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あらまし Recently, the use of blogs has been a remarkable means to publish user interests. In order to find suitable informa-

tion resources from a large amount of blog entries which are published every day, we need an information filtering technique

to automatically transcribe user interests to a user profile in detail. In this paper, we first classify user blog entries into ser-

vice domain ontologies and extract interest ontologies that express a user’s interests semantically as a hierarchy of classes

according to interest weight by a top-down approach. Next, with a bottom-up approach, users modify their interest ontologies

to update their interests in more detail. Furthermore, we propose a similarity measurement between ontologies considering

the interest weight assigned to each class and instance. Then, we detect innovative blog entries that include concepts that

the user has not thought about in the past based on the analysis of approximated ontologies of a user’s interests. We present

experimental results that demonstrate the performance of our proposed methods using a large-scale blog entries and music

domain ontologies.
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1. Introduction

Blogs are becoming more popular for publishing and discussing

interests among users who share interests between each other. In

blog search, users can automatically pull blog entries from RDF

Site Summary (RSS)（注1）feed by entering keywords about their in-

terests beforehand. Information-sharing systems of this type have

the potential to enable users to expand their interests by browsing

collected blog entries published by other users in blog communities.

However, information retrieval in current blog services relies only

on keyword searches of blogs using Google or based on simple

metadata such as that of an RSS. Moreover, there is no function

to generate personalized searches easily, so users need to consider

and enter search keywords that suit their own interests appropriately.

Such a keyword search is time consuming and troublesome. More-

over, users cannot perform a keyword search if they do not under-

stand what they want to search for to some degree beforehand. Thus,

（注1）：http://blogs.law.harvard.edu/tech/rss

when keywords cannot be specified, information retrieval from blog

entries often cannot be performed even if users might become inter-

ested in a topic.

To counteract the above problems, in the research on Adaptive

Information Filtering (AIF) [2], the user profile is constructed co-

operatively with a user, and recommendations based on the profile

are offered. Making a user profile interactively beforehand is good

for offering recommendations to users, as indicated by the high-

accuracy performance of AIF. A common complaint about AIF is

the user’s task of making his/her own profiles, and a user often en-

counters known information many times because he/she cannot dis-

tinguish documents including new information in the recommenda-

tion results.

For filtering these redundant documents, researchers on novelty

detection [8] define novelty as a document that includes new in-

formation that is relevant to a user profile. They extract relevant

documents from a document stream. Then, they classify the doc-

uments as novel or not, and provide novelty documents to users.

However, detecting novelty provides documents with information

09 – 01



that includes concepts only in a user profile.

In this paper, we define innovation [5] as new concepts which

seem to be interesting to the user even though they are not included

in a user profile. Then, we try to expand user interests significantly

by recommending innovative information. Especially, we adopt in-

novation detection to blogs because they become a popular archi-

tecture of publishing and searching information that expands user

interests.

For achieving above-mentioned purpose, we first construct user

profile automatically as a user-interest ontology, which is a class hi-

erarchy of user interests with interest weights. Then, we propose

measuring the similarity of interest ontologies considering the de-

gree of interest agreement to each class and instance. We apply our

techniques to help users create a blog community by browsing in-

novative blog entries which include information unknown to users

with a high probability of being interesting.

The specific contributions of this paper are the following.

• First, in order to analyze user interests in detail, we pro-

pose an automatic extraction of an interest ontology with an inter-

est weight assigned to each class and instance. Bloggers are apt

to describe their interests about topics in several service domains

freely. Thus, we use blog entries for specifying user interests by in-

troducing a template ontology, which is a domain ontology of each

service. We classify user entries according to a template ontology,

and remove classification mistakes by using class characteristics and

continuity of descriptions about user interests. This mechanism of

improving entry classification is one of the reasons for applying the

ontology technique to our research.

• We propose measuring the similarity between interest on-

tologies that have interest weight. By introducing interest ontolo-

gies, we can help users create interest-based communities consider-

ing the width and depth of concepts of users’ interests. Furthermore,

we can calculate the similarity between ontologies more accurately

than in previous ontology mapping techniques from the viewpoint

of the agreement of the weights of user interests. Then, we can de-

tect innovative blog entries for each user u by analyzing the classes

C of other users’ ontologies that have a high similarity to the ontol-

ogy of the user u though the interest ontology of user u lacks those

classes C. This new approach of recommending innovative infor-

mation is another reason for applying the ontology technique to our

research.

