A note on the weak topology for the constructive completion of the space $\mathcal{D}(\mathbb{R})$

Satoru YOSHIDA CVS/AIST

4th VERITE March 6, 2007

Constructive mathematics is a framework of study for computability in mathematics.

Today we consider computability in generalized function theory, via constructive mathematics.

$\S1$ Introduction

The space $\mathcal{D}(\mathbb{R})$ is an important example of a non-metrizable locally convex space.

A *distribution* (or *generalized function*) is a sequentially continuous linear functionals on $\mathcal{D}(\mathbb{R})$ (a sequentially continuous linear function from $\mathcal{D}(\mathbb{R})$ into \mathbb{R}).

We had not had the start of constructive theory of generalized functions until the following problems, given by the 1960's monograph of Bishop, were solved:

- 1. How constructively difficult is the completeness properties of $\mathcal{D}(\mathbb{R})$ and its dual space $\mathcal{D}^*(\mathbb{R})$ (i.e. the space of distributions)?
- 2. Can we take the natural forms of the constructive completions of $\mathcal{D}(\mathbb{R})$ and $\mathcal{D}^*(\mathbb{R})$ respectively ?

These problems are solved by the following results:

(1a) $\mathcal{D}(\mathbb{R})$ is complete if and only if the principle **BD-** \mathbb{N} is can be proved [Ishihara and Y,'02].

(2) The constructive completion $\widetilde{\mathcal{D}}(\mathbb{R})$ of $\mathcal{D}(\mathbb{R})$ is obtained by generalizing every element (test functions) of $\mathcal{D}(\mathbb{R})$ [Y, '05].

(1b) The dual space $\tilde{\mathcal{D}}^*(\mathbb{R})$ of $\tilde{\mathcal{D}}(\mathbb{R})$ is equal to the dual space $\mathcal{D}^*(\mathbb{R})$ as sets, and the weak completeness of $\mathcal{D}^*(\mathbb{R})$ can be proved [Y, '03].

$$\underbrace{\mathcal{W}eakly \ complete}_{\rightarrow} \quad \widetilde{\mathcal{D}}^{*}(\mathbb{R}) = \mathcal{D}^{*}(\mathbb{R}) \quad (*: \ dual \ spaces)$$

$$(1b) \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad (\sim: \ completion) \quad \widetilde{\mathcal{D}}(\mathbb{R}) \neq \mathcal{D}(\mathbb{R}) \qquad (2) \quad (1a) \qquad (1a) \qquad (*: \ dual \ spaces)$$

Fig. The spaces $\mathcal{D}(\mathbb{R})$ and $\widetilde{\mathcal{D}}(\mathbb{R})$ in Bishop's constructive mathematics.

Here

1a $\mathcal{D}(\mathbb{R})$ is complete if and only if BD-N can be proved. Notes:

A subset A of \mathbb{N} is *pseudobounded* if $\forall \{a_n\} \in A^{\mathbb{N}} \exists N \in \mathbb{N}[a_n < n] \quad (n \ge N).$

A bounded subset of $\ensuremath{\mathbb{N}}$ is pseudobounded.

BD- \mathbb{N} : every countable *pseudobounded* subset of \mathbb{N} is bounded.

BD-N can be proved in <u>classical mathematics</u>,
<u>Brouwer's intuitionistic mathematics</u> and <u>constructive recursive mathematics of Markov's school</u>, but not in Bishop's constructive mathematics.

2 The constructive completion $\widetilde{\mathcal{D}}(\mathbb{R})$ is obtained by generalizing every element (test functions) of $\mathcal{D}(\mathbb{R})$

Note:

- A *test function* is an infinitely differentiable function on \mathbb{R} with *compact support*.
- A element of $\widetilde{\mathcal{D}}(\mathbb{R})$ is an infinitely differentiable function on \mathbb{R} with *pseudobounded support*.

1b The weak completeness of the dual space $\mathcal{D}^*(\mathbb{R})$ holds.

This matter follows from the Banach-Steinhaus theorem for $\mathcal{D}(\mathbb{R})$: for a sequence $\{u_k\}$ of distributions (sequentially continuous linear functionals on $\mathcal{D}(\mathbb{R})$), if the sequence $\{u_k(\phi)\}$ converges in \mathbb{R} for any ϕ in $\mathcal{D}(\mathbb{R})$, then the limit u exists and is a distribution.

The completeness of $\mathcal{D}(\mathbb{R})$ is not necessary for proving the weak completeness of $\mathcal{D}^*(\mathbb{R})$, although many classical proofs require it.

