighted PDS (Li Xin, Do Thi Binh Ngoc)

- SMT = SAT (efficient search) + theory (outer oracle)
 - Theory: typically, Presburger Arithmetic, equations with uninterpreted function symbols.
- Weighted PDS = pushdown model + weight
 - Pushdown model: trace control flows
 - Weight : outer oracle
 - 1st order prover to compute product / sum.
 - Widening by Craig interpolation to guarantee the finite ascending chain condition?
 - Array bound check / round off error analysis on C

