

安心情報システム構築における
コンポーネント技術の応用

Development of Information
Systems for e-Society

with Component Technologies

鈴木　正人

北陸先端科学技術大学院大学
情報科学研究科

06/11/28 Verite 3rd

Contents
● Requirements of Information systems for

e-society (accountability)
● Our goal
● Component technologies

(Flexibility, Specification&Verification)
● Our approach
● Restructuring current system w/components.
● Current Status/Summary

e-Society
Katayama used the term “Verifiable and

Evolvable e-Society” in our COE21 projects.

Correctness: all functions must be correctly
realized according to its specifications
Accountability: systems must explain its

functions and structures for all questions by
 all stakeholders
Security: systems must prohibit leak of
information and unauthorized accesses
etc.

Features of e-Society

Outline of Info. Sys.
 with accountability

Credit/Score management system in our Institute

Committee for
regulation

4 credits from basic course
8 credits from major course
sub-theme must be finished

Student A
Laws (rules) updates

Research
proposal

rejected

Why?

A's credits
Basic: 4 Major:10 Sub: No

Your sub-theme
is not finished yet.

Features for Info. Sys.
with accountability

System must provide not only the result
but a cause or a history of reasoning.

R33-1: 4 credits from basic course
R33-2: 8 credits from major course
R33-3: sub-theme must be finished

Research
proposal

R33: acceptance conditions of research proposal

Traditional system only gives answer “rejected”
System with accountability must give answer such that
R33-1: You have 4, requires 4 PASS
R33-2: You have 10, requires 8 PASS
R33-3: You don't finish sub-theme FAILED
R33 is AND(R33-1, R33-2, R33-3) FAILED
Result : Rejected

Cause of failure

AND-OR tree is used

Our goal
One of our goal is to provide a technical basis for

realizing info. sys. with accountability.

Stake holders (actors)

Software architecture/component based
technologies may give a proper solution.

End-user (students, citizens)

Rep. of
Laws Laws

System
DeveloperManager or clerks of government

Committee
for define

Laws
Reasoning

UI

(Efficiency in development/evolution, verification, reuse)

Component Technologies
Originally aimed to improve cost/efficiency in reuse.

Collection of components

Requirements

Specification

Implementation

Decide
architecture

Build/compose
components

Collection of architectures

Features of components
Originally it was any unit of program (modules etc)
Recently it is based on Object-Oriented, and have

the following features [Ning 96]

Works on a particular environment only.

How to use (interfaces) are open to public,
 but internal structures are hidden.

Unit of plug-in (replacement)

Consists of multiple (binary/text) files

Component features for
accountability

1. Flexible connection
A component communicate to another one / its
environment through some indirect mechanisms.

Traditional:
Foo(int id, String name) Foo

Caller must know the address of function “Foo.”
We have to re-compile all if we change behavior.

With component:
Interface i = c.getInterface();
Method m = i.getMethod (“Foo”);
m.invoke(args(id, name)) ;

Foo

Foo w/acc

m

Component features for
accountability

2. Specification / Verification

Foo

Interfaces and their usage must be verified
at compiled time (static) or runtime (dynamic).

Arg1 is int
Arg2 is String

Arg1 must be int, positive
Arg2 must be String

Component technologies already have/easy to extend
specification/ semi-automatic verification.

providedrequired

Traditional: spec. must be described separately and
independent verifier is required at runtime.

Our approach
Overview of development process

Logical
Expression of

Law

Requirement
Analysis

Use-cases

Workflows

Architecture
and Component

Design
Codes

Detection of
Classes

Class
 Diagrams

System Developer

querymapping

(1) we have to extract candidates of classes from
expression of laws.

4 credits from basic course
8 credits from major course
sub-theme must be finished Credit

Research proposal

Sub-theme

Our approach(cont.)
(2) Design classes from use-cases and (1)

Use-case name:accept research proposal
actors: student, manager
normal sequences:
 1: student gives proposal
 2: system checks conditions by reasoning
 ...

Condition

Query history

Reasoning history

(3) Implement using component models
Comp. for query manager Comp. for reasoning manager

Comp. for checking
each rules(3 layers in actual)

Restructuring on Design level
Besides to build system/w acc. from the scratch,

we try to restructure current systems using
component technologies.

Restructuring on code level is called refactoring,
widely applied in many development processes.
Note: it only changes structure, never change its function/malfunction

Ex: extract method

foo() {

(a complex calculation)

}

int foosub(int x,int y) {
(a complex calculation)
return r;
}

foo() {
 (pre-action)
 r = foosub(x,y);
 (post-action)
}

Aim : specify calculation clearly / improve possibility for enhancement

Restructuring on Design level
We need to reconstruct info. sys. in design level

in order to provide accountability because
● legacy systems might not be properly layered
● legacy systems might not have clear interfaces

Style / amount / frequency of communication
might be clues to decide layers / interfaces.

Communication Category
Communication styles are categorized as

follows:
(a) One-to-one, synchronous :

Request/response pair
DB query/resultset pair

(b) One-to-many,synchronous:
shared data (blackboard)
 access

(c) One-to-many, asynchronous:
logging

A Case Study
Small library systems in our laboratory

Before : stand-alone, fixed GUI, integrated DB
After: accessible through WEB, distributed DB

(final goal)

UIManager

UserRecord PropertyRecord

Rentals

LibraryServlet
request/response
with HTTP

Abstraction of
transaction

(imcompleted)

Communications in Example
Number of one-to-many sync. comm. is large.

RentJob
UserDB

BookDB

RentRecDB

Improper assignment of responsibility might be a cause of
increase of comm. So we restructure them as follows:

Some request are not necessary to access lower layer, but can make responses in middle.

Before restructure: >30

After restructure: 10

Mechanisms for Accountability
● Reasoning might be introduced in middle layer.
● Implemented by replacing some components

with those have accountability-related features.

normal
function

RentJob

Rx-1: Student can borrow no more than 5 books.
Rx-2: Faculty can borrow no more than 10 books.
Rx-3: Person who already borrow some books cannot exceed
the limit incl. # of books he/she has not yet returned.

RentJobImpl
with Acc.

UserDB
checking user
is faculty

BookDB
checking items
is available

log

Addition of Rx-3
requires access
to RentRecDB

RentRecDB
holds historyreasoning

GUI

Extention
for acc.

Current Status/Summary
We are engaged to establish a development

process for info. sys. with accountability using
component technologies.

Top-down approach :
 extract classes from expression of laws(rules)
 and use-cases, realize them with components

Prototype of a mapping from query to rule is built and
evaluation is in progress.

Bottom-up approach :
 extract interfaces from style/amount of interaction,
 restructure systems into layers, build with comp.

Rules for extracting interfaces are defined and polished
through some small systems (incl. mini-library.)

Appendix : Class Diagram for mini library system

