
..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

Counterexample-guided Design of Property-based
Dynamic Software Updates

Min Zhang

2014.10.15

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [1/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Contents

1 Dynamic Software Updating (DSU)
Instantaneous DSU
Incremental DSU

2 Formalization and verification of instantaneous DSU

3 A case study

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [2/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
About DSU

.Dynamic Software Updating..

......
An updating technique for updating software systems that are running
without incurring downtime.

Q: Why do we need DSU?
A: Two main reasons:

1 Software systems are inevitably subject to update
2 For some software systems, shutting them down is expensive!

.
Example (How much is an hour of downtime worth to you?)..

......

According to a Yankee Group report, banks can lose as much as US $2.6
million per hour and brokerages as much as US $4.5 million per hour from
downtime.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [3/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Existing works on DSU

More than 40 approaches have been proposed and prototypes have been
implemented. (H. Seifzadeh, et al, A survey of dynamic software updating. J. of
Software, Evolution, and Process. 25:535-568, 2013)

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [4/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Motivation of the work

Three features of dynamic updating:

1 Doing dynamic update to a running
system is dangerous!
Lose the baton!

2 Target systems are usually
safety/mission-critical systems, while
crashing them is expensive!
Lose the golden medal!

3 Designing a correct dynamic update is
challenging!
We do not even know what correctness means.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [5/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Studying dynamic updating at two levels

1 code-level: implementing a dynamic updating correctly
the code differences between old and new systems
how code is managed in memory by updating
how code is executed after updating, e.g.,

whether a function refers to the data of correct type,
whether a function calls another of the correct version.

2 design-level (this talk): designing a dynamic updating correctly
static differences, e.g., system structures/states
dynamic differences, e.g., system behaviors
the behaviors during updating

.

......

Software is built on abstractions. Pick the right ones, and programming
will flow naturally from design; ...

– Daniel Jackson
Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [6/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Instantaneous and incremental DSU

At the design level, we classify DSU into two classes according to update
duration.

Instantaneous DSU (this talk)

Incremental DSU

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [7/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Five requirements to design an instantaneous dynamic updating

1 a running software system (old system)

2 a new version of the running system (new system)

3 a set of updating points (a subset of old states where updates will be
applied)

4 an (optional) update bringing forward mechanism, which is used to
bring the running system to an update point as soon as possible.

5 a state transformation function, a (partial) function from old states to
new states.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [8/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Challenges to the design of correct dynamic update

1 What does correct mean?

2 How to identify a set of updating points?

3 How to design an update bringing forward mechanism?

4 How to define a state transformation function?

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [9/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Contributions of our work

1 We define the correctness in terms of the properties of the old and
new systems.

2 We propose a counterexample-guided approach to designing correct
dynamic updates by

1 identifying a set of safe updating points
2 defining a correct a state transformation function
3 designing a correct update bringing forward mechanism

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [10/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Formalization of instantaneous dynamic updates (I)

. Formalization of software systems as Kripke structures

.
Definition (Kripke structure)..

......

A Kripke structure K is a four-tuple (S, I,T, L) over a set AP of atomic
propositions, where

S: a finite set of states
I: a set I ⊆ S of initial states
T: a transition relation T ⊆ S × S, and T must be total, i.e., for any
s ∈ S, there exists s′ ∈ S, s.t. (s, s′) ∈ T.
L: a labeling function S → 2AP.

We assume that both the old and the new systems are finite-state systems.
Let K1 = (S1, I1,T1, L1) and K2 = (S2, I2,T2, L2) be two Kripke structures
over two sets of atomic propositions AP1 and AP2 such that K1 and K2

model the old and the new systems respectively.
Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [11/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Formalization of instantaneous dynamic updates (II)

A set S′ of update points such that S′ ⊆ S1.

A state transformation function f : S′ → S2.

