Contents

Abstract			ii	
A	cknov	vledgm	nents	iv
1	Intr	oducti	on	1
	1.1	Backg	round	1
	1.2	Resear	ch Questions	5
	1.3	Struct	ure of the Thesis	5
2	Lite	erature	Review	9
	2.1	Using	the Information above the Leaf Nodes	9
		2.1.1	Introduction	9
		2.1.2	Conspiracy Number Search	10
		2.1.3	Proof Number Search	11
		2.1.4	Df-pn	14
		2.1.5	The Seesaw Effect	16
		2.1.6	Deep Proof Number Search	17
	2.2	Using	the Information beneath the Leaf Nodes	29
		2.2.1	Introduction	29
		2.2.2	Monte-Carlo Tree Search	29
		2.2.3	Monte-Carlo Tree Search Solver	32
	2.3	Comb	ining the Information above and beneath the Leaf Nodes	34
		2.3.1	Introduction	34
		2.3.2	Monte-Carlo Proof Number Search	34
	2.4	Chapt	er Conclusion	36

3 Deep df-pn		n	37	
	3.1	Introd	uction \ldots	37
	3.2	Basic 1	Idea of Deep df-pn	39
	3.3	Deep o	lf-pn in Connect6	42
		3.3.1	Connect6	42
		3.3.2	Relevance-zone-oriented Deep df-pn	44
		3.3.3	Experimental Design	48
		3.3.4	Results and Discussion	49
		3.3.5	Comparison	50
		3.3.6	Finding optimized parameters	51
	3.4	Chapt	er Conclusion	54
4	Sing	gle Cor	nspiracy Number	56
	4.1	Introd	uction	56
	4.2	Basic 2	Idea of Single Conspiracy Number	58
	4.3	Experi	iments and Discussion	60
		4.3.1	Experimental Design	61
		4.3.2	Tactical Positions	61
		4.3.3	Drawn Positions	66
		4.3.4	Opening Positions	68
	4.4	Chapt	er Conclusion	70
5	Pro	babilit	y-based Proof Number Search	71
	5.1	Introd	uction	71
	5.2	.2 Probability-based Proof Number Search		73
		5.2.1	Main Concept	73
		5.2.2	Probability-based Proof Number	74
		5.2.3	Algorithm	75
	5.3	Bench	marks	75
		5.3.1	Monte-Carlo Proof Number Search	75
		5.3.2	Monte-Carlo Tree Search Solver	78
	5.4	Experi	iments	82

	5.5 Chapter Conclusion	85	
6	Conclusion	88	
A	Appendix		
Bi	Bibliography		
\mathbf{P}_{1}	ublications	101	

·..

..

List of Figures

2-1	An example of MIN/MAX tree [40]	11
2-2	An example of conspiracy numbers (the left column of the number list of	
	a node is the evaluation value, and the right column of the number list of	
	a node is its corresponded conspiracy number) [40]	12
2-3	An example of the expansion and updating process in the conspiracy num-	
	ber search (the left column of the number list of a node is the evaluation	
	value, and the right column of the number list of a node is its corresponded	
	conspiracy number) [40]	13
2-4	An example of the seesaw effect: (a) An example game tree (b) Expanding	
	the most-proving node [19]	17
2-5	An example of a suitable tree for an Othello end-game position. This game	
	tree has a uniform depth of 4, and the terminal nodes are reached at game	
	end. [19]	18
2-6	The variation in Othello: The number of $\#$ of Iterations and $\#$ of Nodes.	
	R = 1.0 is PN-search, $R = 0.0$ is depth-first search, and $1.0 > R > 0.0$ is	
	DeepPN. Lower is better. [19]	23
2-7	The reduction rate in Othello: The number of $\#$ of Iterations and $\#$ of	
	Nodes. $R = 1.0$ is PN-search, $R = 0.0$ is depth-first search, and $1.0 > R >$	
	0.0 is DeepPN. Lower is better. [19]	24
2-8	# of Iterations in Othello: The changes of Reducing and Increasing Cases	
	for $\#$ of Iterations and $\#$ of Nodes [19] $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	25
2-9	# of Nodes in Othello: The changes of Reducing and Increasing Cases for	
	# of Iterations and # of Nodes [19] \ldots \ldots \ldots \ldots \ldots \ldots	26