• We describe a comprehensive set of experiments. Our ex-

perimental results are based on a large number of blog entries

(1,600,000 entries of 55,000 users) and a music template ontology

(114 classes and 4,300 instances). We confirm that our automatic

ontology extraction and innovation detection have potential for cre-

ating a user-oriented blog community according to user interests.

We also investigate the appropriate granularity of a community by

analyzing the similarity of users’ interests among the community

extracted by our similarity measurements.

The paper is organized as follows. Section 2. introduces related

works. Section 3. describes our automatic user-interest ontology-

extraction, and Section 4. describes innovative blog-entry detection

by our similarity measurement. Section 5. describes our experimen-

tal study, and Section 6. concludes this paper.

2. Related works

Many online content providers such as Amazon（注2）, offer rec-

ommendations based on collaborative filtering (CF) [6] which is a

broad term for the process of recommending items to users based on

the intuition that users within a particular group tend to behave sim-

ilarly under similar circumstances. One advantage of previous CF

techniques is that they can recommend relevant items that are differ-

ent from those in a user’s profile. However, they cannot detect inno-

vative blog entries because only the similarity between user profiles

based on instances such as selling items is measured. Therefore, CF

often offers items that have the same concept to users. We want blog

users to expand their interests by detecting innovative blog entries

whose information is not included in the concepts (classes) of their

interest ontology.

For applying a semantic approach to retrieving information from

a blog, semblog [7] tries to construct a user profile using a personal

ontology which is a manual construction of a users’ classification

of blog entries in a category directory of the ontology according to

their interests. A category directory is built by users beforehand to

construct an ontology-mapping-based search framework. However,

manual ontology creation is a time-consuming and troublesome task

for users, and applying a semantic ontology to a blog community is

difficult. We automatically extract a user-interest ontology; thus,

creating and updating ontologies is easy for users.

In researches of ontology mapping [1, 3], similarity measure-

ments considering approximation of classes and class topologies are

proposed in [3]. In addition to class topology, we consider each

user’s weighted interest in each class and instance. Furthermore, in

analyzing conjunctions in class topologies of ontologies with high

similarity scores, we detect innovative instances that a user does not

have in his/her ontology, though other users have them with a high

probability.

3. Interest ontology extraction

We first explain the template ontology design of each service do-

main such as those of content delivery services of music and movies

and then describe an automatic method of extracting interest ontolo-

gies.

3. 1 Design for template ontology

We use OWL (Web Ontology Language) [4] for describing a tem-

plate ontology. We can express a domain ontology in detail using

OWL. However, the generation and spread of a detailed ontology is

（注2）：http://www.amazon.com
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図 1 Procedure for designing template ontology.

obstructed because users have difficulty of designing it. Therefore,

we design template ontologies as lightweight ontologies that only

use a hierarchical relationship among the classes and a property

description restricts the succession condition of a class hierarchy.

Then, we automatically extract an interest ontology by classifying

user blog entries into template ontologies without user intervention

in Section 3. 2.

As shown in Fig. 1, first, the ontology designer chooses a service

domain for extracting user interests. Then, the designer chooses

metadata that reflects user interests. In a music domain, the de-

signer chooses metadata of genres or artists, considering the ex-

sisting community is generated with such metadata. Finally, the

designer chooses metadata as a restriction property of a class hi-

erarchy and classifies other metadata as instances of classes. For

example, the designer chooses genres as a property and classifies

artists as instances of classes. In this way, we distinguish classes

from instances and define the characteristics of classes based on the

restriction properties of a class hierarchy and classified instances.

We make use of these class characteristics to improve the accuracy

of interest ontology generation in Section 3. 2.

The service designers only has to construct a template ontology

with the intended domains and gradually increase the number of

ontologies along with expanding the service. Designers also should

adjust granularity of the end classes for reflecting user interests in

detail. Fortunately, content directories such as goo music（注3） set

granularity in detail for users to browse contents according to their

interests. Therefore, we first construct template ontologies accord-

ing to these directories and evaluate the granularity through the anal-

ysis in Section 5..