Updating bringing forward mechanism: T′ ⊆ (S1 × S1)

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [12/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Formalization of update request (I)

Update request (generally update request can be made at any moment
when the old system is running):

Front layer: old system
Back layer: update bringing forward
mechanism
From the front layer to the back
layer: update request

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [13/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Formalization of update request (II)

Let S′
1 be a mirror set of S1, i.e., S′

1 ∩ S1 = ∅ and there exists a
bijection ψ : S′

1 → S1. Let L• : S1 ∪ S′
1 → 2AP1∪{req,upd}

L•(s) =


L1(s) if s ∈ S1

L1(φ
−1(s))∪{req} if s ∈ S′

1 and φ−1(s) /∈ S′

L1(φ
−1(s))∪{req, upd} if s ∈ S′

1 and φ−1(s) ∈ S′

req ̸∈ AP1: states where update request has been made;
upd ̸∈ AP1: update points

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [14/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Formalization of update request (III)

Let T′′ ⊆ S′
1 × S′

1 s.t.
T′′ = {(s′1, s′2)|s′1 ∈ S′

1, s′2 ∈ S′
1, (φ

−1(s′1), φ−1(s′2)) ∈ T′}.

Let T• = T1 ∪ T′′ ∪ {(s, s′)|s ∈ S1, s′ ∈ S′
1, s′ = φ(s)}.

Let S• = S1 ∪ S′
1.

We obtain a Kripke structure K• = (S•, I1,T•, L•) over AP1 ∪ {req, upd}.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [15/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Formalization of updating (I)

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [16/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Formalization of updating (II)

Some assumptions:
1 S2 ∩ S1 = ∅, S2 ∩ S′

1 = ∅
2 AP2 ∩ AP1 = ∅
3 new is an atomic proposition such that new ̸∈ AP1 and new ̸∈ AP2.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [17/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Formalization of updating (III)

Let S† = S1 ∪ S′
1 ∪ S2

AP† = AP1 ∪ AP2 ∪ {new, req, upd}

L† : S† → 2AP† s.t.
L†(s) =

{
L•(s) if s ∈ S•

L2(s)∪{new} if s ∈ S2

S′′ ⊆ S′
1 s.t. S′′ = {φ(s)|s ∈ S′}

f′ : S′′ → S2 s.t. f′(s) = f(φ−1(s)) , and
T† = T• ∪ T2 ∪ {(s, f′(s))|s ∈ S′′}.

Finally, we obtain K† = (S†, I1,T†, L†) over the set AP†.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [18/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Property-based Correctness of dynamic updating

.
Definition (Property-based correctness)..
......A dynamic update is correct if it satisfies a set P of given properties.

We classify the properties in P into three kinds:
1 common properties which should be satisfied by all the dynamic

updates
2 dependent properties: which specify the relation between the old

system and the new system
3 independent properties: the properties of the new system which are

independent from those of the old system

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [19/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Common properties

.
Definition (Updatability)..

......
Once an update request is made, the running system must eventually reach
an update point.

LTL formula of updatability:

□((¬req ∧⃝req) → ⃝♢upd)

□: Globally
⃝: Next
♢: Finally

Updatability is a property of update bringing forward mechanism.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [20/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Dependent properties

Given two LTL properties p1 and p2 which are built out of the atomic
propositions in AP1 and AP2, if p1 holds in the old system, then p2 holds
in the running system after it is updated.
.
Example (Connection preservation)..

......

For a dynamic update to an FTP server a property that the update should
satisfy is that all the connections should be preserved, i.e., if the number of
connections in the old system is n, so is the number of connections after
update.

A dependent property with p1 and p2 can be formalized as an LTL formula
w.r.t. K†, i.e., (p1 U req) → ((¬new ∧⃝new) → ⃝p2)

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [21/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Independent properties

The properties of the new systems which are independent from those in the
old systems.
.
Example (Dynamic update for bug-fixing)..

......
Some properties are supposed to hold after the update, regardless of the
situation when the update is applied.

