Counterexample-guided Design of Property-based
Dynamic Software Updates

Min Zhang

2014.10.15

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15

Contents

Dynamic Software Updating (DSU)

m Instantaneous DSU
m Incremental DSU

Formalization and verification of instantaneous DSU

A case study

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [2/45]

About DSU

Dynamic Software Updating

An updating technique for updating software systems that are running
without incurring downtime.

Q: Why do we need DSU?

A: Two main reasons:
Software systems are inevitably subject to update

For some software systems, shutting them down is expensive!

Example (How much is an hour of downtime worth to you?)

According to a Yankee Group report, banks can lose as much as US $2.6
million per hour and brokerages as much as US $4.5 million per hour from
downtime.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [3/45]

Existing works on DSU

More than 40 approaches have been proposed and prototypes have been
implemented. (H. Seifzadeh, et al, A survey of dynamic software updating. J. of
Software, Evolution, and Process. 25:535-568, 2013)

Table I. Evaluation of DSU research works based on capabilities and constraints.

High Upd. pre.
level of started Wait time and Update Code Supported
Scope* Implemented Abs. code Simplicity Consistency predict.” duration clean-up Performance changes

Appavoo oS v X X v v P v X v X
Argus(A) DS v X X X X 1 v X X X
Argus(S) DS v X v X v P v X v X
AutoPod oS v X X o4 v I X X X v
Bialek D v X X v v U v x v v
Boyapati B v X X X v 1 v X v v
Buisson x x X X ? g4 1 ? ? ? ?
DCF D v v X e X 1 v x X v
DRACO DS v X v L4 'L U v x v v
Duggan X X X X ? v I v ? X v
DURTS RT v X X v x 1 'L x v x
DUSC D v X X Ve v 1 v x v x
DVM D v X X v v 1 X x v v
DYMOS S v X X v v P v x v v
DynAMOS OS v X v v v I v X X v
DynC++ S v X X v X I v v v X
Ekiden S v X X v v 1 X — s v
EmbedDSU RT v X X Ve v P v x v v
Fabry B X X X ? v 1 v X v v
Ginseng S v X X Ves v U v X v v

x X X ? L4 P ? ? ? x

Giuffrida x

acio A X X
Min Zhang (JAIS Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [4/45]

Motivation of the work

Three features of dynamic updating:

Doi d . d . ON-THE-FLY PROGRAM
oing dynamic update to a running MODIFICRI'ION;
system is dangerous! UPDATING
The ising cost of shutting
LLOSE THE BATON! s
‘mainfenance ond repair is
forcing developers to look
Target systems are usually e e
safety /mission-critical systems, while ok g
. - . Syskems s o
crashing them is expensive! ot
lﬁlu&:
LOSE THE GOLDEN MEDAL! R
Designing a correct dynamic update is
reppremrmr—p—
challenging! ATiEE EEE

We do not even know what correctness means.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [5/45]

Studying dynamic updating at two levels

code-level: implementing a dynamic updating correctly

m the code differences between old and new systems
m how code is managed in memory by updating
m how code is executed after updating, e.g.,

B whether a function refers to the data of correct type,
m whether a function calls another of the correct version.

design-level (this talk): designing a dynamic updating correctly

m static differences, e.g., system structures/states
m dynamic differences, e.g., system behaviors
m the behaviors during updating

Software is built on abstractions. Pick the right ones, and programming
will flow naturally from design; ...
— Daniel Jackson

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [6/45]

Instantaneous and incremental DSU

At the design level, we classify DSU into two classes according to update
duration.

m Instantaneous DSU (this talk)

Requesting Completing

update update 440 ic state

Waiting time L/ transformation

Upda.te‘t;ringing Time
forward mechanism

m Incremental DSU

Requesting Starting Completing
update update update
Waiting time l Updating time l
Update bringing Incremental system Time
forward mechanism synchronization

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [7/45]

Five requirements to design an instantaneous dynamic updating

a running software system (old system)
a new version of the running system (new system)

a set of updating points (a subset of old states where updates will be
applied)

an (optional) update bringing forward mechanism, which is used to
bring the running system to an update point as soon as possible.

a state transformation function, a (partial) function from old states to
new states.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [8/45]

Challenges to the design of dynamic update

What does correct mean?
How to identify a set of updating points?
How to design an update bringing forward mechanism?

How to define a state transformation function?

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [9/45]

Contributions of our work

We define the correctness in terms of the properties of the old and
new systems.