3. 2 Interest ontology generation algorithm

We explain our interest ontology generation algorithm by analyz-

ing the interest distribution of users, as shown in Fig. 2.

3. 2. 1 Basic ontology generation algorithm

First, we describe the basic ontology generation algorithm

(BOGA) as follows.

（注3）：http://music.goo.ne.jp/
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図 2 Procedure for generating interest ontologies.

(1) First, we make index files for all blog entries collected through

the ping server. Here, we assume that collected blog entries have a

unique user ID.

(2) Second, we classify all collected blog entries into a template

ontology. We classify blog entry Ei into class Ci if there is a name

attribute value of Ci in Ei. We also classify blog entry Ei into in-

stance Ii(∈ Ci) if there is a name attribute value of Ii in Ei. We

permit the blog entries to be classified into two or more classes. For

example, consider the template ontology in Fig. 2. We classify the

blog entry into instance ”Happy Mondays” of class ”Madchester”

when there is a ”Happy Mondays” character string in the descrip-

tion in the blog entry.

(3) Then, we measure the number of interested users in each in-

stance of Ce, which is one of the end classes in the template on-

tology. On calculating the number of interested users, we count

the number of users as one, even if the same user is describing the

same instance or class in two or more blog entries. We calculate

the number of interested users in class Ce by obtaining the num-

ber of interested users in all instances in Ce and in class Ce. Thus,

the interested user distribution in the domain can be measured by

recurrently counting the number of users from Ce to the root class

Cr .

(4) Next, by extracting only the classification results about a user

ID from all classification results, we can extract an interest ontol-

ogy for this user ID. In Fig. 2, we can extract an interest ontology

of user A when the blog entries of this user describe instances of

”Stone Temple Pilots”, ”New Order”, and ”Farm”.

(5) Finally, the user inspects and updates the interest ontology ac-

cording to their interests. Furthermore, we can develop a template

ontology that is more suitable by merging this modified information

into a template ontology.

3. 2. 2 Ontology filtering algorithms

For example, BOGA classifies blog entries that describe ”Farm”,

which means an agricultural farm, into the instance ”Farm” of class

”Madchester”. For filtering these mistakes caused by words with

several meanings, we make use of the following characteristics such

as class relationships in ontologies and durability of user interests in

a blog.
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• Instances that belong to the same class have the same char-

acteristics.

• Adjacent classes have similar characteristics. Instances of

those classes also have similar characteristics.

• User interests that continue for a certain period and describe

an interest for two or more days.

We propose two filtering algorithms FA1 and FA2. First, we ex-

plain FA1.

a ) Filtering algorithm 1

We subdivide procedure (2) of BOGA for performing FA1.

(2-1) When the name attribute value n(Ii) of instance Ii(∈ Ci)

is described in blog entry Ei, FA1 checks whether a name at-

tribute value of an instance of the same class (concept) Ik{(Ik ∈
Ci) ∩ (Ik |= Ii)} or Ci is described in all blog entries that the user

accumulates. We call instances Ik and Ci classification decision

elements(CDEs).

(2-2) Entry Ei is classified as mentioning instance Ii when there

is a description of CDEs, and not classified in Ii when there is no

description. In Fig. 3, when the description of ”Farm” exists in Ei,

and ”New Order” is described among all accumulation blog entries

of a user, Ei is assumed to be a blog entry about instance ”Farm” of

”Madchester” and classified.

b ) Filtering algorithm 2

We propose filtering algorithm 2 (FA2) whose classification is

stronger than FA1. In procedure (2-1) of FA1, FA2 checks whether

CDEs are described in blog entry Ei. Then, blog entry Ei is classi-

fied in Ii when there is a description of CDEs, and not classified in

Ii when there is no description.

3. 2. 3 Adjusting the range of CDEs

We give a mechanism that adjusts the range of CDEs by using

the class hierarchy. We consider that descriptions of classes and in-

stances of interest often appear with instances of the neighboring

classes. We add a new adjustment parameter, hop, which defines

the range of CDEs. In Fig. 3, we assume brother classes, the grand-

father class, and instances that belong to each of CDEs when there
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図 4 Applying interest weight to ontology.

are two hops from end classes.

