
An Agile Programming Model for Grid End Users  
 
 

Zhiwei Xu, Chengchun Shu, Haiyan Yu, Haozhi Liu 
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China 

{zxu, yuhaiyan}@ict.ac.cn {shuchengchun,liuhaozhi}@software.ict.ac.cn) 
 

 
Abstract 

 
Grid and service computing technologies have been 

explored by enterprises to promote integration, 
sharing, and collaboration. However, quick response 
to business environment changes is still a challenging 
issue. For end users, developing, customizing, and re-
engineering applications remain a difficult and time-
consuming task. Users still need to deal with excessive 
low-level details of platform-specific APIs. We present 
a high-level programming model together with a 
descriptive glueing language called GSML, to 
facilitate end-user programming. In this approach, 
applications could be visually composed from well-
defined software components called "funnels" in an 
event-driven fashion. Application examples have 
shown that, by raising the level of abstraction as well 
as simplifying the programming model, GSML could 
empower end users to build grid applications on 
demand with improved productivity.  
 
1. Introduction 
 

Recent years have witnessed significant technology 
innovations on integrating distributed resources from 
multiple administrative domains into a virtualized and 
coherent computing environment, namely the grid. 
However, attempts to utilize grid technologies in daily 
enterprise operations are often frustrated by the 
difficulties of adapting underlying IT infrastructures as 
well as applications to business environment changes. 
For end users, developing, customizing and re-
engineering applications are still a difficult task, even 
with state-of-the-art grid middleware and toolkits. 

Enterprise information systems have to change with 
the trends of technology and market demands. These 
changes can be categorized into two levels: resource-
level and application-level. The resource-level changes 
refer to the evolution of the underlying IT 
infrastructure, which consists of a variety of resources 
such as servers, desktops, networks, software and 

databases. Either regrouping of the whole organization, 
such as merging or cutting divisions, or small 
adjustment within some departments, such as 
upgrading database servers or changing the schema of 
a certain inventory table, result in resource-level 
changes that could demand the modification of 
business application codes. Application-level change is 
necessary when business models and business 
processes (e.g. workflows) have to be altered with 
respond to market conditions.  

Both types of changes put an emergent demand for 
agile software development approaches that allow 
information systems to continue running smoothly, 
with little modification effort. Ideally, such 
modifications for meeting new business requirements 
could be accomplished by end users with minimal 
intervene of IT professionals.  

Grid end users are those application users (e.g. 
managers, secretaries, salesmen, biologists, chemists) 
who use grid as part of their daily work but may not 
have professional background on computer 
programming. For them, building or modifying grid 
applications remain a difficult and time-consuming 
task. To build new applications, end users need to deal 
with excessive details of low-level APIs that are often 
platform-specific and have a high learning curve for 
them. For example, users must have extensive 
knowledge of XML, SOAP and Web Services when 
developing applications based on service-oriented grid 
middlewares. These technical details often divert 
user’s attention from business needs of an application. 

This paper presents an agile programming model 
together with a descriptive language called GSML, to 
facilitate end-user programming in an approach that 
applications could be visually composed from off-the-
shelf software components called "Funnels".  GSML 
(Grid Service Markup Language) is an XML-based 
markup language for users to specify how to access 
grid resources (including services) and how to glue 
heterogeneous modules together in an event-driven 
fashion. The core concepts of GSML, funnel, event, 
and event-set, are derived from a simplified model of 



pi-calculus [9], which is suitable for describing the 
distributed and concurrent nature of grid applications. 
In addition, we have implemented a visual 
programming environment to support the authoring of 
GSML applications in an intuitive way. With GSML, 
users need not build a grid application from scratch, 
but can integrate many "ready for use" components as 
needed. These components have encapsulated low-
level and labor-intensive coding work, and may 
therefore make the programming task easier even for 
non-programmers. Event-based connections among 
components allow for a more loosely coupled 
architecture than conventional RPC-style ones. 

There are a variety of studies on end-user 
programming. Spreadsheet languages such as Forms/3 
[2] and FAR [3] regard the spreadsheet paradigm as an 
easy, and computationally powerful devices to solve 
end-users’ problems. KidSim [10] explores the 
Programming by Demonstration (PBD) method to 
empower children to program their simulations and 
games. Natural Programming [8] studies more natural 
approaches to programming based on empirical and 
psychological studies of programmers. The design and 
implementation of GSML Composer benefited from 
these studies and experiences. 

