
From Types to Type Theory
to Proofs of Programs

Jean-Pierre Jouannaud

Université Paris Saclay and Ecole Polytechnique, France

JAIST, March 7, 2016.

Outline

1 Types, more types, types everywhere

2 Type Theory

3 Proof Assistants

4 Conclusion

Outline

1 Types, more types, types everywhere

2 Type Theory

3 Proof Assistants

4 Conclusion

Outline

1 Types, more types, types everywhere

2 Type Theory

3 Proof Assistants

4 Conclusion

Outline

1 Types, more types, types everywhere

2 Type Theory

3 Proof Assistants

4 Conclusion

Outline
Types, more types, types everywhere

Type Theory
Proof Assistants

Conclusion

Outline

1 Types, more types, types everywhere

2 Type Theory

3 Proof Assistants

4 Conclusion

Jean-Pierre Jouannaud[2em] Université Paris Saclay and Ecole Polytechnique, Franceplain

Birth of types in programming

Early programming languages were machine oriented. There
were no types except those wired in the hardware.

The notions of type and type declaration in programming
appeared with high level languages:

Fortran (John Backus): integers, reals, arrays
LISP (John Mac Carthy): the very first functional
programming language had a single (implicit) type: lists
ALGOL 68 (IFIP working group 2.1): all data are typed

Types belonged to pragmatics of programming languages.
Types had no intended logical meaning.
Programming languages aimed at structuring calculations,
while types aimed at structuring data.

Birth of strongly typed languages [Robin Milner]

Syntactic errors are caught by the syntax analyzer
Design errors cannot be caught
Common belief: machine overflows cannot be caught
Other runtime errors should be caught by a type system:
ML was the very first language in which the user could
declare his/her own types in order to build a type system.

A simple ML-like program

Inductive nat : set :=
| O : nat
| S : nat→ nat
end.
Fixpoint + (p : nat) (q : nat) : nat :=

match p with
| 0⇒ q
| S n⇒ S (+ n q)

end.
Inductive list : set :=
| nil : list
| cons : nat→ list→ list
end.
Fixpoint add (l : list): nat :=
match l with
| nil⇒ 0
| cons head tail⇒ + head (add tail)

end.

Types in ML

nat, int, and list are types
types have themselves a type, named set
set has no type
ML has function types: nat→ nat,
nat→ nat→ nat, nat→ (nat→ nat), (nat→ nat)→ nat, ...
every expression is typed:
S : nat→ nat
+ : nat→ nat→ nat or nat→ (nat→ nat)
p,q : nat
S n : nat
n : nat
+ n : nat→ nat
+ n q : nat
S(+ n q) : nat
Theorem: a well-typed ML program cannot go wrong:
either it terminates with a result of the appropriate type,
or it does not terminate.

A more advanced ML-like program

Variable a : set.
Inductive list: a→ set :=
| nil : list a
| cons : a→ (list a)→ (list a)
end.

Fixpoint add (l : list a) (0 : a) (+ : a→ a→ a) : a :=
match l with
| nil⇒ 0
| cons head tail⇒ + head (add tail)

end.

add : (list a)→ a→ (a→ a→ a)→ a

The program add is polymorphic: it can apply to lists of nat,
lists of int, lists of reals, list of Booleans, ...
Typing tells us more than the absence of runtime errors:
if the first input of add has type (list a), its output has type a.

An even more advanced ML-like program

Inductive alph : set := a, b, c, d , ..., z .
Inductive word : nat→ set :=
| epsilon : word 0
| char : alph→ word 1
| append : forall (n p : nat), word n→ word p→ word (n + p) .
Fixpoint reverse (n : nat) (w : word n) : word n :=
match w with
| epsilon⇒ epsilon
| char c⇒ char c
| append n1 n2 w1 w2⇒ append n2 n1 (reverse n2 w2)

(reverse n1 w1)
end .

Typing tells us a more sophisticated property of reverse:
reversing a word does not change its length.

Heaven for programmers

Could typing tell us arbitrary properties of functional programs?

The answer is YES
It requires a logical system

called Type Theory

Outline
Types, more types, types everywhere

Type Theory
Proof Assistants

Conclusion

Outline

1 Types, more types, types everywhere

2 Type Theory

3 Proof Assistants

4 Conclusion

Jean-Pierre Jouannaud[2em] Université Paris Saclay and Ecole Polytechnique, Franceplain

Propositions as types, Proofs as programs
[Curry-Howard-De Bruiyn-Martin Löf-Girard]

Every expression should have a type, including types,
types of types, ...
Any logical formula is a type and vice-versa
Showing that a program P has type Q is the same as
showing that program P has property Q:
P becomes an element, (an inhabitant, a witness, a proof)
of Q.
In other words, the set of elements of a type is identified
with the set of its proofs [Goedel]
There is a certain type, representing Falsity,
which cannot be inhabited.