3. 3 Introducing interest weight to ontology

In addition, we introduce the interest weight as a parameter that

shows the degree of a user’s interest in each class and instance of

an interest ontology. By using this parameter, we can create a com-

munity among users who have almost the same degree of interest in

the same classes or instances.

Here, we define interest weight, as shown in Fig. 4. First, the

interest weight of every blog entry is one. Second, if there are

N(Ei) kinds of name attribute values of interest classes and in-

stances that appear in blog entry Ei, the interest weight of each

class and instance in Ei becomes 1/N(Ei). Third, when we define

the set of all accumulation blog entries of a user as E, the interest

weight S(Ii) of each instance Ii is S(Ii) =
∑|E|

(Ii∈Ei)
(1/N(Ei)),

and the interest weight S(Ci) of each class Ci is S(Ci) =
∑|E|

(Ci∈Ei)
(1/N(Ei))+

∑
Ii∈Ci

S(Ii). Fourth, the interest weight

of the instances is reflected in that of the class that includes the

instance. The interest weight of the classes is reflected in that of

the super class. For example, in Fig. 4-(b), we give the inter-

est weight of instance ”Elf Power” as 1/2, instance ”R.E.M.” as

1/4+1/2 = 3/4, class ”Elephant 6” as 1/2, and class ”Athens” as

1/2 + 3/4 + 1/2 + 1/4 = 2.

4. Detecting innovative blog entries using simi-
larity measurements

We propose measuring the similarity between ontologies consid-

ering interest weight. Then, we describe innovative blog-entry de-

tection and community creation support based on the analysis of

interest ontologies with high similarity.

4. 1 Interest-weight-based similarity measurement

We now explain our similarity measurement in detail by using

Fig. 5.

We first define terminologies. We give interest ontology OA of

user A and OB of user B, topology T1, which is defined as the re-

lation between a class and subclasses, and topology T2, which is

defined as the relation between a class and instances. Furthermore,

we define common classes of both ontologies as Ci, and common
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図 5 Measuring similarity based on the degree of interest agreement.

instances as Ii. In particular, we define common class set, C(T1),

as that which characterizes topology T1, and common class set,

C(T2), as that which characterizes topology T2. For example, in

Fig. 5, C(T1) has common classes a1 and b2, and C(T2) has com-

mon classes b2, b3, and c4. We also give the degree of interest

agreement of common instance Ii as I(Ii), that of common class Ci

as I(Ci), and that of common topology created by common class

Ci as It(Ci).

In [3], the authors calculate the similarity between ontologies

considering the degree of similarity between class topologies T1.

In addition, we take the following ideas from the view point of cre-

ating a user-interest-based community.

• Evaluating the degree of interest agreement between Cis and

Iis as a smaller value of interest weight. This idea is for filtering

users who only enumerate a lot of instances in an entry, and creat-

ing a community among users who have similar or larger interest

weight values from the viewpoint of each user.

• Separately treating topologies T1 and T2 because we con-

sider that T1 reflects the width and depth of a user’s interests and T2

(1) Extracting interest ontology.

Blog entries of user B

(2) Measuring similarity.

(4) Creating community by browsing 
recommended entry

(3) Recommending innovation entries.
User A can become interested in artist
“Elf Power” through innovation entries. 
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Alternative
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Mondays 
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Athens Elephant 6
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Control

Coldplay

(1) Extracting interest ontology.

Elf Power

R.E.M.

Rock Alternatiive
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Happy 
Mondays 

Shoegaze 

Coldplay

Galaxie 
500 

New Order 

My Bloody Valentine 

Blog entries of user A

図 6 Community creation service of recommending innovative blog en-

tries.

reflects the objects in which users are interested.

• Achieving a low computational complexity by generating the

class schema of user-interest ontologies accroding to that of tem-

plate ontologies. This is important for ontology mapping to adopt

large-scale dataset of blog community such as that of our experi-

ments in Section 5..

(1) We analyze classes common to OA and OB and extract com-

mon classes which belong to C(T1) and C(T2).

(2) When common class Ci has common instance Ii between on-

tologies, we assign the smaller value of the interest weight of com-

mon instances Ii to I(Ii). For example, I(a) is 2.