Let p be an LTL property of the new property which is independent from
the properties of the old one, its corresponding LTL formula w.r.t. K† is
(¬new ∧⃝new) → ⃝p.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [22/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
P-Correctness of a dynamic update

.
Definition (P-Correctness)..

......

Suppose that K† is a Kripke structure of a dynamic update and P is a set
of LTL formulas for a given set P of properties. The dynamic update is
called P-correct iff for each p in P, K† |= p.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [23/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
An algorithm of designing a P-correct dynamic update

input : K1,K2,T′, f,P
output : A set S′ of update points, a refined update bringing forward mechanism T′′ and a refined state transformation function f′

1 S′:= S1; f′ := f; T′′ := T′;
2 while true do
3 Synthesize a Kripke structure K† with K1,K2, S′,T′′, f′;

4 if K† ̸|= □((¬req ∧⃝req) → ⃝♢upd) then /* Check the updatability */
5 Refine S′ and T′′ based on the counterexample;

6 else
7 Construct LTL formulas P for P with respect to K†; hasCE := false;
8 foreach p in P do
9 if K† ̸|= p then /* Check if the counterexample is real for p */

10 if p = □((p1 U req) → ((¬new ∧⃝new) → ⃝p2)) then
11 if K1 |= p1 ∧ K2 |= p2 then { hasCE := true; break;} else return null ; /* The counterexample is real for p */

12 else if p = □((¬new ∧⃝new) → ⃝p′) then
13 if K2 |= p′ then { hasCE:= true; break; } else return null; /* If p′ is not satisfied by K2 */

14 if hasCE then /* A real counterexample is found */
15 Refine S′ and f′ based on the counterexample;

16 else /* The algorithm terminates here */
17 break;

18 return S′, T′′ and f′;

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [24/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
A Case Study

The Railcab system: a conceptual driverless rail-bound transportation
system proposed at the University of Paderborn.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [25/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
A buggy crossing mechanism in the Railcab system

1 At endOfTS, a Railcab sends a message to the controller to request
for passing.

2 The controller replies a message to approve (if the gate is open) and
reject (if the gate is closed) the request.

3 If the request is approved, the controller then closes the gate.
When a Railcab is crossing the gate, the gate may be still open.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [26/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
A modification

1 A new signal trigger approchCrossing is added.
2 At approchCrossing, the Railcab sends a message to the controller to

check the status of the gate.
3 If the message replied by the controller says the gate is close, it will

pass, otherwise, it stops.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [27/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
To design a dynamic update to the buggy mechanism

Some requirements to the update:
1 After update, the bug should be fixed, i.e., whenever the Railcab is

passing the crossing, the gate must be closed.
2 The update should be transparent to the Railcab, i.e., not affecting

the running Railcabs.

To design such an update:

1 What should be done to achieve the update, i.e., state transformation?
2 When is it safe to apply, i.e., update points?
3 How to apply as soon as possible, i.e., update bringing forward

mechanism?

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [28/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
The Railcab system as a Distributed system

s0

s3

s5s2s1 s4

s6

s9s8

s7

sendPasssendReq

recRespr

move2nr

re
cR

es
pg

move2lebrecRespg

m
ove2leb

brake

recRespr eBrake

eBrake

s′1

RailCab

Controller

getPass

openGate

s10

sendRespg

s′0 s′2

s′3

getReq

sendRespr

clo
seG

ate

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [29/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Specification of the buggy crossing mechanism in Maude (I)

Maude: an algebraic specification language based on rewriting logic.
We choose Maude because it supports LTL model checking.
A system state is represented as a multiset of sort OldState.

