
AIST/JAIST joint workshop on verification technology

A Toolkit for Generating and
Displaying Proof Scores

in the OTS/CafeOBJ Method

Takahiro Seino, Kazuhiro Ogata and Kokichi Futatsugi

School of Information Science
Japan Advanced Institute of Science and Technology

Background
Formal Methods
• effective for systems are built safely and reliably.

The OTS/CafeOBJ method[Ogata 2003-]
• can model distributed systems as transition systems called

OTS (Observational Transition Systems)

• can describe the system in CafeOBJ which is an algebraic
specification language

• can verify that the system has invariant properties by
induction on number of transition rules applied.

• easy to learn for ordinary engineers

• based on (one-way) equational reasoning

open ISTEP
 op d1 : -> D1 .
 op d2 : -> D2 .
 ...
 eq p1 = true .
 ...
 eq s’ = Transition1(s,...) .
 red SIH implies istep(...) .
close

Problem
Verification in the OTS/CafeOBJ method

Base case

Inductive step for Transition1

Inductive step for Transitionn

Case splitting with pred. p1

Case: p1 holds

Case: p1 doesn’t hold

H
un
dr
ed
s
or
 th
ou
sa
nd
s
lin
es
 c
od
e

proof passage

proof passage

1. We must write proof score
 maintaining case splitting
2. We must check each reduced result
 is the expected term (= true)
 ☞ human errors may occur.
 ☞ disturb humans from concentrating
 on intellectual work.

proof passage

Our solution
Generating and checking proof scores

mod PROOF-SCRIPT {
 op d1 : -> D1 .
 op d2 : -> D2 .
 ...
 eq basecase = inv(...) .
 eq inductive = istep(...) .
 trans predicates(Transition1(S)) = p1 .
 ...
 trans lemmas(Transition1(S)) = inv1 .
 ...
}

Base case

Inductive step for Transition1

Inductive step for Transitionn

Case splitting with pred. p1

Case: p1 holds

Case: p1 doesn’t hold

proof passage

proof passage

We must specify to generate proof scores:

1. predicate to be proven
2. list of predicates to be used in case splitting
3. list of lemmas to be strengthen induction
 hypothesis

proof passage

Generated, Checked
Display hierarchically

CASE tool platform
We propose a CASE tool platform CafeOBJ/XML
• based on XML technology
• has a syntax corresponding to abstract syntax of

CafeOBJ
• also represents proofs

Design policy of CafeOBJ/XML
• scope: describing specifications and proofs.
• makes implementing CASE tools easier.
• doesn’t depend a specific programming language.

proof.html

Overview of Buffet toolkit

Gateau
Buffet
Server

Proof Score Presenter

CafeOBJ

spec.mod

inv.mod

script.mod

proof.xml

http

IPC

feedback

input

input

output

output

Ex. A Mutual Exclusion
We verify that

 var lock := false

l1: Remainder Section

l2: repeat until ¬(fetch&store(lock, true))

 Critical Section

cs: lock := false

has the mutual exclusion property.

Modeling with OTS
Data types:
• B = { true, false }
• P = { p1, p2, ... }
• L = { l1, l2, cs }

Note that equivalence relation denoted by ‘=’ for
each data type have been defined.

…………… Boolean values

…………… Set of process IDs

…………… Set of location labels

Modeling with OTS
Universal state space: Υ

set of Observers = { o : Υ → D }

• lock : Υ → B
• locp : Υ → L for p∈P

set of Initial states
• { s0 | lock(s0) = false ∧ ∀p∈P.locp(s0) = l1 }

set of Transitions = { t : Υ → Υ }

• tryp : Υ → Υ for p∈P
• enterp : Υ → Υ for p∈P
• leavep : Υ → Υ for p∈P

Modeling with OTS

 var lock := false

l1: Remainder Section

l2: repeat until

 ¬(fetch&store(lock, true))

 Critical Section

cs: lock := false

ctryp (s) ≡ locp(s) = l1

Definition of tryp :

lock(s’) = lock(s)
locp(s’) = l2
locq(s’) = locp(s) if p ≠ q

tryp(s’) where ctryp (s) holds

where ctryp (s) doesn’t holds
 nothing changes

Invariants
Execution sequence {s0, s1, ... } satisfies:
• s0 is in the set of initial states
• there exists a transition for each pair of (si, si+1)

Reachability
• State s is reachable: there exists an execution

sequence of an OTS in which s appears.