 Reference [6] categorizes grid programming 
models into the following classes: grid-enabled 
messages passing libraries, middleware, problem 
solving environments (PSE) and portals. Java CoG Kit 
[7] is one of the PSE tools, which aims to providing 
convenient access to grid system through commodity 
technologies such as the Java framework. Grid Portal 
Development Toolkit (GPDK) exemplifies portal 
technology which makes rapid portal development 
facilities possible by providing a suit of JavaBeans 
suitable for Java based grid computing environment. 
GSML enables end-user programming and agile 
programming through virtualization, visual-style 
programming, and a carefully designed small set of 
language concepts. 
 
2. Design Considerations 

 
To support business agility within the context of 

grid-enabled information systems, we identified a set 
of requirements for an "agile" programming model and 
design principles. We use the term agile to highlight 
the need to both quickly react to changes in resource 
level and quickly refactor programs in application level.  
 
2.1 Resource Virtualization 

Virtualization is a well-accepted design principle 
both in traditional operating systems and programming 

languages. In the GSML programming model, an end 
user only sees virtual resources that are location 
independent. A virtual resource (e.g., with a name 
"PriceQuery") is mapped to a physical resource (e.g., 
the price query service on machine A with endpoint 
address of http://host-A:8080/pq) at runtime, the 
process of which is called resource binding. Resource 
bindings are automatically enforced with the support 
of runtime system software. 

With virtualization, application codes do not have 
to be hard-wired to physical resource addresses and 
interfaces. In addition, GSML applications referring to 
virtual resources could benefit from systematic load 
balancing (by choosing alternative physical services 
with lower load), fault tolerance (by switching to a 
new physical service in response to service failure), 
locality of service access (by locating a nearby 
physical service), etc. All such details are transparent 
to the application logic. 

 
2.2 Loosely-coupled Components and Event-
based Architecture 
 

The volatile behaviors of grid resources, such as 
joining or leaving the grid at any time, imply that the 
components of grid applications need also to be 
loosely coupled. Most of existing component 
architectures, like CORBA, DCOM, RMI and Web 
Services, are based on a point-to-point communication 
model, which is characterized by a tight conceptual 
coupling between the component that requests a 
service (the client) and the component that satisfies 
such a request (the server). Many situations require the 
availability of a more decoupled model [4]. For 
example, in a dashboard application where live 
information of stock quotes from world-wide markets 
are aggregated and analyzed, the communication 
among the components may involve more than two 
parties, and may be driven by the contents of the 
information rather than by the identity of information 
producers and consumers. 

In GSML, we propose to utilize an event based 
model for gluing components, to support loosely 
coupled, scalable interactions among distributed parts 
of an application. A language construct called funnel is 
introduced for the purpose of specifying business 
components, and for disseminating, merging, splitting 
or filtering events.  

 
2.3 High-Level and Visual Programming 

End users require a high level programming model, 
where by grid applications are constructed by reusing 
modular business components, instead of developing 



from the scratch with general-purpose programming 
languages like C and Java. A key issue is to define a 
suitable abstraction, which is called funnel in GSML. 

The success of spreadsheets demonstrates visual 
style of programming could be easier to understand 
and generate for humans, especially for non-
programmers [1]. Adding visual features into a 
programming model provides intuitive graphical 
primitives and also enforces programming discipline, 
which brings about application robustness. 

With the GSML model, we designed a visual 
programming environment that allows users to create 
applications by dragging components (funnels), 
dropping them into a workspace, and connecting them 
together to build an event flow graph.  

 
3. The GSML Programming Model 
 
3.1 Constructs 
 

A GSML application is an end user defined grid 
application, which is specified as an XML document 
and run in a GSML browser.  

 

 
Fig.1. A GSML application example 

 
The core construct of GSML is funnel. A funnel is 

an independent function module, which can be either 
atomic or composite. Several funnels can interact with 
one another by generating, filtering and consuming 
events. This is how the control and data flows for an 
integrated GSML application are specified. An atomic 
funnel is a basic module predefined by the system (the 
GSML runtime system or a grid environment). A 
composite funnel is a graph of event-sets and funnels. 

An event-set defines the dynamic interaction of 
funnels in a grid application. It is made up of a set of 
input events and output events. The interaction occurs 
when all its input events occur. Then all its output 
events will be tested according to the corresponding 
Boolean expressions associated with the events’ 

parameters. If an expression results in True, an event 
then will be sent to the destination. 