Now this version of Banach-Steinhaus theorem was proved by showing the following properties.

- The Banach-Steinhaus theorem for the completion $\widetilde{\mathcal{D}}(\mathbb{R})$.
- every distribution is uniquely extended to $\widetilde{\mathcal{D}}(\mathbb{R})$.

In particular, the second implies that $\widetilde{\mathcal{D}}^*(\mathbb{R}) = \mathcal{D}^*(\mathbb{R})$ as <u>sets</u>.

We then have a question: is $\widetilde{\mathcal{D}}^*(\mathbb{R})$ topologically equivalent to $\mathcal{D}^*(\mathbb{R})$?

We discuss this problem in this talk.

$\widetilde{\mathcal{D}}^*(\mathbb{R}) \stackrel{?}{\simeq} \mathcal{D}^*(\mathbb{R})$ (*: dual spaces) $\uparrow \qquad \uparrow$ (~: completion) $\widetilde{\mathcal{D}}(\mathbb{R}) \neq \mathcal{D}(\mathbb{R})$

Fig. The spaces $\mathcal{D}(\mathbb{R})$ and $\tilde{\mathcal{D}}(\mathbb{R})$ in Bishop's constructive mathematics.

Contents

- 1. Introduction
- 2. Preliminary
 - (a) The principle BD- \mathbb{N} in constructive mathematics
 - (b) Locally convex spaces
- 3. The space $\mathcal{D}(\mathbb{R})$ and its completion $\widetilde{\mathcal{D}}(\mathbb{R})$
- 4. The dual spaces $\mathcal{D}^*(\mathbb{R})$ and $\widetilde{\mathcal{D}}^*(\mathbb{R})$

§2 Preliminary

(2a) The principle $BD-\mathbb{N}$ in constructive mathematics

BHK(Brouwer-Heyting-Kolmogorov)-interpretation

	constructive math.	classical math.
	we can judge	
$P \lor Q$	P or Q	$\neg P$ and $\neg Q$
	by finite procedures	imply a contradiction
	we can construct c	
$\exists x P(x)$	such that $P(c)$	" $\neg P(x)$ for all x "
	by finite procedures	implies a contradiction

Under this interpretation, **Principle of Excluded Middle (PEM)** for all proposition $P, P \lor \neg P$ and its negation cannot be proved.

Bishop's constructive mathematics is mathematics with BHK-interpretation.

The three frameworks of constructive mathematics:

- Brouwer's intuitionistic mathematics
- Constructive recursive mathematics of Markov's school
- Bishop's Constructive mathematics

Fig.2.1 The sets of theorems in the four frameworks

(2b) Locally convex spaces

Let X be a vector space over \mathbb{R} .

A mapping $p: X \to \mathbb{R}^{0+}$ is a **seminorm** on Xif it satisfies that for $x, y \in X$ and $\lambda \in \mathbb{R}$, (1) $p(x+y) \leq p(x)+p(y)$ and (2) $p(\lambda x) = |\lambda|p(x)$.

A pair $(X, \{p_i\})$ is **locally convex space** over \mathbb{R} if for all index *i* and *x* in *X*, whenever $p_i(x) = 0$ then x = 0.

$$\{x_n\}$$
 converges to x in $X \Leftrightarrow^{\mathsf{def}}$
 $\forall k \in \mathbb{N} \forall i \in I \exists N \in \mathbb{N} \left[n \ge N \implies p_i(x - x_n) < 2^{-k}\right].$

Let u be a linear functional on X.

u is **sequentially continuous** on $X \Leftrightarrow^{\mathsf{def}}$ for each sequence $\{x_n\}$ in X and $x \in X$ $\{x_n\}$ converges to x in X \implies the sequence $\{u(x_n)\}$ converges to u(x) in \mathbb{R} .

The dual space X^* with weak topology of a locally convex space $(X, \{p_i\})$ is a locally convex space of sequentially continuous linear functionals on X, with the seminorms $\{\|\cdot\|_x\}$ defined by $\|u\|_x := |u(x)|$ $(x \in X)$.

§3 The space $\mathcal{D}(\mathbb{R})$ and its completion $\widetilde{\mathcal{D}}(\mathbb{R})$

The set supp f denotes the closure of the set $\{x \in \mathbb{R} : |f(x)| > 0\}$ in Euclid space \mathbb{R} .

Set $\operatorname{supp}_{\mathbb{N}} f := \{0\} \cup \{n \in \mathbb{N} : \exists q \in \mathbb{Q}[|q| \ge n \land |f(q)| > 0]\}.$

Notes that for a continuous function f, supp f is bounded \iff $supp_{\mathbb{N}}f$ is bounded.