Natural deduction rules for minimal logic [Goedel]

Propositions: α, β := p ∈ {pi}i | α→ β

Γ ` P means P holds under assumptions in Γ

P ∈ Γ
[AXIOM]

Γ ` P

Γ,P ` Q
[INTRO]

Γ ` P → Q

Γ ` P → Q Γ ` P
[ELIM]

Γ ` Q

Curry: same as Church’s typing rules

Type-checking rules for simply typed lambda-calculus

Types: α, β := p ∈ {pi}i | α→ β

x : P ∈ Γ
[VAR]

Γ ` x : P

Γ, x : P ` u : Q
[ABST]

Γ ` λ[x : P].u : P → Q

Γ ` v : P → Q Γ ` w : P
[APP]

Γ ` (v w) : Q

Proof terms: u, v ,w := x : α | λx : α.w | (u v)

Howard: cut elimination is functional evaluation.

Polymorphism, dependent types, universes

Each syntactic construct (such as dependent typing) comes
along with its two kinds of typing rules, called introduction and
elimination. Introduction tells you if a given (dependent type)
construction is well-formed, and elimination allows you to get
information from a well-formed (dependent type) construction:

Γ ` t : T Γ ` u : U
[INTRO-AND]

Γ ` 〈t ,u〉 : T ∧ U

Γ ` 〈t ,u〉 : T ∧ U
[ELIM-LAND]

Γ ` t : T

Home work: elimination rule for ∨

And there is one more rule ...

Equality of dependent types

Types list (+ 0 2), list (+ 1 1), list (+ 2 0) and list 2 are
extensionaly equal in the sense that they all characterize lists of
length 2, hence have the same inhabitants.

These types are identified in type systems with dependent
types by the conversion rule:

Γ ` t : T Γ ` T ′ : s′ T
β←→∗ T ′

[CONV]
Γ ` t : T ′

Types list (+ n 0) and list n are not identified when n is a
variable, althout they are extensionaly equal too.

This is the main weakness of Martin-Löf Type Theory

Type checking Reverse in Coq

Inductive nat : Set :=
| O : nat
| S : nat→ nat .
Fixpoint + (p : nat) (q : nat) : nat := match q with
| 0⇒ p
| S n⇒ S (+ p n)

end.
Variable A : Set .
Inductive word : nat→ Set :=
| epsilon : word 0
| char : A→ word 1
| append : forall (n p : nat),

word n→ word p→ word (n + p) .
Fixpoint reverse (n : nat) (w : word n) : word n :=
match w with
| epsilon⇒ epsilon
| char c⇒ char c
| append n1 n2 w1 w2⇒ append n2 n1 (reverse n2 w2)

(reverse n1 w1) FAILS !end .

Extensionality

In Coq, it is possible to equip the previous definition so that the
type checker generates the verification condition
list (+ n1 n2) = list (+ n2 n1)
to be carried out (in Coq) by the user.

This has severe drawbacks:
the type-checker is not a stand-alone program anymore,
This pollutes the proofs of properties of such definitions.
It is unatural

Alternative: make CONV stronger by declaring a decidable
equality for nat such as Presburger arithmetic, or the universal
fragment of Peano arithmetic.

Reverse in CoqMT

Inductive word : nat→ Set :=
| epsilon : word 0
| char : alph→ word 1
| append : forall (n p : nat), word n→ word p→ word (n + p) .
Fixpoint reverse (n : nat) (w : word n) : word n :=
match w with
| epsilon⇒ epsilon
| char c⇒ char c
| append n1 n2 w1 w2⇒ append n2 n1 (reverse n2 w2)

(reverse n1 w1)
end .
Lemma reverse-is-involutive :
forall n (w : word n), reverse (reverse w) = w .
Proof . intros w; induction w; auto. auto. rewrite with IHw1;
rewrite with IHw2 ; trivial. Qed .

Isomorphicality

CoqMT solves the problem of extensionaly equal simple types,
but does not solve the problem of isomorphic simple types.