(gate:_)(conLoc:_)(cabLoc:_)(chan1:_)(chan2:_)
(cabSta:_)(pass:_)

gate: the status of gate, i.e., open or close
conLoc: the state of the controller
cabLoc: the location of the Railcab
chan1: the sequence of the messages sent from the Railcab to the
controller
chan2: the sequence of the messages sent from the controller to the
Railcab
cabSta: the status of the Railcab, i.e., running or braked
pass: the request result: i.e., approved or rejected.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [30/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Specification of the buggy crossing mechanism in Maude (II)

Specification of the transitions as rewrite rules:
.
Example (sending a request message)..

......

The Railcab sends a request to the controller when it is at the endOfTS
location.
rl [sendReq]:(cabLoc: endOfTS) (chan1: SQ) =>

(cabLoc: lastBrake)(chan1: (reqMsg & SQ)) .

SQ: a variable of MsgSeq (sort of sequences of messages).

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [31/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Formalization of the new crossing mechanism

sendRespg

s11 s3

s10s2s1 s4

s6

s9s8

s7

sendPass

s
e
n
d
C

h
k

r
e
c
R

e
s
p
r

m
o
v
e
2
n
r

re
cR

es
pg

move2lebrecRespg

m
ove2leb

brake

recRespr

eBrake

s′0 s′2s′1

s′3
New controller

getReq

sendRespr

getPass

openGate
clo

seG
ate

s12

re
cG

at
ec

s13
move2leb

re
cG

at
ec

eBrake

recG
ate

o

r
e
c
G

a
t
e
o

eB
rake

s0
sen

d
R
eq

New RailCab

s′4

getChk
sendGatec/

sendGateo

s5

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [32/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Specification of the new crossing mechanism in Maude

Let NewState be the sort of states of the new mechanism.

(gate':_)(conLoc ':_)(cabLoc ':_)(chan1':_)(chan2':_)
(cabSta ':_)(pass':_)(appRes:_)

appRes: to record the result of the gate status learned from the message
replied by the controller, unknown, open or close.
Transitions in the new crossing mechanism can be formalized similarly.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [33/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
An initial design of a dynamic update

Update points: we simply assume that the update can take place at
any moment

State transformation: simply copy the old state to the new one and
initialize appRes by unknown

Update bringing forward: no, because the update is expected to be
transparent to the Railcab.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [34/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Formalization of the initial design

Formalization of the state transformation:
op f : OldState -> NewState .
eq f((gate: B)(conLoc: L1)(cabLoc: L2)(chan1: CH1)

(chan2: CH2)(cabSta: S)(pass: P)) =
(gate': B)(conLoc ': L1)(cabLoc ': L2)(chan1': CH1)
(chan2':CH2)(cabSta ': S)(pass': P)(appRes: unknown).

Formalization of the update request and update application:
rl [request]: (req: false) => (req: true).
rl [apply]: (req: true) OS:OldState => f(OS) .

We declare a super sort State, i.e., OldState NewState < State.
We add a new field (req:_) to the old state to formalize the update
request.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [35/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Formalization of the expected properties of the dynamic update

.Crossing property..

......
After updating, when the Railcab is at the noReturn point, the gate must
be closed.
.Passability..

......
If the gate is open and the Railcab wants to pass the crossing, it must
finally pass it.

@noRet: the RailCab is at the noReturn point
passed: the RailCab has already passed the crossing
gateClose: the gate is closed
gateOpen: the gate is open

Crossing property: p1 ≜ □(@noRet → gateClose)
Passability: p2 ≜ □(gateOpen ∧ ¬passed → ♢@noRet)

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [36/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Verification by model checking

The LTL formulas to be model checked:

Updatability : □((¬req ∧⃝req) → ⃝♢upd) (1)
Crossing property : □((¬new ∧⃝new) → ⃝p1) (2)

Passability : □((¬new ∧⃝new) → ⃝p2) (3)

Verification result of Formula 1: no counterexample.
Maude found a counterexample for Formula 2. The snippet of the
counterexample:
...{(loc: noReturn)...(gate: false),update}

{(loc': noReturn)...(gate': false),closeGate}...