Invariants
• A predicate p such that p(s) holds for every

reachable state s.
• In the ex., ∀i,j∈P.loc(s,i) = cs ∧ loc(s,j) = cs ⇒ i = j

Describing invariant
Invariant candidates are described:

mod INV { pr(OTS-SPEC)
 op inv1 : Υ ... -> Bool
 op inv2 : Υ ... -> Bool
 ...
 eq inv1(S: Υ,...) =
 eq inv2(S: Υ,...) =
 ...
}

mod ISTEP { pr(INV)
 ops s s' : -> Υ
 op istep1 : ... -> Bool
 op istep2 : ... -> Bool
 ...
 eq istep1(...) = inv1(s,...) implies inv1(s',...) .
 eq istep2(...) = inv2(s,...) implies inv2(s',...) .
}

Signatures of invariants

Invariants denoted by CafeOBJ term

Terms denoting reasonings
 in the inductive step

Buffet server

Buffet
Server

CafeOBJ

http

IPC

proof.html

Gateau

Proof Score Presenter

spec.mod

inv.mod

script.mod

proof.xml

feedback

input

input

output

output

proof.html

Gateau

Proof Score Presenter

spec.mod

inv.mod

script.mod

proof.xml

feedback

input

input

output

output

Buffet server relays requests/responses
between a client to the CafeOBJ system

• we can get the information of
already defined/loaded CafeOBJ
specification from the CafeOBJ
system

➡ but, it’s fragmentary

• Buffet server reconstructs the
information in an XML document

proof.html

Gateau

Gateau
Buffet
Server

Proof Score Presenter

CafeOBJ

spec.mod

inv.mod

script.mod

http

IPC

feedback

input

input

output

output

Buffet
Server

CafeOBJ

http

IPC

proof.html

Proof Score Presenter

feedback

input

output

proof.xml

Gateau generates proof scores
• according to

• given predicates to use for
case splitting

• given lemmas to
strengthen I.H.

Gateau also checks proofsopen ISTEP
-- arbitrary objects:
op pid1 : -> Pid .
-- assumptions:
eq (loc(s,pid1)) = (l1) .
eq (s') = (try(s,pid1)) .
-- reduce the following term:
red istep1(i, j) .
close

How to gen. proof score

Buffet
Server

Gateau specification
(CafeOBJ)

parse tree
(XML)

proof passage
(CafeOBJ)

reduced result
(XML)

1. Getting info. of spec.
2. Gen. proof score
 for each proof passage,
 a). reduce the term.
 b). if the result is not true,
 split into cases with the
 first pred. of given preds.
 list. Go to a).
 c). if the list is empty,
 introduce given lemmas.

generated proof score
(XML)

Inference
service

parsing
service

CafeOBJ

proof.html

Proof Score Presenter

Gateau
Buffet
Server

Proof Score Presenter

CafeOBJ

spec.mod

inv.mod

script.mod

proof.xml

http

IPC

feedback

input

input

output

output

Gateau

spec.mod

inv.mod

script.mod

input

output

Buffet
Server

CafeOBJ

http

feedback

PSP is a pretty printer for proof scores
• takes a proof score in XML
• generates an HTML document

Hierarchical view
with disclosing triangles

Displaying the part of proof scores
for which further case analysis

 should be done and/or
lemmas should be used

A hidden part of proof scores

Other case studies
Otway-Rees authentication protocol
• 1 secrecy property (48 cases)
• 3 lemmas (36-37 cases)

NSLPK authentication protocol
• 1 secrecy property (37 cases)
• 6 lemmas (24-65 cases)

Conclusion
We have implemented the Buffet toolkit
• can generate & check proof scores automatically

• generated proof scores cover all cases

• success of proofs depends on given predicates
and lemmas

• can display proof scores hierarchically

• provided views helps the verification

• can be applied including non-trivial problems

• Simple mutual exclusion

• NSLPK, and Otway-Rees authentication protocols

Implemented tools
Buffet Server (1,200 lines, in Perl)

Gateau (800 lines, in Perl)

Proof Score Presenter (600 lines, in XSLT)

Eclipse plug-ins (working)
• CafeOBJ Editor (300 lines, in Java)
• Proof Score Viewer (400 lines, in Java)

• the final goal will be an Interactive Editor for
Proof Score

Cafe2Maude (by Kong-san, in Java)

Future plan
Integrating Eclipse
• GUI based implementation (Gateau & PSP)

• more interactive

More tightly integrating Eclipse
• Test Driven Development

• Test case generation from proof scores

Demonstration