We propose a counterexample-guided approach to designing correct
dynamic updates by

identifying a set of safe updating points
defining a correct a state transformation function

designing a correct update bringing forward mechanism

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [10/45]

Formalization of instantaneous dynamic updates (I)
Formalization of software systems as Kripke structures

Definition (Kripke structure)

A Kripke structure K is a four-tuple (S, /, T, L) over a set AP of atomic
propositions, where

m S: a finite set of states
m /. aset /| C S of initial states

m T: a transition relation TC S x S, and T must be total, i.e., for any
s€ S, there exists § € §, s.t. (s,5) € T.

m L: a labeling function S — 24P,

We assume that both the old and the new systems are finite-state systems.

Let K1 = (S1, h, T1,L1) and Ko = (82, o, To, La) be two Kripke structures
over two sets of atomic propositions AP; and AP, such that K7 and K
model the old and the new systems respectively.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [11/45]

Formalization of instantaneous dynamic updates (II)

m A set S of update points such that § C S;.
m A state transformation function f: S — Ss.

m Updating bringing forward mechanism: T C (51 x S1)

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [12/45]

Formalization of update request (1)

Update request (generally update request can be made at any moment
when the old system is running):

|

Front layer: old system

o
3

|

Back layer: update bringing forward N N \3(J’\"

; N T i

mechanism ~L N :

~ \

From the front layer to the back c o : '

. Y RN
layer: update request ~ . :
|

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [13/45]

Formalization of update request (I1)

[E
I I | | © States in 51
i I I
\‘[\ N _3{ ® States in S|
S~ L \ \ : o Update points in S’
~ \
~ ! I
»C — Transitions in 71
\ Y
\.\ < o \’.I M
~ L | N — > Transitions in T
~ \
~ I I
‘\._ - :"}._ = '_4\“_ ~ '_"_\s . Update request

m Let S be a mirror set of Sy, i.e., Sy N'S; = () and there exists a
bijection ¢ : S} — Sy. Let L*: S; U S, — 2AP1U{req,upd}

Ly (5) ifse S
L*(s) = < Li(¢~1(s))U{req} ifse S, and o l(s) ¢ S
L1 (¢~ 1(s))U{req, upd} if s€ Sy and ¢~ 1(s) € &
req ¢ AP;: states where update request has been made;
upd ¢ AP;: update points

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [14/45]

Formalization of update request (I11)

[e. \ ‘)\
\‘: ‘\T : | © States in S1
\‘I\ \‘I_ B _}il || ® States in S|
S~ L \ \ | o Update points in S’
\.\ > _ _* : 0y l — Transitions in T}
T~ L R : \\\ : — > Transitions in T
"\._ _ f}.__ E\“I_ _ '_‘: \ ™ Update request

mlet 7"C S x9 st
T ={(s,)Is1 € 81,5, € 1, (71 (s1). 07 () € T

mlet T=TiUT'U{(s,d)|se S1,5 € 5,5 =p(s)}.

mletS*=5USY.
We obtain a Kripke structure £® = (5°,/;, T°, L*) over APy U {req, upd}.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [15/45]

Formalization of updating (1)

the initial state in K;

'/ the initial state in K
NN Nﬁ?,{_”ﬁ_ _____ ent 3?

""" T
i | i
. S .
e Ubpdate points in S” O New states in S5
—» Updating —-» State transitions in 7%

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [16/45]

Formalization of updating (Il)

the initial state in K;

‘/ the initial state in X
2
ST Ty ¥

,,,,, g

SRR

+
&

~

™
N
S -
o

1 ’ .
O Lo
. . o
Sk | ! i i i
~ | | : :
\
TN NN bbb
® Update points in S” O New states in S2
—» Updating —-» State transitions in 7>

Some assumptions:
$SNS =0,5%nS =0
APy NAP =1

new is an atomic proposition such that new ¢ APy and new & APs.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [17/45]

. Formalization of updating (I11)

the initial state in X;
Let S =S USUS Ny petheprReni
AP = APy U APy U {new, req, upd) +4—a—d—40 4 o . .
)) ‘\q\ } \\\;_ _ _r* }/,& S + ,,,,, ,q,
LTSt — 24P st '

. O e e B o
Li(s) = L*(s) ifscS* \ \¢ [! \': 7 "T ’T” "?
| Le(s)U{new} ifse S, \»__"::\ 5! \'S R L

e Update points in S” 0 New states in S

S” g 5/1 s.t. S” = {(,0(5)’5 € S/} — Updating —-» State transitions in T
f:5 — Syst f(s)=flp~Y(s)), and
TH=TUT,U{(s f(s))|se 5'}.

