Visibly Stack Automata

Nguyen Van Tang - Mizuhito Ogawa

School of Information Science

Japan Advanced Institute of Science and Technology

Talk Outline

- Automata-theoretic based verification
 - Checking context-free specifications
 - Obstacles

- Visibly Pushdown Automata
 - ➤ Visibly Pushdown Languages
 - Determinization
- Visibly Stack Automata
 - Visibly Stack Languages
 - Determinization

Automata-theoretic based verification

- To verify if a software system satisfies a regular specification
 - System is modeled as a pushdown automaton M
 - Requirement is specified as a finite automaton S
- M |= S iff:
 - \bigstar L(M) \subseteq L(S)
 - \star L(M) \cap L(S)^C = \varnothing
- Model checking problems are reduced to decision problems of formal languages
- Model checker: SPIN, MAGIC,...

Checking Context-free Specifications

- When S is a context-free specification
- Checking M|= S becomes undecidable

Obstacles

- Context-free languages (CFL) are not closed under intersection, complementation
- > The inclusion problem of CFL is undecidable
- Goals: Find a class of non-regular languages
 - > Enjoys closure properties, Inclusion problem is decidable
 - Robustness

Talk Outline

- Automata-theoretic based verification
 - Checking context-free specifications
 - Obstacles

- Visibly Pushdown Automata
 - ➤ Visibly Pushdown Languages
 - Determinization

- Visibly Stack Automata
 - Visibly Stack Languages
 - Determinization

Pushdown Automata (PDA)

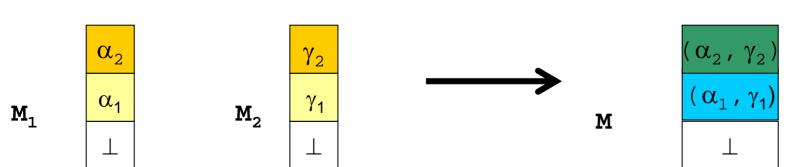
- Def. PDA (P, Σ , Γ , Δ , ρ ₀,Z₀,F) where
 - P: finite control locations
 - Γ: finite stack alphabet
 - Σ : finite input alphabet
 - $\Delta \subseteq (P \times \Gamma \times (\Sigma \cup \{\varepsilon\}) \times (P \times \Gamma^*))$: transition
 - p_0 : initial control location
 - Z_0 : initial stack symbol
 - F⊆P :final control locations
- Accepted ⇔ run reaches some control location in F
- PDA are not determinizable. PDA are closed under union, but not closed under intersection, complementation

Visibly Pushdown Automata (VPA)

- VPA was introduced by J. Alur and P.Madhusudan in 2004, [p.202-211, ACM-STOC's 04]
- Pushdown alphabet: partitioned into 3 disjoint sets $\Sigma = \Sigma_{\text{push}} \cup \Sigma_{\text{pop}} \cup \Sigma_{\text{local}}$
- A visibly pushdown automaton over a pushdown alphabet Σ is a pushdown automaton that
 - \triangleright pushes a symbol onto the stack on a symbol in Σ_{push}
 - \triangleright pops the stack on a symbol in Σ_{pop}
 - \succ cannot change the stack on a symbol in Σ_{local}

Visibly Pushdown Languages (VPL)

- A language L is a $\frac{VPL}{}$ over a pushdown alphabet Σ , if it is recognized by a VPA
- Examples
 - ightharpoonup L = { $a^nb^n \mid n \ge 1, a \in \Sigma_{push}, b \in \Sigma_{pop}$ }
 - > Every regular language L is a VPL
- VPLs are closed under:
 - > Union:
 - Intersection: Product construction works!
 - Complementation (see later)

