北陸先端科学技術大学院大学 [JAIST] - 研究者総覧
現在ページ トップページ 検索結果研究者紹介>全件表示

講演発表表示
表示方法:
表示順:

 

 

根元 多佳子 (ネモト タカコ) 助教
情報科学系、知能ロボティクス領域

15件中1-15件目

  • 1. Finite sets and infinite sets in weak intuitionistic arithmetic,Takako Nemoto,Chinese Logic annual meeting,Duyun (China),May 2018
  • 2. Some properties of function spaces in reverse mathematics,Takako Nemoto,Das Kontinuum – 100 years later,Leeds (UK),September 2018
  • 3. Recursion theory in constructive mathematics,Takako Nemoto,Asian Logic Conference,Daejoen, South Korea,July 2017
  • 4. Finite sets and infinite sets in constructive reverse mathematics,Takako Nemoto,SotFoM4: Reverse Mathematics,Munich, Germany,October 2017
  • 5. Intermediate value theorem and WKL for convex tree,Takako Nemoto,Interval Analysis and Constructive Mathematics,Oaxaca, Mexico,November 2016
  • 6. Finitistically constructive Zermelo-Fraenkel set theory,Takako Nemoto,Operations, Sets, and Types,Münchenwiler, Switzerland,April 2016
  • 7. Determinacy of Infinite Games and Reverse Mathematics: Complexity of Winning Strategies,Takako Nemoto,Special session of Reverse Mathematics, Computability in Europe 2015,Bucharest, Romania,29 June-3 July, 2015
  • 8. A marriage of Brouwer's intuitionism and Hilbert's finitism,Takako Nemoto,Fifth Workshop on Formal Topology: Spreads and Choice Sequences, Stockholm, Sweden
  • 9. A marriage of Brouwer's intuitionism and Hilbert's finitism,Takako Nemoto,JAIST Logic Workshop Series 2015, Constructivism and Computability,Kanazawa,2-6 March, 2015
  • 10. 二階算術における無限ゲームの決定性,根元 多佳子,日本数学会秋季総合分科会,京都産業大学,13-15 September 2015
  • 11. Ramified Analysis Revisited: A Refinement of Determinacy Hierarchy,Takako Nemoto,Proof 2013,Bern, Switzerland,9-13 September, 2013
  • 12. Making a detour via intuitionistic theories – Embedding set theories into systems of explicit mathematics,Takako Nemoto,Constructive Mathematics: Foundations and Practice,Nis, Serbia,24-28 June, 2013
  • 13. The proof theoretic strengths of determinacy between \Sigma^0_1 and \Delta^0_2,Takako Nemoto,Logic Colloquium 2012,Manchester, UK,12-18 July, 2012
  • 14. A system of explicit mathematics and $\Pi_3$ reflection,T. Nemoto,Logic Colloquium 2011,Barcelona, Spain,July 2011
  • 15. Determinacy and $\Pi^1_1$ transfinite recursion along $\omega$,T. Nemoto,8th Panhellenic Logic Symposium,Ioannina, Greece,July 2011