An input event has three attributes: the identifier, 
the type and the source of the event. Every input event 
is generated by some source funnel, which also 
specifies the event type.  

An output event describes what, where and when 
the event will be transmitted. It has three attributes: a 
event description, the destination identifier, and a 
Boolean expression to determine whether or not the 
transmission occurs. An event description is a set of 
parameters (name-value pairs). The parameters serve 
as customized arguments of the event. 

Figure 1 presents a simple example to illustrate the 
syntax of a GSML document. It periodically retrieves 
and updates weather and stock information. The 
application is built with five ready-to-use funnels: one 
TimerFunnel, one System, one HTMLFunnels and two 
WSFunnels. The dynamic interactions between these 
funnels are specified in the four event-sets:  one for 
calling the corresponding web services based on the 
timer event information, and two for scripting the web 
pages to update the dashboard with the newest 
information. How this application is built in GSML 
composer and how it runs in GSML Browser are 
presented in section 4. 
 
3.2 Layered model 
 

Figure 2 gives the three-layer GSML model. GSML 
Resource Layer is a resource space layer, in which 
each resource is abstracted into a ready-to-use 
component. The component can be virtualized desktop 
applications (e.g. Excel, Matlab, Web Browser), a Web 
service, or grid services. To hide low-level details of 
resources, the GSML Resource Layer provides 
resources abstractions with a uniform interface: the 
components work as funnels which interact by 
generating, filtering and consuming events.  

 

 
Fig.2. Architectural model of GSML 

 



GSML Application Logic Layer is the gluing layer 
where loosely coupled, dynamic interactions between 
distributed components (funnels) are customized by 
end users. This layer defines what components are 
used by the application by mapping funnels to 
resources. This layer is also responsible to customize 
how the interactions among the components are 
performed, via funnels and event-sets.  

GSML UI Layout Layer is to define the 
presentation layout of components and their display. 
Currently, a two dimensional table is used in the form 
of cells in rows with adjustable width and height. Each 
cell is assigned to zero or more funnels. 

 
4. Implementation 
 
4.1 GSML Composer 
 

We implement GSML Composer to provide a visual 
programming environment for the development of 
GSML applications, using the Eclipse Graphical 
Editing Framework (GEF) [5]. The composer 
represents the funnels and event-sets as visual nodes, 
and events as connections. The composer lists all the 
ready-to-use components and associates all the 
possible events with the components’ connections. A 
GSML application is constructed by dragging and 
dropping the visual nodes of components into the 
workspace, connecting them with events. End users 
can interactively manipulate and modify the visual 
objects, as GSML Composer provides the immediate 
visual feedback at liveness level 3 [1]. Figure 3 shows 
a snapshot of GSML Composer during authoring the 
information dashboard example. 

When the building or modification is done, GSML 
applications can be saved in composition files, 
exported as GSML documents, or directly loaded into 
the GSML Browser to run. 

 

 
 

Fig. 3 A Snapshot of the GSML Composer 

4.2 GSML Browser 
 

The GSML Browser provides a runtime system for 
GSML applications. It (1) initializes and manages the 
funnels required by the application, and (2) handles 
event-based interactions among the funnels.  

After the GSML document is loaded and parsed by 
the GSML Browser, a Funnel Manager is started. It 
loads each funnel and starts it in a separate thread 
context. An Event Manager manages the events from 
funnels, check if an interaction is ready, and deliver 
output events to destination funnels. 

GSML Browser builds TCP connections as 
communication links between the funnel and the Event 
Manager. The Event Manager starts with a public port 
for connection with the funnels in GSML applications, 
and each funnel will locate the Event Manager and 
establish a connection when it starts. Through the 
connection, the funnels transmit the events to the 
Manager which in turn forwards the output events to 
the destination funnels. The connections are loosely 
coupled and dynamic because they are specified by the 
users of components, and dynamically created during 
execution, which are subject to rapid adaptations to 
application changes. Figure 4 shows a snapshot of the 
information dashboard application running in the 
GSML Browser. 

 

 
 

Fig.4. A Snapshot of the GSML Browser 
 

5 Conclusion 
     
This paper presents a high-level visual programming 

model that allows end users to integrate business 
components. The objective is to support business 
agility in a grid environment. 