(3) Similarly, we assign the smaller value of the interest weight

of common class Ci to I(Ci). For example, I(b1) is 3.

(4) We define product sets of subclasses of Ci, which are com-

mon to a class set, as N(Ci), and the set union of subclasses

of Ci among Ci ∈ C(T1) as U(Ci). For example, N(a1) =

{b1, b2} and U(a1) = {b1, b2, b3}. Then, we give It(Ci) as∑
Cj∈N(Ci)

I(Cj)

|U(Ci)| . For example, It(a1) is given by (3 + 18 +

0)/3 = 7. Thus, we obtain degree of interest agreement S(T1)

of C(T1) as
∑

Ci∈C(T1)
It(Ci). In Fig. 5, S(T1) = (3 + 18 +

0)/3 + (9 + 3)/2.

(5) We also define an instance set of Ci in ontology OA as

IA(Ci), and an instance set of Ci in ontology OB as IB(Ci) among

Ci ∈ C(T2). Then, we give It(Ci) as

∑
Ii∈Ci

I(Ii)

|IA(Ci)∪IB(Ci)| . For ex-

ample, It(c3) is given by ((2 + 0 + 3 + 0)/4) = 5/4. Thus,

we assign the degree of interest agreement S(T2) of C(T2) as
∑

Ci∈C(T2)
It(Ci). In Fig. 5, S(T2) = 2/1 + 5/4 + 0.

(6) By using evaluation function f(X) corresponding to the rela-

tive degree of importance of a topology, we finally assign the simi-

larity score between ontologies SO(AB) as S(T1) + f(S(T2)).

4. 2 Innovative blog-entry detection

We adopt our similarity measurement to innovative blog-entry de-

tection.

(1) We calculate the similarity between the ontology of user A and

ontologies of other users in set U . By using the heuristic threshold

X, we derive X users who have a high similarity to user A as an

interest-sharing community GU .

(2) Then, we analyze difference instances between the ontology

of user A and ontologies of GU . We also define a parameter, de-
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gree of innovation, which indicates how many hops we need to get

from difference instances of an ontology of GU to the class of the

ontology of user A. In Fig. 6, we need 3 hops to go from differ-

ence instance ”Elf Power” of ontology of user B to class ”Rock”

of ontology of user A. By recommending blog entries with a high

degree of innovation, users may significantly expand their interests.

Otherwise, users may receive new concept with a low degree of in-

novation comparatively more acceptable.

(3) Finally, we extract innovative instances GI , which user A

does not have, even though users in GU have with a high possi-

bility, and recommend innovative blog entries about GI for user A

with innovation degree.

Fig. 6 depicts an example of our community creation. We can

analyze whether a user who is interested in instance ”Happy Mon-

days” of class ”Madchester” and so on has a possibility to become

interested in instance ”Elf Power” of class ”Elephant 6”. By brows-

ing blog entries concerning these innovative instances, users expand

their interests and share interests with each other.

5. Experimental results

We now present experimental results that show the performance

of interest ontology extraction and innovative blog-entry detection.

5. 1 Datasets and methodology

We evaluated the performance of our proposed methods based on

the large-scale blog portal Doblog（注4）, which has 1,600,000 blog

entries of 55,000 users. We also used the template ontology of the

music domain, as shown in Fig. 2, which was created referring to

public information about web portals such as goo music. Our exper-

imental template ontology contains 114 classes as genres and 4,300

artists as instances, and each class and instance have two or more

name attribute values. For example, the instance ”R.E.M.” has the

name attribute values of ”R.E.M.” and ”REM”. Thus, we gave 7,600

name attribute values to 4,300 instances.

For evaluating accuracy, we defined correct answers as blog en-

tries that have descriptions of classified classes or instances and

evaluated the generated interest ontology by using precision and

recall in classified results. In this paper, precision means the pro-

portion of correct answers in classified results and recall means that

of correct answers in all blog entries. When the recall is high,

extracted interest ontologies cover user interests better. However,

when the precision is lower, created interest ontologies include clas-

sified mistakes, and innovation detection for the user becomes un-

reliable. Thus, achieving high precision is indispensable. In eval-

uation, we adopted filtering algorithms to instances with one word

such as ”police”, because we considered one word has a high possi-

bility of having several meanings. For generating index files of blog

entries, we used Namazu（注5）.