Update takes place when the RailCab is at noReturn point.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [37/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Refinement of the dynamic update (I)

Exclude the states where the RailCab is at the noReturn point from the
update points:
crl [apply]: (req: true) (cabLoc : L) OS:OldState =>

f((cabLoc : L) OS)
if L =/= noReturn .

Model checking result with the refined dynamic update:
Formula 1: no counterexample
Formula 2: no counterexample
A counterexample is found for Formula 3:

...{(loc: lastBrake)...(gate:false),update}{(loc':lastBrake)
...(gate': false)(appRes:unknown),move2leb}
{loc': lastEmergencyBrake)...(appRes: unknown),eBrake}
... {...,deadlock}

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [38/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Refinement of the dynamic update (II)

Exclude the states where the RailCab is at the lastBrake point from the
update points:
crl [apply]: (req: true) (cabLoc : L) OS:OldState =>

f((cabLoc : L) OS)
if L =/= noReturn and L =/= lastBrake .

Model checking result with the refined dynamic update:
Formula 1: no counterexample
Formula 2: no counterexample
A counterexample is found for Formula 3:

...{(loc: lastEmergencyBrake)...(gate:false),update}{(loc':
lastEmergencyBrake)...(gate': false)(appRes:unknown),
eBrake}... {...,deadlock}

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [39/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Refinement of the dynamic update (III)

Exclude the states where the RailCab is at the lastBrake point from the
update points:
crl [apply]: (req: true) (cabLoc : L) OS:OldState =>

f((cabLoc : L) OS)
if L =/= noReturn and L =/= lastBrake and

L =/= lastEmergencyBrake .

Model checking result with the refined dynamic update:
Formula 1: no counterexample
Formula 2: no counterexample
Formula 3: no counterexample

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [40/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Another refinement

The reason for the counterexample is that when the RailCab is at
lastBrake or lastEmergencyBrake location, the value of appRes is
initialized to be unknown, regardless of the status of gate.
No chance for the RailCab to send the second message to check the status.
We can initialize appRes according to the status of the gate when the
RailCab is at the lastBrake or lastEmergencyBrake.
op f' : OldState -> NewState .
ceq f'((gate: B)(conLoc: L1)(cabLoc: L2)(chan1: CH1)

(chan2: CH2)(cabSta: S)(pass: P)) =
(gate': B)(conLoc ': L1)(cabLoc ': L2)(chan1': CH1)
(chan2':CH2)(cabSta ': S)(pass': P)
(appRes: if B then close else unknown)

if L2 = lastBrake or L2 = lastEmergencyBrake .

No counterexample is found for the three formulas even if the update takes
update when the RailCab is at lastBrake or lastEmergencyBrake.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [41/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Lessons learned from the case study

With the proposed formal approach, we can design a dynamic update
1 identifying a set of update points
2 defining an appropriate state transformation function
3 the dynamic update is verified to satisfy a set of desired properties
4 state transformation and update points depend on each other

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [42/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Some limitations and possible extensions

The proposed approach is suited
1 to systems with finite state space
2 to closed systems (no interaction with environment)
3 to instantaneous dynamic update

Some possible extensions
1 for infinite-state system: abstraction or narrowing-based model

checking
2 for open systems which need to interact the environment: Labeled

Kripke structure
3 to incremental dynamic update: to formalize the synchronization

mechanism between the old and new systems during updating.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [43/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Conclusion and future work

A formal approach to the design of dynamic update:
1 Instantaneous and incremental dynamic update
2 Property-based correctness of dynamic update
3 Counterexample-guided design of dynamic update
4 The dependency between update points and state transformation

Future work: to extend the proposed approach
1 for infinite-state system
2 for open systems which need to interact the environment
3 for incremental dynamic update

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [44/45]

..

Research Center for Software Verification
Japan Advanced Institute of Science and Technology

..
Q&A

ありがとうございました！

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [45/45]