Three technical requirements are identified to 
accommodate business agility needs, namely, resource 
virtualization, loosely coupled component architecture, 
and high-level visual programming. A markup 
language called GSML, together with its runtime 
system (the GSML Browser) and developer tool (the 
GSML Composer), is designed and implemented. The 
core language construct is funnel, while a key 
mechanism is event-based interaction among 
components (funnels). 

End User Friendliness. As is shown in the 
Information Dashboard example, the GSML Composer 
can lower the technology barrier for end users. First, it 
lists all the ready-to-use components and their 
interfaces in visual way, with business-level 
terminology. Second, it gives each element of a GSML 
page a visual representation, thereby an end user can 
manipulate the data model intuitively. Third, the 
instanced information of the funnels (e.g. the 
WSFunnel) can be automatically filled through UDDI 
Web Services facility of GSML Composer. The 
simplified requirement can be afforded by grid end 
users who even have little knowledge of low-level 
details of grid architecture, protocols and programming. 
In addition, GSML Composer improves the 
correctness of grid applications by exposing end users 
to the visual representations for GSML elements 
instead of the error-prone, laborious XML syntax. 

Supporting Agile Programming. The GSML 
Composer enables rapid development of grid 
applications. For application changes at the 
presentation level, we only need minor changes, such 
as adjusting the table layout visually or load new web 
page templates created by web page authoring tools.  
For the application logic changes, we can add new 
funnels and new connections, or/and adjust the 
connection and parameters of the interaction flows. For 
resources changes in the system, no application 
modification is need in many cases, due to resources 
virtualization.  

Expressiveness. The expressiveness of GSML can 
be evaluated in two levels. The first level is to evaluate 
what GSML can express by composing a given set of 
funnels. To aid user friendliness, GSML provides very 
intuitive primitives, and try to provide too much 
expressiveness. Another level is to evaluate what 
applications the GSML can build given that all the 
required funnels are available. The expressiveness at 
the level is determined not only by the loosely-coupled, 
dynamic interactions, but also by the funnels which 
can be developed with traditional programming 
languages (Java, JSP, etc.) and existing programming 
models (RMI, Web Service, etc). 

To sum up, with funnels and event-sets, GSML can 
be used to build many grid applications by an efficient 
partition of labor between end users and technical staff. 
Technology savvy people are responsible for 
developing components (expressed in GSML as 
funnels) that can be shared by many grid applications. 
End users can use the GSML composer to quickly 
develop and maintain personalized grid applications.  

 
References 
 
[1] M. Burnett, “Visual Programming”, Encyclopedia 
of Electrical and Electronics Engineering, John Wiley 
& Sons, 1999. 
[2] M. Burnett, and H. Gottfried, “Graphical 
Definitions: Expanding Spreadsheet Languages 
through Direct Manipulation and Gestures”, ACM 
Transactions on Computer-Human Interface 5(1), 
March 1998. 
[3] M. Burnett, S. K. Chekka, and R. K. Pandey, “FAR: 
An End-User Language to Support Cottage E-
Services.”, HCC 2001, 2001, pp. 195-202. 
[4] G. Cugola, E. Nitto, A. Fuggetta, “The JEDI Event-
Based Infrastructure and Its Application to the 
Development of the OPSS WFMS”, IEEE  
Transactions on Software Engnineering,vol. 27, 2001, 
pp. 827-850  
[5] Graphical Editing Framework. http://www.eclipse. 
org/gef/, 2005. 
[6] D. Laflorenza, “Grid Programming: Some 
Indications Where We are Headed”, Parallel 
Computing, Vol. 28, 2002, pp. 1733-1752. 
[7] G.V. Laszewski, I. Foster, J. Gawor, and P. Lane, 
“A Java Commodity Grid Kit,” Concurrency and 
Computation: Practice and Experience, vol. 13, 2001, 
pp. 643–662.  
[8] B. Myers, “Towards More Natural Functional 
Programming Languages”, The ACM International 
Conference on Functional Programming (ICFP 2002), 
Pittsburgh, PA, October, 2002,  
[9] D. Sangiori, and D. Walker, “The Pi-calculus: A 
Theory of Mobile Processes”, Cambridge University 
Press, 2001. 
[10] D. Smith, A. Cypher, and J. Spohrer, “Kidsim: 
Programming Agents without a Programming 
languages”, Communications of the ACM 37(7), July 
1994, pp. 54-67. 