（注4）：http://www.doblog.com

（注5）：http://www.namazu.org/

(b) Comparing  the precision of instances with one word among BOGA, FA1 and FA2.

(a) Interest distributions of blog users in experimental template ontology.
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図 7 Experimental results of user distributions and ontology extraction.

5. 2 Measuring interest distributions of blog users

Graphs of user distributions in the music domain of our experi-

ment are depicted in Fig. 7-(a). There are about 200 users, even

in end classes. By checking the blog entries classified in end

classes, we confirmed that these blog entries frequently have unique

words, which describe the features of these classes. For example,

blog entries classified into the end class ”Death Metal” have the

phrase ”death voice” with a high probability. This is because the

end classes in our template ontology have an appropriate granu-

larity to extract the feature of the blog entries classified into these

classes. The granularity of end classes is important because it af-

fects whether we can determine if a user is interested in the commu-

nity.

5. 3 Measuring performance of extracted interest ontology

We evaluated the accuracy of FA2 by checking 1/4 of classified

blog entries, which were randomly selected. As shown in Table. 1-

(a), the achieved precision is higher than 90% with a high recall of

80%. Thus, our filtering algorithm is effective for generating suit-

able user-interest ontologies.

5. 4 Comparing filtering algorithms

Then, we compared BOGA and filtering algorithms by randomly

checking 1/4 of the blog entries, which were classified into instances

with one word.

Graphs of the precision of BOGA, FA1, and FA2 over 83 in-

stances, which were randomly selected among 827 instances with

one word, are shown in Fig. 7-(b). The accuracy between BOGA

and filtering algorithms is compared in Table. 1-(b). These results

indicate that precision improves in the order of BOGA, FA1, and

FA2, and recall decreases significantly in FA2, even though FA1

drops only slightly from BA. For improving recall with high preci-

sion in FA2, we will add a method that checks for CDEs in the blog

entries with a high probability of appearing these elements such as

entries near each other in a time series.

Analyzing Fig. 7-(b) in more detail, there are eight instances in

which the precision cannot be improved even with FA2, and they

lower the overall precision. Then, we extracted instances in which

the number of classifications increases by ten times or more when
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Table 1 Experimental results of our ontology extraction and innovation de-

tection.

(a) Accuracy of extracted interest ontology (F A2, hop 2).

(b) C omparing accuracy of instances with one word.

(c) C omparing accuracy by changing hop counts.

(d) R ecall of innovation detection.

(e) C omparing degree of innovation in recommendation lists.

 (f) C omparing degree of innovation in our detections .

P recis ion
94.9%

R ecall
80.3%

X=30 X =60 X =90
R ecall 64.8% 76.7% 80.1%

F A2 F A1 B OG A
P recis ion 70.0% 57.9% 18.9%

R ecall 32.6% 93.0% 100.0%

Degree of
innovation

0 1 2 3

P roportion 57.6% 15.2% 23.2% 4.0%

Degree of
innovation

0 1 2 3

P roportion 23.4% 23.1% 44.3% 9.2%

Hop 0 Hop 2 Hop 4
P recis ion 89.1% 91.0% 85.6%

changing from FA2 to FA1. As a result, we extracted 28 instances

and the precisions of 5 of those instances were 0. The reason is

that they do not co-occur in the same blog entry with CDEs, even

though the user was interested in them and described the name at-

tribute value of these instances often. Thus, to improve the preci-

sion, deleting these instances from template ontology is effective.

We also evaluated the accuracy of FA2 based on the change in

the hop number. Hop 2 is better than hop 0 with respect to the

number of correct answers and precision, as shown in Table. 1-

(c). However, hop 4 is lower than hop 2 in precision, although the

number of correct answers is slightly better. That is because our

template ontology has a large number of instances in end classes,

and the relationship between end classes and super classes is closer

than the relationship between super classes and grandfather classes.