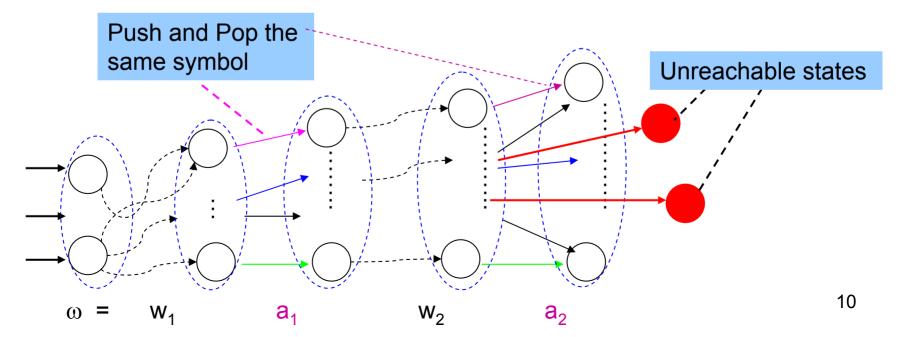


Decision Problems

- Given a nondeterministic A (n states), construct an equivalent deterministic B in size $O(2^{n/2})$.
- Emptiness: Decidable in polynomial-time (cubic)
- Language inclusion: L(A) ⊆ L(B) ?
 - ➤ Determinize B, take its complement, take product with A, and test for emptiness
 - Exponential-time complete
- VPLs is a subclass of DCFLs (languages defined by deterministic PDAs)
 - > DCFLs not closed under union, intersection
 - Equivalence problem for DCFLs decidable, but complex

Determinization: Key ideas

- Def. A word *u* is *well-matched* if
 - For each prefix \vec{u} of u, the number of Σ_{push} symbols in \vec{u} is at most the number of Σ_{pop} symbols in \vec{u} .
 - For each suffix u' of u, the number of Σ_{pop} symbols in u' is at most the number of Σ_{push} symbols in u'.



Determinization: Sketch of the construction

- Idea: a well-matched word preserves stack; thus regarded as internal transition (expressed as summaries S_i). Transitions by extra Σ_{push} symbols are postponed until corresponding Σ_{pop} symbols will be read.
- Determinized VPA will consist of :
 - Control locations : { (S,R) | S: summary, R: reachables}
 - Stack alphabet : { (S,R,a) | S, R; a∈ Σ_{push} }
 - The initial state (Id, P_{init}), where Id = $\frac{1}{2}(q,q)|q \in P$
 - Final states { (S,R) | R∩F $\neq φ$ },
 - where
 - $R \subseteq P$ = { all states reachable after a word W }
 - $S \subseteq P \times P = \{ \text{ all summaries on a well-marched word } w \}$ (i.e., $(q,q') \in S$, if (q,\perp) can reach to (q',\perp)).

Determinization: Sketch of transitions

- Let $w = w_1 c_1 w_2 c_2 \dots c_n w_{n+1}$, where c_i 's are in Σ_{push} , w_i 's are well matched words, let a be the next input.
 - Stack is $(S_n, R_n, c_n) \dots (S_1, R_1, c_1) \perp$
 - Control location is (S_{n+1}, R_{n+1}) ,
 - If $a \in \Sigma_{local}$: (S_{n+1}, R_{n+1}) is combined with transitions by a.
 - If $a \in \Sigma_{\text{push}}$: push $(S_{n+1}, R_{n+1}, c_{n+1})$ and control location is (id, q' | reachable from q \in R_{n+1} by a\)
 - If $a \in \Sigma_{pop}$: let *Update* be combination of transitions by c_n (push $\gamma \in \Gamma$), S_{n+1} , and transitions by a (pop same γ). *NewS* is S_n combined with *Update*, and *NewR* is R_n combined with *Update* (R_{n+1} is discarded).
 - where
 - $-R_i \subseteq P = Set of all states reachable after <math>w_1c_1...w_i$
 - $-S_i \subseteq P \times P = Set of all summaries on w_i$

Talk Outline

- Automata-theoretic based verification
 - Checking context-free specifications
 - Obstacles

- Visibly Pushdown Automata
 - ➤ Visibly Pushdown Languages
 - > Determinization
- Visibly Stack Automata
 - Visibly Stack Languages
 - Determinization

Stack Automata

- Stack automata: introduced by Ginsburg, Greibach and Harrison [JACM, No 2, Vol 14, pp.389-418, 1967]
- Stack automata = PDA + "read inside stack".