Finally, we obtain /CT = (ST, /;, TT, LT) over the set AP

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [18/45]

Property-based Correctness of dynamic updating

Definition (Property-based correctness)

A dynamic update is correct if it satisfies a set P of given properties.

We classify the properties in P into three kinds:

common properties which should be satisfied by all the dynamic
updates

dependent properties: which specify the relation between the old
system and the new system

independent properties: the properties of the new system which are
independent from those of the old system

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [19/45]

Common properties

Definition (Updatability)
Once an update request is made, the running system must eventually reach
an update point.

LTL formula of updatability:
O((—=reg A Oreq) — OOupd)
m [I: Globally
m (O Next
m {: Finally
Updatability is a property of update bringing forward mechanism.

2014.10.15 [20/45]

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates

Dependent properties

Given two LTL properties p; and ps which are built out of the atomic
propositions in APy and APs, if p; holds in the old system, then py holds
in the running system after it is updated.

Example (Connection preservation)

For a dynamic update to an FTP server a property that the update should
satisfy is that all the connections should be preserved, i.e., if the number of
connections in the old system is n, so is the number of connections after
update.

A dependent property with p; and ps can be formalized as an LTL formula
w.rt. Kf, e, (p1 U req) — ((=new A Onew) — Opo)

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [21/45]

Independent properties

The properties of the new systems which are independent from those in the
old systems.

Example (Dynamic update for bug-fixing)

Some properties are supposed to hold after the update, regardless of the
situation when the update is applied.

Let p be an LTL property of the new property which is independent from
the properties of the old one, its corresponding LTL formula w.r.t. KT is

(=new A Onew) — Op.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [22/45]

P-Correctness of a dynamic update

Definition (P-Correctness)

Suppose that KT is a Kripke structure of a dynamic update and P is a set
of LTL formulas for a given set P of properties. The dynamic update is
called P-correct iff for each p in P, KT |= p.

2014.10.15 [23/45]

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates

An algorithm of designing a P-correct dynamic update

input K, K2, T, £, P
output : A set S’ of update points, a refined update bringing forward mechanism 7" and a refined state transformation function f

18=6; f=f T :=T;

2 while true do

3 | Synthesize a Kripke structure K with K1, K2, S, T/, f;

4 | if KT £ O((=reg A Oreq) — OOupd) then /* Check the updatability */
5 LRefine S’ and T” based on the counterexample;

6 | else

7 Construct LTL formulas P for P with respect to K; hasCE := false;

8 foreach p in P do

9 if KT}~ p then /* Check if the counterexample is real for p */
10 if p=0((p1 U req) — ((—new A Onew) — Op2)) then

1 Lif K1 = pr AKs2 |= p2 then { hasCE:= true; break;} else return null ; /* The counterexample is real for p */
12 else if p=((—~new A Onew) — Op') then

13 Lif K2 k= p/ then { hasCE:= true; break; } else return null; /* If p' is not satisfied by K */
14 if hasCE then /* A real counterexample is found */
15 LRefine S’ and f based on the counterexample;

16 else /* The algorithm terminates here */
17 L break;

18 return S, T’ and f;

Min Zhang example-guided Design of Pro amic Software Updates 2014.1 [24/45]

A Case Study

The Railcab system: a conceptual driverless rail-bound transportation
system proposed at the University of Paderborn.

v |orertor & "

. s

’, Jl -~
~
-

y ~

LY

~

Ed
>
L

[Remote Deskiop Track Control Remoate Desktop

WLAN Routellﬂ\\\\ K/ﬂ'ﬁ'n _LWLAN Router

(fﬂ’m 1 Track radio

Track radio = = | davico Track radio

device ,{a‘h\\\\ ——— \\' = | dﬁfﬁl device
device J.Wm\\

I'ﬂ;\ CANopen Bus 4.-"- . “\\

Controller 1.4
Ethernet Board \Y*I—----------------i (df Ethernet Board
WLAN Router |, W) 5 4 3 o) \wiati Router

Sub- Sub- Sub- Sub-
|station | |station | [station | |station [Caption:
1 2 3 wired communication
- = = Wireless communication

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [25/45]

A buggy crossing mechanism in the Railcab system

The original crossing mechanism
last enter

Last No | (%
4 endOfTS Brake EMergency Return Crossing % | controller
@ T - L

sends a receives a message,

request continues running or
message brake

At endOfTS, a Railcab sends a message to the controller to request
for passing.

The controller replies a message to approve (if the gate is open) and
reject (if the gate is closed) the request.

If the request is approved, the controller then closes the gate.