	2-10	The variation in Hex: The changes of Reducing and Increasing Cases for	
		# of Iterations and # of Nodes [19] \ldots \ldots \ldots \ldots \ldots	27
	2-11	The reduction rate in Hex: $\#$ of Iterations and $\#$ of Nodes for Hex(4).	
		R = 1.0 is PN-search, $R = 0.0$ is depth-first search, and $1.0 > R > 0.0$ is	
		DeepPN. Lower is better. [19]	27
	2-12	Hex: The detail of Fig 2-11. This figure is zoomed $1.0 \le R \le 0.9$. The	
		lower is better. [19]	28
	2-13	One iteration of the general MCTS approach $[7]$	31
	3-1	Relationship between PN-search, df-pn, Deep PN and Deep df-pn $\ldots\ldots\ldots$	39
	3-2	An example of the seesaw effect: (a) An example game tree (b) Expanding	•
		the most-proving node $[19]$	41
	3-3	An example of (a) relevance zone Z and (b) relevance zone Z' [55]	43
	3-4	Example position 1 of Connect6 (Black is to move and Black wins) \ldots	45
	3-5	Example position 2 of Connect6 (Black is to move and Black wins) \ldots	45
	3-6	Deep df-pn and df-pn compared in node number (including repeatedly	
		traversed nodes) with various values of parameter ${\cal E}$ and ${\cal D}$ for position 1	
		(Df-pn when $D = 1$)	46
1	3-7	Deep df-pn and df-pn compared in seesaw effect number with various values	
ţ		of parameter E and D for position 1 (Df-pn when $D = 1$)	46
	3-8	Deep df-pn and df-pn compared in node number (including repeatedly	
		traversed nodes) with various values of parameter ${\cal E}$ and ${\cal D}$ for position 2	
		(Df-pn when $D = 1$)	47
	3-9	Deep df-pn and df-pn compared in seesaw effect number with various values	
		of parameter E and D for position 2 (Df-pn when $D = 1$)	47
	3-10	Node number (including repeatedly traversed nodes) of $1+\epsilon$ trick with	
		various values of parameter ϵ for position 1	51
	3-11	Seesaw effect number of $1+\epsilon$ trick with various values of parameter ϵ for	
		position 1	52
	3-12	Node number (including repeatedly traversed nodes) of $1+\epsilon$ trick with	
		various values of parameter ϵ for position 2	52

•

x

3-13	See saw effect number of $1+\epsilon$ trick with various values of parameter ϵ for	
	position 2	53
4-1	An example of tactical position where Red is to move (Red wins) \ldots .	61
4-2	Red's MIN/MAX value and SCN in position P_0 with different search depth	
	$(T=600) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	62
4-3	Black's MIN/MAX value and SCN in position P_1 with different search	
	depth $(T = 600)$	62
4-4	Histogram of $RSCN_{red}$ and $RSCN_{black}$ $(T = 600)$	65
4-5	Histogram of Vl_{red} and Vl_{black}	65
4-6	Histogram of $RSCN$ in winning positions, losing positions and drawn po-	
	sitions $(T = 600)$	67
4-7	Histogram of Vl in winning positions, losing positions and drawn positions	67
4-8	Relationship between high possibility, low possibility and normal possi-	
	bility of changing the MIN/MAX values of positions not less than the	
	threshold T in advance of the opponent scaled by $RSCN$	67
4-9	RSCNs for different handicap openings with $T = 200$	68
4-10	RSCNs for different handicap openings with $T = 600$	68
5-1	Two examples of updating PN by MIN rule in MCPN-search (the square	
	represents the OR node).	77
5-2	Two examples of updating PPN by OR rule in PPN-search (the square	
	represents the OR node). Notice that $PPN = 1 - PN$	77
5-3	Two examples of updating PN by SUM rule in MCPN-search (the circle	
	represents the AND node).	78
5-4	Two examples of updating PPN by AND rule in PPN-search (the circle	
	represents the AND node). Notice that $PPN = 1 - PN$	78
5-5	Two examples of updating simulation values by taking the average in the	
	UCT solver or the pure MCTS solver (the square represents the OR node).	81
5-6	Two examples of updating PPN by OR rule in PPN-search (the square	
	represents the OR node).	82
5-7	Comparison of average search time for a P-game tree with 2 branches and	
	20 layers	84

5-8	Comparison of average numbers of iterations for a P-game tree with 2	
	branches and 20 layers.	84
5-9	Comparison of the error rate of selected moves for each iteration on P-game	
	trees with 2 branches and 20 layers.	85
5-10	Comparison of average search time for a P-game tree with 8 branches and	
	8 layers	85
5-11	Comparison of average numbers of iterations for a P-game tree with 8	
	branches and 8 layers.	86
5-12	Comparison of the error rate of selected moves for each iteration on P-game	
	trees with 8 branches and 8 layers	86
6-1	Example position 3 of Connect6 (Black is to move and Black wins)	90
6-2	Example position 4 of Connect6 (Black is to move and Black wins)	90
6-3	Example position 5 of Connect6 (Black is to move and Black wins) \ldots	91
6-4	Example position 6 of Connect6 (Black is to move and Black wins)	91
6-5	Example position 7 of Connect6 (White is to move and White wins)	91
6-6	Example position 8 of Connect6 (White is to move and White wins)	91

•

.

List of Tables

3.1	Different behaviors by changing parameters	42
3.2	Deep df-pn and $1+\epsilon$ trick compared in the best case (The number in the	
	bracket represents the reduction percentage compared with df-pn) $\ . \ . \ .$	53
3.3	Experimental data of Deep df-pn using hill-climbing method (The number	
	in the bracket represents the difference between Deep df-pn using hill-	
	climbing method and Deep df-pn in the best case)	54

÷

.