Inductive nat : Set :=
| 0 : nat
| S : nat→ nat .
Inductive Hnat : Set :=
| H0 : Hnat
| HS : Hnat→ Hnat .
Inductive posnat : nat→ Set :=
Home work: complete the definiton.

nat, Hnat and posnat are isomorphic structures.
In HTT, they are identified by homotopic conversion:

Γ ` t : T Γ ` T ′ : s′ T ≡ T ′
[CONV]

Γ ` t : T ′

From earth to Heaven: a logic of computable functions

Simply typed lambda calculus [Church]
Goedel’s system T [Goedel]
Curry-Howard isomorphism [Curry, Howard]
De Bruiyn’s Automath [De Bruiyn]
Martin Löf theory of types [Martin Löf]
System F [Girard]
Calculus of Constructions [Coquand, Huet]
Calculus of Inductive Constructions [Coquand,
Paulin-Mohring]
Calculus of Extended Constructions [Luo]
Calculus of Inductive Constructions [Werner]
Calculus of Inductive Constructions modulo Theory
[Barras, Jouannaud, Strub, Wang]
Homotopy Type Theory
[Hofman&Streicher, Voevodsky]

Outline
Types, more types, types everywhere

Type Theory
Proof Assistants

Conclusion

Outline

1 Types, more types, types everywhere

2 Type Theory

3 Proof Assistants

4 Conclusion

Jean-Pierre Jouannaud[2em] Université Paris Saclay and Ecole Polytechnique, Franceplain

Architecture of Proof assistants [Milner, LCF]

?

A Start

?

�
 �	User

Tactic
language
and library

Candidate
proof term

-
u

Secure
proof-checker

u : A -

-
6u : A

Using PAs

Credo 1: PAs meet Software Verification needs
Compcert-C verified in Coq [Leroy]

Credo 2: Mathematics is the benchmark for PAs
Feit-Thomson proved in Coq [Gonthier]

Credo 3: PAs must be certified to be trusted
Coq [Barras] and CoqMT [Wang]

Coq has passed all these tests [ACM award]

but we need one more:

Credo 4: Modelization should avoid encodings

Prove your software S satisfies property P

First: write a model of S in your PA

Method 1: prove the model satisfies ∀x∃y .P(x , y)

Method 2: given input i, compute o and prove P(i ,o)

To enable method 2:
the model of S should be executable
the model of S should return a certificate describing how o
is derived from i and this description should then be
transformed into a proof term

Method 2 has become very popular:
Done for Presburger arithmetic, SAT, SMT, termination
analysis, arrays, etc.
Annual competitions of certified provers
Normalized certificates for SAT, termination

because it allows compare & reuse proofs via their certificates.

Prove your C software S satisfies property P

step 1: instrument the program with appropriate logical
formulas, including those that your program should verify
step 2: automate model production by computing a
translation of your program in the Coq language, and
generate verification conditions implying that the
transformation preserves the semantics of C.
step 3: send the verification conditions to provers (Vampire,
etc.), SMT solvers (Z3, CVC-4, Alt-Ergo, etc.), and PAs
(Coq, HOL, etc.). (preferably returning Coq proof terms)
step 4: type-check the obtained Coq program

Done in FRAMA-C at CEA and in their associated start-up
company on a semi-industrial scale
[Filliatre, Monate, F. Kirchner]
Application are in aeronotics.

More on natural encodings

Type theory is not enough: HOL better than Coq !

Algebra is needed as in OBJ, MAUDE, Cafe-OBJ, ELAN,
. . .

Functional encodings are needed: algebra is not enough !

Type theory + Algebra: λΠPModulo and Dedukti

Natural encodings provide portability of proofs

Outline
Types, more types, types everywhere

Type Theory
Proof Assistants

Conclusion

Outline

1 Types, more types, types everywhere

2 Type Theory

3 Proof Assistants

4 Conclusion

Jean-Pierre Jouannaud[2em] Université Paris Saclay and Ecole Polytechnique, Franceplain

Conclusion I: the lessons

Formal proofs is a widely accepted concept

Modelling is most important, PA-dependent

Proof development is demanding but rewarding

A PA is instrumental to carry out proofs when
- structurally complex or
- computationally demanding

Proof checking may be demanding as well

Trained engineers can now use secure PAs

Conclusion II: the questions

Will homotopy type theory be a success
Will PAs based on HTT be a success
Will unifying formalisms emerge that provide a “universal”
notion of proof term: λΠModulo [Dowek]

Can Curry-Howard be extended to other programming
paradigms [Krivine]
Will these extensions yield successful PAs
Do we have the right tactic languages: SSReflect
[Gonthier]

The Coq project started at INRIA in 1983 by Gérard Huet. Work
in all these directions is too preliminary to be conclusive.

	Types, more types, types everywhere
	Type Theory
	Proof Assistants
	Conclusion