For example, end class ”Acid Metal” has the super class ”Metal”

and grandfather class ”Rock”. In this case, the relationship between

”Acid Metal” and ”Metal” is closer than the relationship between

”Metal” and ”Rock”. Thus, hop 2 has a better precision than hop

0 because hop 2 has many CDEs, and hop 4 has a lower precision

than hop 2 because we consider CDEs in hop 4 as instances that are

far from end classes.

Furthermore, we analyze instances in which there is a ten fold or

more change in the number of classified blog entries by consider-

ing hop 4 instead of hop 2. As a result, if there is an increase in

the number of blog entries of those instances, that indicates classi-

fication mistakes. For example, classified decision elements of the

instance ”Europe” in class ”Northern Metal” with hop 4, include in-

stances in class ”Adult Contemporary” under the class ”Rock”. In

this case, blog entries, which have the description ”Europe tour”,

are also classified into ”Europe” in ”Northern Metal”. Therefore, to

improve the number of correct answers with high precision, delet-

ing these mistakenly classified blog entries from classified instances

by changing the hop count is effective.

5. 5 Measuring performance of innovation detection

We evaluated innovative blog-entry detection. In the evaluation,

we defined correct answers for each instance by referring to rec-

ommendation lists such as ”you might like these artists” in a music

portal like goo music. Designers of music portals in this evaluation

manually defined artists (An) that are relevant to another artist (Ai)

for recommending relevant artists (An) to users who are interested

in artist (Ai). Then, we evaluated our technique by checking the

recall of 1/20 of 1503 users who were judged to be interested in

the music domain of our template ontology. In this evaluation, re-

call means the proportion of correct answers in our recommended

instances.

We evaluated recall in the change of X described in Section 4. 2.

Table. 1-(d) indicates that recall of our recommendation was about

80%. In particular, recall improves significantly when X = 30−60,

even though X = 90 improves slightly from X = 60. This result

indicates that we can extract innovative instances by only checking

60 high-rank interest ontologies among interest ontologies of 1503

users from the viewpoint of the user who receives the recommen-

dation. Table. 1-(e) and (f) compare the proportion of degree of

innovation in extracted instances between recommendation lists in

a music portal and our detected instances. These results indicate

that our technique detects instances with high degree of innovation

more in number than recommendation lists.

5. 6 Analyzing the suitable granularity of user-oriented

community

We also investigated suitable number of users for creating a com-

munity. First, we selected a user among all users extracted by our

template ontology and analyzed suitable granularities of GU by

changing parameter X described in Section 4. 2. In this evaluation,

we divided innovative instances GI into 3 instance groups in order

of the appearance rate of instances when we set X to 70: a famous

group, an ordinary group, and a not-famous group. We calculated

the number of users who are interested in the artists of each group

by changing X from 10 to 70.

Graphs of the number of users who are interested in each group

obtained by changing X are shown in Fig. 7-(a). Next, we focused

on users who have a high interest weight in their interest ontolo-

gies. Graphs of the number of such users obtained by changing X

are shown in Fig. 7-(b). A famous group is recommended to users

in spite of changes in X in Fig. 7-(a). On the other hand, in Fig.

7-(b), a not-famous group is recommended most when X is 10, and
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Fig 7 (a) number of users obtained by changing X. (b) number of users

obtained that have high interest weight by changing X.

a normal group comes to be recommended gradually as X grows.

This is because users with a high interest weight have a tendency of

discussing not-famous instances, in spite of discussing famous in-

stances. Furthermore, the number of users of each group increases

suddenly when X is greater than 60. This is because the gap be-

tween a user’s ontology and ontologies of Gu is larger when X is

greater than 60, and instances with a low possibility of being inter-

esting come to be recommended more often. From the results of

Section 5. 5 and 5. 6, our innovation detection is effective according

to detailed user interests when X is smaller than 60.

6. Conclusion

We proposed an interest ontology generation method and simi-

larity measurement considering interest weight. Then, we adapted

our technique to detect innovative blog entries in a blog community.

We also performed large-scale experiments and confirmed that our

techniques achieved automatic ontology extraction and detection of

innovative blog entries with high accuracy.

We offer an experimental service DoblogMusic（注6） for Doblog

users and confirm the effectiveness of our innovative blog-entry rec-

ommendation method for creating a blog community by analyzing

user access during a period of time.
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