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Overview
• Research Interest: Abstraction of graph 

transformation systems using modal logics.
– Garbage Collection, Cellular Automata  

• Automatic verification tool for pointer 
manipulation programs
– Main issue: abstraction of heap

• Use of modal logic to describe heap
– Seeds for predicate abstraction are described 

in modal formula
• Development of  abstraction tool based on 

this idea
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Idea

• Predicate Abstraction Framework
– Most of tools developed in the early days 

handle properties on the value of variables as 
predicates used in abstraction

– It was difficult to express properties on the 
shape of the heap of programs

• We use modal formulas as a method for 
abstracting heap structures
– another idea: separation logic?



Model of Heap:
Pointer Structure

• Heap consists of cells
• Each cell has a pointer and a value

– to simplify explanation
• Pointer variables



Pointer Structure as
Kripke Structure

• Pointer Structure can be seen as a Kripke
structure

• Atomic propositions are values and 
variables

AP = {1,2,3,4,x,y,nil}



2CTL



Properties

• Many properties of heap can be described
• Confluence

• Reachable
– x is reachable from y

• Loop
– x is in loop



PML (pointer manipulation 
language)

• Target programs are written in PML
– a tiny programming language manipulating heaps

• Statements are following:
– x := y
– x := y.next
– x.next := y
– x := new()
– x.val := m
– if (cond) goto line

• Dynamic logic for PML?
– ongoing



a PML program example
0: y := nil
1: if (x == nil) goto 7
2: t := y
3: y := x
4: x := x.next
5: y.next := t
6: goto 1
7: (end)
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a verification example

• Verification statement:
If a node is reachable from x at line 1,
then the node is reachable from y at line 7.

0: y := nil
1: if (x == nil) goto 7
2: t := y
3: y := x
4: x := x.next
5: y.next := t
6: goto 1
7: (end)
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Compute abstract transition
Abstract transition ⇔
Intersection⇒
sat(¬Q1∧Q2∧pre(s,Q1∧Q2)) = 1
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Compute abstract transition
No abstract transition ⇔
Disjoint←
sat(Q1∧Q2∧pre(s,Q1∧Q2)) = 0
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Our case

• Weakest precondition
of 2CTL for PML

• Sat checker for 2CTL



Compute abstract transition

• Precondition and
• Satisfiability checking



Precondition

• We restrict 2CTL to p-formula for 
simplification
– It is enough to describe important properties

• We have calculated weakest precondition of  
p-formula for each PML statement
– weakest precondition of p-formula is p-formula
– We are now implementing



Satisifiability check

• Usual: φ is sat ⇔ there exists a Kripke
structure K s.t. K |= φ
– this checking is too rough
– previous verification example does not work



Pointer Structure as
Kripke Structure

• Pointer Structure can be seen as a Kripke
structure

• Atomic propositions are values and 
variables AP = {1,2,3,4,x,y,nil}

・ Variable property holds at most one node
・ A node has at most one next node



Satisifiability check

• Usual: φ is sat ⇔ there exists a Kripke
structure K s.t. K |= φ

• Our modification: φ is sat ⇔ there exists a 
Pointer structure P s.t. P |= φ
– more accurate

• previous verification example works
– We are now implementing

• BDD
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