When a Railcab is crossing the gate, the gate may be still open.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [26/45]

A modification

The n . hani
last
end approach last no enter
i OfTS Crossing Brake grrra\iregency Return Crossing ((5.0““0””
[HHTELT
L HEHHTH |

sendsa sendsa receives two messages
request check replied by the controller,
message message continues running or brake

A new signal trigger approchCrossing is added.

At approchCrossing, the Railcab sends a message to the controller to
check the status of the gate.

If the message replied by the controller says the gate is close, it will
pass, otherwise, it stops.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [27/45]

To design a dynamic update to the buggy mechanism

Some requirements to the update:

After update, the bug should be fixed, i.e., whenever the Railcab is
passing the crossing, the gate must be closed.

The update should be transparent to the Railcab, i.e., not affecting
the running Railcabs.

To design such an update:
What should be done to achieve the update, i.e., state transformation?

When is it safe to apply, i.e., update points?

How to apply as soon as possible, i.e., update bringing forward
mechanism?

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [28/45]

The Railcab system as a Distributed system

RailCab

recRespp

NG

recRespy eBrake

Controller Gate

closs

openGate

sendQeS

R
@ sendRegq 51 recRespg @ move2leb @ move2nr @sendpass@

Pg

getPass

sendRespy

/
()

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates

2014.10.15

[29/45]

Specification of the buggy crossing mechanism in Maude (1)

Maude: an algebraic specification language based on rewriting logic.
We choose Maude because it supports LTL model checking.

A system state is represented as a multiset of sort 01dState.

(gate:_) (conLoc:_) (cabLoc:_) (chanl:_) (chan2:_)
(cabSta:_) (pass:_)

gate: the status of gate, i.e., open or close

conLoc: the state of the controller

cabLoc: the location of the Railcab

chanl: the sequence of the messages sent from the Railcab to the

controller

m chan2: the sequence of the messages sent from the controller to the
Railcab

m cabSta: the status of the Railcab, i.e., running or braked

m pass: the request result: i.e., approved or rejected.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [30/45]

Specification of the buggy crossing mechanism in Maude (I1)

Specification of the transitions as rewrite rules:

Example (sending a request message)

The Railcab sends a request to the controller when it is at the end0OfTS
location.

rl [sendReq]:(cabLoc: end0fTS) (chanl: SQ) =>
(cabLoc: lastBrake) (chanl: (reqMsg & SQ))

SQ: a variable of MsgSeq (sort of sequences of messages).

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [31/45]

Formalization of the new crossing mechanism

move2leb

New RailCab (54 brake (:)

sendohmre"«‘R‘iSPr

New controller

openGate

3
o]
e
I
N
3
3

sendPass

getPass

sendGatec/ sendRespy

getChk
sendGateg

Min Zhang (JAI Counterexample-guided Design of Pro namic Software Updates

[32/45]

Specification of the new crossing mechanism in Maude

Let NewState be the sort of states of the new mechanism.

(gate':_) (conLoc':_) (cabLoc':_) (chanl':_) (chan2':_)
(cabSta':_) (pass':_) (appRes:_)

appRes: to record the result of the gate status learned from the message
replied by the controller, unknown, open or close.

Transitions in the new crossing mechanism can be formalized similarly.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [33/45]

An initial design of a dynamic update

m Update points: we simply assume that the update can take place at
any moment

m State transformation: simply copy the old state to the new one and
initialize appRes by unknown

m Update bringing forward: no, because the update is expected to be
transparent to the Railcab.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [34/45]

Formalization of the initial design

m Formalization of the state transformation:

op £ : 0ldState -> NewState

eq f((gate: B) (conLoc: L1)(cabLoc: L2)(chanl: CH1)
(chan2: CH2) (cabSta: S)(pass: P)) =
(gate': B)(conLoc': L1) (cabLoc': L2)(chanl': CH1)
(chan2':CH2) (cabSta': S) (pass': P) (appRes: unknown) .

m Formalization of the update request and update application:

rl [request]: (req: false) => (req: true).
rl [applyl: (req: true) 0S:01dState => £ (0S)

We declare a super sort State, i.e.,, 01dState NewState < State.

We add a new field (req:_) to the old state to formalize the update
request.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [35/45]

. Formalization of the expected properties of the dynamic update

Crossing property

After updating, when the Railcab is at the noReturn point, the gate must
be closed.