- More powerful than PDA. For instance, {aⁿbⁿcⁿ| n≥ 1}, {aⁿbⁿ^2|n≥1}
- Def. Stack alphabet: $\Sigma = \Sigma_{\text{push}} \cup \Sigma_{\text{pop}} \cup \Sigma_{\text{local}} \cup \Sigma_{\text{up}} \cup \Sigma_{\text{down}}$

Visibly Stack Automata (VSA) (1/2)

- Def. A VSA A over stack alphabet Σ : A = $\langle P, P_{in}, \Gamma, \uparrow, \delta, F \rangle$
 - P: finite set of control locations
 - $P_{in}\subseteq P$: set of initial control locations
 - Γ : finite stack alphabet, special symbols \bot , T
 - ↑ : stack pointer
 - F ⊆ P : set of final control locations
 - δ is a set of transitions $\langle \delta_{\text{puah}}, \delta_{\text{pop}}, \delta_{\text{local}}, \delta_{\text{up}}, \delta_{\text{down}} \rangle$,

```
\begin{split} \delta_{\text{push}} \subseteq & \ \mathsf{P} \times \Sigma_{\text{push}} \times \mathsf{P} \times \Gamma \setminus \{\bot,\mathsf{T}\}; \ \delta_{\text{pop}} \subseteq & \ \mathsf{P} \times \Sigma_{\text{pop}} \times \Gamma \times \mathsf{P}; \\ \delta_{\text{local}} \subseteq & \ \mathsf{P} \times \Sigma_{\text{local}} \times \mathsf{P} \ ; \delta_{\text{down}} \subseteq & \ \mathsf{P} \times \Sigma_{\text{down}} \times \Gamma \times \mathsf{P}; \ \delta_{\text{up}} \subseteq & \ \mathsf{P} \times \Sigma_{\text{up}} \times \Gamma \times \mathsf{P}; \end{split}
```

- $(q,a,\gamma,q') \in \delta_{up} (\gamma \neq \bot,T) \Leftrightarrow (q,a,\gamma',q') \in \delta_{up} (\gamma' \neq \gamma, \bot,T)$
- $(q,a,\gamma,q') \in \delta_{down} (\gamma \neq \bot,T) \Leftrightarrow (q,a,\gamma',q') \in \delta_{down} (\gamma' \neq \gamma, \bot,T)$

Visibly Stack Automata (2/2)

Properties:

- > Stack has form $T_{\gamma_n...\gamma_i} \uparrow_{\gamma_{i-1}...\gamma_1} \bot$
- > VSA can only push, pop when stack pointer at the top
- When stack is empty, pop is read but not popped
- Stack pointer cannot go beyond T or below \(\precedut
- \triangleright When pointer is reading \bot (T), down (up) is read but pointer does not move down (up)
- Def. A language L is a visibly stack language (VSL) if it is accepted by a VSA.
- Example: L={ $\underline{a^nb^nc^n}$ | $n\geq 1$, $a\in \Sigma_{push}$, $b\in \Sigma_d$, $c\in \Sigma_u$ }
- VSL class is a proper extension of VPL class

Closure properties & Decision problems

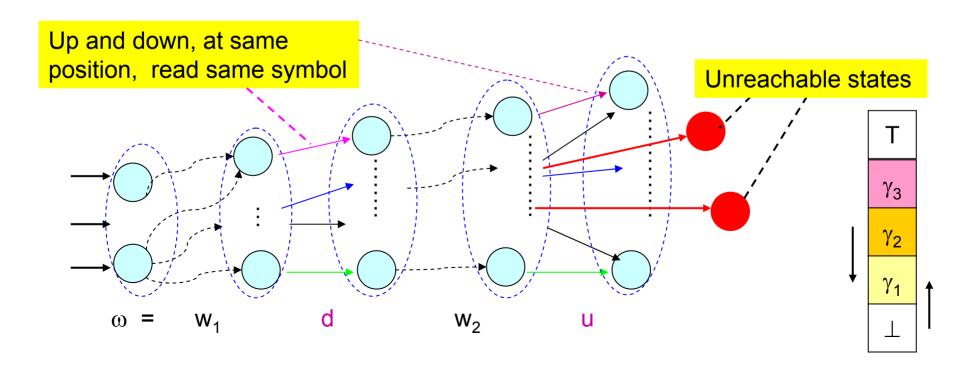
- Similar to VPLs, VSLs are closed under:
 - > Union, intersection, complementation
 - > Determinizable (more complicated, see later)

- Emptiness for stack automata is decidable!
 - D. Harel, Information and Computation, Vol. 113, No. 2, 278-299, 1994

 Inclusion problem is decidable for visibly stack languages.