Example 1 (The bump function).

$$\phi(x) = \begin{cases} \exp\left(-\frac{1}{1-x^2}\right) & \text{if } |x| < 1\\ 0 & \text{if } |x| \ge 1. \end{cases}$$

Then supp $\phi = [-1, 1]$ and supp $_{\mathbb{N}}\phi = \{0\}$.

Fig.3.2 An example of a test function: the bump function

f has compact support $\stackrel{\text{def}}{\Leftrightarrow}$ supp*f* is bounded.

f has pseudobounded support $\stackrel{\text{def}}{\Leftrightarrow}$ supp_Nf is pseudobounded.

A *test function* is an infinitely differentiable functions from \mathbb{R} into it itself with compact support.

 $\mathcal{D}(\mathbb{R})$ denotes the locally convex space of test functions with the seminorms

$$p_{\alpha,\beta}(\phi) := \sup_{n} \max_{l \leq \beta(n)} \sup_{|x| \geq n} 2^{\alpha(n)} \left| \phi^{(l)}(x) \right| \quad (\phi \in \mathcal{D}(\mathbb{R}), \alpha, \beta \in \mathbb{N} \to \mathbb{N}).$$

 $\widetilde{\mathcal{D}}(\mathbb{R})$ denotes the locally convex space of infinitely differentiable functions on \mathbb{R} with pseudobounded support, taken with the seminorms $\{p_{\alpha,\beta}\}$.

§4 he dual spaces $\mathcal{D}^*(\mathbb{R})$ and $\widetilde{\mathcal{D}}^*(\mathbb{R})$

Theorem 2 (Y, '03). Every distribution is uniquely extended to $\widetilde{\mathcal{D}}(\mathbb{R})$.

That is, $\mathcal{D}^*(\mathbb{R}) = \widetilde{\mathcal{D}}^*(\mathbb{R})$ as sets.

Theorem 3. A sequence $\{u_n\}$ of distributions converges to 0 in $\mathcal{D}^*(\mathbb{R})$ if and only if it does in $\tilde{\mathcal{D}}^*(\mathbb{R})$.

(Proof) We consider the part "only if".

It is sufficient to show that if $\{u_n\} \to 0$ in $\mathcal{D}^*(\mathbb{R})$, then $\{u_n\} \to 0$ in $\widetilde{\mathcal{D}}^*(\mathbb{R})$.

That is, we show that $\{u_n(\phi)\} \to 0$ for all $\underline{\phi} \in \mathcal{D}^*(\mathbb{R})$, then $\{u_n\} \to 0$ for all $\phi' \in \widetilde{\mathcal{D}}^*(\mathbb{R})$. Let $\{u_n\}$ be a given sequence of distributions, ϕ be in $\widetilde{\mathcal{D}}(\mathbb{R})$, and any k in \mathbb{N} .

We can then construct some ϕ' in $\mathcal{D}^*(\mathbb{R})$ such that for some N in \mathbb{N} , $|u_n(\phi')| < 2^{-(k+1)} \rightarrow |u_n(\phi)| < 2^{-k} \quad (n \ge N).$

(q.e.d)

We again note that

Given a sequence $\{u_n\}$ of distributions and an element ϕ in $\widetilde{\mathcal{D}}(\mathbb{R})$, we can construct a test function ϕ' such that for some N in \mathbb{N} ,

$$||u_n||_{\phi'} < 2^{-(k+1)} \to ||u_n||_{\phi} < 2^{-k} \quad (n \ge N)$$

That is, $\widetilde{\mathcal{D}}^*(\mathbb{R})$ is equal to $\mathcal{D}^*(\mathbb{R})$ w.r.t. convergence.

$\widetilde{\mathcal{D}}^*(\mathbb{R}) \simeq \mathcal{D}^*(\mathbb{R})$ (*: dual spaces) $\uparrow \qquad \uparrow$ (~: completion) $\widetilde{\mathcal{D}}(\mathbb{R}) \neq \mathcal{D}(\mathbb{R})$

Open question:

Is $\widetilde{\mathcal{D}}^*(\mathbb{R})$ equal to $\mathcal{D}^*(\mathbb{R})$ w.r.t. neighbourhoods?

Reference

Satoru Yoshida, A note on weak topology for the constructive completion of the space $\mathcal{D}(\mathbb{R})$, http://unit.aist.go.jp/cvs/tr-data/ps07-001.pdf