Passability

If the gate is open and the Railcab wants to pass the crossing, it must
finally pass it.

m OnoRet: the RailCab is at the noReturn point

m passed: the RailCab has already passed the crossing
m gateClose: the gate is closed

m gateOpen: the gate is open

Crossing property: p; = [J(@noRet — gateClose)
Passability: py = [J(gateOpen A —passed — {@noRet)

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [36/45]

. Verification by model checking

The LTL formulas to be model checked:

Updatability : O((—reqg A Oreq) — Oupd) (1)
Crossing property : O((—new A Onew) — Op1) (2)
Passability : O((—new A Onew) — Op2) (3)

Verification result of Formula 1: no counterexample.

Maude found a counterexample for Formula 2. The snippet of the
counterexample:

...{(Qoc: noReturn)...(gate: false) ,update}
{(loc': noReturn)...(gate': false),closeGate}...

Update takes place when the RailCab is at noReturn point.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [37/45]

Refinement of the dynamic update (I)

Exclude the states where the RailCab is at the noReturn point from the
update points:

crl [applyl: (req: true) (cabLoc : L) 0S:0ldState =>
f((cabLoc : L) 08S)
if L =/= noReturn

Model checking result with the refined dynamic update:
Formula 1: no counterexample
Formula 2: no counterexample

A counterexample is found for Formula 3:

...{(loc: lastBrake)...(gate:false) ,update}{(loc':lastBrake)
...(gate': false) (appRes:unknown) ,move2leb}
{loc': lastEmergencyBrake) ... (appRes: unknown) ,eBrake}
{...,deadlock}

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [38/45]

Refinement of the dynamic update (II)

Exclude the states where the RailCab is at the lastBrake point from the
update points:

crl [applyl: (req: true) (cabLoc : L) 0S:01dState =>
f((cabLoc : L) 0S)
if L =/= noReturn and L =/= lastBrake

Model checking result with the refined dynamic update:
Formula 1: no counterexample
Formula 2: no counterexample

A counterexample is found for Formula 3:

...{(loc: lastEmergencyBrake)...(gate:false) ,update}{(loc':
lastEmergencyBrake) ... (gate': false) (appRes:unknown),
eBrakel}... {...,deadlock}

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [39/45]

Refinement of the dynamic update (III)

Exclude the states where the RailCab is at the lastBrake point from the

update points:

crl [applyl: (req: true) (cabLoc : L) 0S:01dState =>
f((cabLoc : L) 08S)
if L =/= noReturn and L =/= lastBrake and
L =/= lastEmergencyBrake

Model checking result with the refined dynamic update:
Formula 1: no counterexample
Formula 2: no counterexample

Formula 3: no counterexample

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15

[40/45]

Another refinement

The reason for the counterexample is that when the RailCab is at
lastBrake or lastEmergencyBrake location, the value of appRes is
initialized to be unknown, regardless of the status of gate.

No chance for the RailCab to send the second message to check the status.

We can initialize appRes according to the status of the gate when the
RailCab is at the lastBrake or lastEmergencyBrake.

op f' : 0ldState -> NewState
ceq f'((gate: B) (conLoc: L1)(cabLoc: L2)(chanl: CH1)
(chan2: CH2) (cabSta: S)(pass: P)) =
(gate': B) (conLoc': L1)(cabLoc': L2)(chanl': CH1)
(chan2':CH2) (cabSta': S)(pass': P)
(appRes: if B then close else unknown)
if L2 = lastBrake or L2 = lastEmergencyBrake

No counterexample is found for the three formulas even if the update takes
update when the RailCab is at 1astBrake or lastEmergencyBrake.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [41/45]

Lessons learned from the case study

With the proposed formal approach, we can design a dynamic update
identifying a set of update points
defining an appropriate state transformation function
the dynamic update is verified to satisfy a set of desired properties

state transformation and update points depend on each other

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [42/45]

Some limitations and possible extensions

The proposed approach is suited

to systems with finite state space
to closed systems (no interaction with environment)
to instantaneous dynamic update

Some possible extensions

for infinite-state system: abstraction or narrowing-based model
checking

for open systems which need to interact the environment: Labeled
Kripke structure

to incremental dynamic update: to formalize the synchronization
mechanism between the old and new systems during updating.

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [43/45]

Conclusion and future work

A formal approach to the design of dynamic update:

Instantaneous and incremental dynamic update

Property-based correctness of dynamic update

Counterexample-guided design of dynamic update

The dependency between update points and state transformation
Future work: to extend the proposed approach

for infinite-state system

for open systems which need to interact the environment

for incremental dynamic update

Min Zhang (JAIST) Counterexample-guided Design of Property-based Dynamic Software Updates 2014.10.15 [44/45]

HOYMNEHITIHEL !

Min Zhang namic Software Updates [45/45]