Determinization: Key ideas

- Matching condition between push and pop symbols
- Read the same symbol, whenever pointer goes up, or goes down at the same position



Determinization: Some definitions

Def. A word u is an up-down segment if:

- 1. For each prefix u' of u, the number of Σ_{down} symbols in u' is at most the number of Σ_{up} symbols in u'.
- 2. For each suffix u'' of u, the number of Σ_{up} symbols in u'' is at most the number of Σ_{down} symbols in u''.
- 3. There is no push, pop symbols in u

Def. A word u is well-matched if:

- 1. For each prefix u' of u, the number of Σ_{push} symbols in u' is at most the number of Σ_{pop} symbols in u'.
- 2. For each suffix u'' of u, the number of Σ_{pop} symbols in u'' is at most the number of Σ_{push} symbols in u''.
- For each up (down) symbol a of u, a must belongs to an updown segment ud, ud is a subword of u.

Determinization: Sketch of the construction

- Determinized VSA will consist of :
 - Control locations: { (S,R) | S: summary, R: reachables}
 - \triangleright Stack alphabet : { (S,R,a) | S, R; a∈Σ_{push}}
 - \triangleright The initial state (Id,P_{init}), where Id = {(q,q)| q ∈ P}
 - \triangleright Final states { (S,R) | R\cap F \neq \phi\},
 - where
 - $-R \subseteq P = \{all \text{ states reachable after a word } w\}$
 - S (⊆ P×P) = {all summaries on a well-marched word w} (i.e., $(q,q') \in S$, if $(q,T^{\uparrow}\bot)$ can reach to $(q',T^{\uparrow}\bot)$).

Determinization: Sketch of transitions

- Let $w = w_1 c_1 w_2 c_2 ... c_n w_{n+1}$, where c_i 's are in Σ_{push} , w_i 's are well matched words, let a be the next input.
 - Stack is $T \uparrow (S_n, R_n, c_n) \dots (S_1, R_1, c_1) \perp$
 - Control location is (S_{n+1}, R_{n+1}) ,
 - If $a \in \Sigma_{local}$: (S_{n+1}, R_{n+1}) is updated using subset construction with transitions by a.
 - If a $\in \Sigma_{\text{down}}$: (S_{n+1}, R_{n+1}) is updated with transition by a. Stack now is $\mathsf{T}(S_n, R_n, c_n) \uparrow \dots (S_1, R_1, c_1) \bot$
 - If $\mathbf{a} \in \Sigma_{\text{up}}$: (S_{n+1}, R_{n+1}) is updated with transitions by a, the pointer cannot go up. Stack stays unchanged, $\mathsf{T} \uparrow (S_n, R_n, c_n) ... (S_1, R_1, c_1) \bot$
 - where
 - $-R_i \subseteq P = Set of all states reachable after <math>w_1 c_1 ... w_i$
 - $-S_i \subseteq P \times P = Set of all summaries on w_i$

Determinization: Sketch of transitions

- If $a \in \Sigma_{\text{push}}$: push $(S_{n+1}, R_{n+1}, c_{n+1})$ and control location is (id, $\{ q' \mid \text{reachable from } q \in R_{n+1} \text{ by } a \}$). Stack now is $T \uparrow (S_{n+1}, R_{n+1}, c_{n+1})(S_n, R_n, c_n)...(S_1, R_1, c_1) \bot$
- If $a \in \Sigma_{pop}$: let *Update* be combination of transitions by c_n (push $\gamma \in \Gamma$), S_{n+1} , and transitions by a (pop same γ). *NewS* is S_n combined with *Update*, and *NewR* is R_n combined with *Update* (R_{n+1} is discarded). Stack now is $T \uparrow (S_{n-1}, R_{n-1}, c_{n-1})...(S_1, R_1, c_1) \bot$
 - where
 - $-R_i \subseteq P = Set of all states reachable after <math>w_1 c_1 ... w_i$
 - $-S_i \subseteq P \times P = Set of all summaries on w_i$

Conclusion

- Proposed the class of visibly stack languages recognized by visibly stack automata
- To our knowledge, to date, VSLs is the largest class which enjoys closure properties. All the decision problems are decidable for VSA.
- Infinite words:
 - Visibly Büchi pushdown automata [AM04]
 - > Visibly Büchi stack automata
 - Closure properties, not determinizable, but language inclusion is still decidable!

Thank for your attention!