
Abstraction of programs in PML
(Pointer Manipulation Language)

Koichi Takahashi
Yoshinori Tanabe

Toshifusa Sekizawa
Yoshifumi Yuasa

AIST
22 Sep 2005

Overview
• Research Interest: Abstraction of graph

transformation systems using modal logics.
– Garbage Collection, Cellular Automata

• Automatic verification tool for pointer
manipulation programs
– Main issue: abstraction of heap

• Use of modal logic to describe heap
– Seeds for predicate abstraction are described

in modal formula
• Development of abstraction tool based on

this idea

Whole picture
Input Output

Program

Requirement
Property

Abstract
program
generator

Model
checker

Abstract
program OK

Counter
Example

Counter
Example
Analyzer

Abstraction
Hints

NG

Whole picture

Program

Requirement
Property

Input Output
Abstract
system

generator

Model
checker

Abstract
system OK

Counter
Example

Counter
Example
Analyzer

Abstraction
Hints

NG

Current Development

Program

Requirement
Property

Input Output
Abstract
system

generator
SPINAbstract

system OK

Counter
Example

Human
Analysis

Abstraction
HintsAbstraction

Hints

NG

Idea

• Predicate Abstraction Framework
– Most of tools developed in the early days

handle properties on the value of variables as
predicates used in abstraction

– It was difficult to express properties on the
shape of the heap of programs

• We use modal formulas as a method for
abstracting heap structures
– another idea: separation logic?

Model of Heap:
Pointer Structure

• Heap consists of cells
• Each cell has a pointer and a value

– to simplify explanation
• Pointer variables

Pointer Structure as
Kripke Structure

• Pointer Structure can be seen as a Kripke
structure

• Atomic propositions are values and
variables

AP = {1,2,3,4,x,y,nil}

2CTL

Properties

• Many properties of heap can be described
• Confluence

• Reachable
– x is reachable from y

• Loop
– x is in loop

PML (pointer manipulation
language)

• Target programs are written in PML
– a tiny programming language manipulating heaps

• Statements are following:
– x := y
– x := y.next
– x.next := y
– x := new()
– x.val := m
– if (cond) goto line

• Dynamic logic for PML?
– ongoing

a PML program example
0: y := nil
1: if (x == nil) goto 7
2: t := y
3: y := x
4: x := x.next
5: y.next := t
6: goto 1
7: (end)

a PML program example
0: y := nil
1: if (x == nil) goto 7
2: t := y
3: y := x
4: x := x.next
5: y.next := t
6: goto 1
7: (end)

a PML program example
0: y := nil
1: if (x == nil) goto 7
2: t := y
3: y := x
4: x := x.next
5: y.next := t
6: goto 1
7: (end)

a PML program example
0: y := nil
1: if (x == nil) goto 7
2: t := y
3: y := x
4: x := x.next
5: y.next := t
6: goto 1
7: (end)

a PML program example
0: y := nil
1: if (x == nil) goto 7
2: t := y
3: y := x
4: x := x.next
5: y.next := t
6: goto 1
7: (end)

a PML program example
0: y := nil
1: if (x == nil) goto 7
2: t := y
3: y := x
4: x := x.next
5: y.next := t
6: goto 1
7: (end)

a PML program example
0: y := nil
1: if (x == nil) goto 7
2: t := y
3: y := x
4: x := x.next
5: y.next := t
6: goto 1
7: (end)

a verification example

• Verification statement:
If a node is reachable from x at line 1,
then the node is reachable from y at line 7.

0: y := nil
1: if (x == nil) goto 7
2: t := y
3: y := x
4: x := x.next
5: y.next := t
6: goto 1
7: (end)

a verification example

a verification example

a verification example

Compute abstract transition

Concrete state

program statement s

Abstract state
Q1∧Q2

Q2 ¬Q2

Q1

¬Q1

Q1

¬Q1

Q2 ¬Q2

Compute abstract transition

Concrete state

program statement s
Abstract state
Q1∧Q2

Q2 ¬Q2

Q1

¬Q1

Q1

Weakest precondition
pre(s,Q1∧Q2)

¬Q1

Q2 ¬Q2

Compute abstract transition
Abstract transition ⇔
Intersection⇒
sat(¬Q1∧Q2∧pre(s,Q1∧Q2)) = 1

Concrete state

program statement s
Abstract state
Q1∧Q2

Q2 ¬Q2

Q1

¬Q1

Q1

Weakest precondition
pre(s,Q1∧Q2)

¬Q1

Q2 ¬Q2

Compute abstract transition
No abstract transition ⇔
Disjoint←
sat(Q1∧Q2∧pre(s,Q1∧Q2)) = 0

Concrete state

program statement s
Abstract state
Q1∧Q2

Q2 ¬Q2

Q1

¬Q1

Q1

Weakest precondition
pre(s,Q1∧Q2)

¬Q1

Q2 ¬Q2

Our case

• Weakest precondition
of 2CTL for PML

• Sat checker for 2CTL

Compute abstract transition

• Precondition and
• Satisfiability checking

Precondition

• We restrict 2CTL to p-formula for
simplification
– It is enough to describe important properties

• We have calculated weakest precondition of
p-formula for each PML statement
– weakest precondition of p-formula is p-formula
– We are now implementing

Satisifiability check

• Usual: φ is sat ⇔ there exists a Kripke
structure K s.t. K |= φ
– this checking is too rough
– previous verification example does not work

Pointer Structure as
Kripke Structure

• Pointer Structure can be seen as a Kripke
structure

• Atomic propositions are values and
variables AP = {1,2,3,4,x,y,nil}

・ Variable property holds at most one node
・ A node has at most one next node

Satisifiability check

• Usual: φ is sat ⇔ there exists a Kripke
structure K s.t. K |= φ

• Our modification: φ is sat ⇔ there exists a
Pointer structure P s.t. P |= φ
– more accurate

• previous verification example works
– We are now implementing

• BDD

Current Development

Program

Requirement
Property

Input Output
Abstract
system

generator
SPINAbstract

system OK

Counter
Example

Human
Analysis

Abstraction
HintsAbstraction

Hints

NG

	Abstraction of programs in PML (Pointer Manipulation Language)
	Overview
	Whole picture
	Whole picture
	Current Development
	Idea
	Model of Heap:Pointer Structure
	Pointer Structure asKripke Structure
	2CTL
	Properties
	PML (pointer manipulation language)
	a PML program example
	a PML program example
	a PML program example
	a PML program example
	a PML program example
	a PML program example
	a PML program example
	a verification example
	a verification example
	a verification example
	a verification example
	Compute abstract transition
	Compute abstract transition
	Compute abstract transition
	Compute abstract transition
	Our case
	Compute abstract transition
	Precondition
	Satisifiability check
	Pointer Structure asKripke Structure
	Satisifiability check
	Current Development

