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Real-time sound rendering applications are memory-intensive and computation-intensive. To speed up computation and extend the simulated
area, a real-time sound rendering system based on the hardware-oriented finite difference time domain algorithm (HO-FDTD) and time-sharing
architecture is proposed and implemented by the field programmable gate array (FPGA) in this study. Compared with the traditional rendering
system with parallel architecture, the proposed system extends by about 37 times in the simulated area because data are stored in the on-chip
block memories instead of the D flip-flops. The hardware system becomes stable after 400 time steps in the impulse response. To render a
three-minute Beethoven classical music clip, the hardware system carries it out in real-time while the software simulation takes about 63min in
a computer with 4GB RAM and an AMD Phenom 9500 Quad-core processor running on 2.2GHz.

© 2014 The Japan Society of Applied Physics

1. Introduction

Sound rendering technologies are widely applied in many
industrial and scientific fields. In sound rendering applica-
tions, a sound space is discretized into small grids. The
governing equations of sound propagation are applied on
each grid to analyze the sound behavior at discrete time steps.
During analysis, the sound pressures of a grid and its
neighbors at previous time steps are required. Amounts of
data are read from and written into memory. Sound rendering
applications are therefore computation-intensive and memo-
ry-intensive. Traditional sound rendering systems are based
on computer simulation and calculate sound pressures grid
by grid at each time step. Their performance improvement
suffers from the arithmetic units and memory bandwidth of
computers. Although the arithmetic performance may be
improved by increasing the clock frequency or using parallel
techniques in general-purpose microprocessors, the memory
bandwidth is the bottleneck of performance improvement.
During simulation, lots of data are read from and written into
the external memory. Since there are no special hardware
units tailored to accelerate data access, the memory system
does not work effectively owing to the intensive data
requirement and insufficient bandwidth of the external
memory.1) For example, in a two-dimensional sound render-
ing system with parallel architecture, if data are 32 bits, the
system has 1,024 grids, and the clock frequency of the
uniform computing cell at each grid is 100MHz, the data
throughput is 3,200Gbps, which is beyond the memory
bandwidth of current general-purpose computer systems.2)

The simulation therefore becomes time-consuming even if
computers become much faster.

General-purpose graphic processing units (GPGPUs) have
been applied to enhance the arithmetic performance through
coarse-grain parallelism of the arithmetic units in recent
sound rendering systems.3–6) However, these general-purpose
processors are designed for high arithmetic performance
without sufficient memory bandwidth, and consequently
computations are not efficient for the memory-intensive
sound rendering. In addition, solutions based on GPGPU
and computer simulations are not easily applied for real-

time applications because their rendering results require
further post-processing, particularly for multi-channel audio
applications.

To address these problems, custom computing with
programmable logic devices, such as FPGA, is promising
in sound rendering applications, where the customized
system allows processing modules to operate with high
utilization. FPGA-based sound rendering solutions provide
direct implementation of sound propagation equations by the
configurable logic blocks (CLBs) inside a FPGA chip.7–11)

By cascading hundreds of arithmetic units together, and
coordinating them to work in parallel, a FPGA-based sound
rendering system may achieve much higher computation
performance than software simulations on generic computer
systems. Since the utilization and interconnection of internal
memory resources of a FPGA are explicitly tailored
according to the system data flow, data are reused more
efficiently, and the external memory access is reduced
significantly. Furthermore, the input/output interfaces are
easily built and attached for real-time applications.

In this paper, a real-time sound rendering system based on
the HO-FDTD algorithm8) is proposed and implemented. The
present work mainly discusses the system design and
implementation based on a programmable hardware structure
fully tailored for the sound rendering. The major contribu-
tions of this work are as follows:
1) Derivation of the boundary condition of the HO-FDTD

algorithm.
2) Time-sharing architecture to extend the simulated area.
3) Design and implementation of the FPGA-based proto-

type system.
4) Detailed analysis and evaluation of system performance

based on the prototype system, including system
stability and rendering time.

The rest of this paper is organized as follows. Section 2
introduces the HO-FDTD algorithm and boundary condi-
tions. Section 3 describes system design and implementation,
including system architecture, system design, and so on.
Section 4 presents the performance estimation of the
prototype system. Finally, Sect. 5 concludes the paper with
a summary and discussion of future work.
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2. HO-FDTD algorithm

2.1 General grids
The FDTD algorithm is widely applied to analyze sound
behavior.12–16) In a cubic element shown in Fig. 1, sound
wave propagation is governed by the following formula:

@2P

@t2
¼ c2

@2P

@x2
þ @2P

@y2
þ @2P

@z2

� �
; ð1Þ

where P denotes the sound pressure, c is the sound speed, and
x; y; z are the axes of a rectangular coordinate system. By
applying the center differential method in Eq. (1), and let
�x ¼ �y ¼ �z ¼ �l, then

Pnþ1ði; j; kÞ ¼ 2Pnði; j; kÞ � Pn�1ði; j; kÞ
þ �2½Pnðiþ 1; j; kÞ þ Pnði� 1; j; kÞ
þ Pnði; jþ 1; kÞ þ Pnði; j� 1; kÞ þ Pnði; j; kþ 1Þ
þ Pnði; j; k� 1Þ � 6Pnði; j; kÞ�; ð2Þ

where » = c¦t/¦l denotes the courant number. For a three-
dimensional sound space, � � 1=1

ffiffiffi
3

p
. When Eq. (2) is

implemented by hardware, two multipliers are required,
which consume more hardware resources and decrease the
system clock frequency due to the long routing delay. To
eliminate the multipliers, » is assumed to be 1/2, then Eq. (2)
is changed as8)

Pnþ1ði; j; kÞ ¼ 1

4
½Pnðiþ 1; j; kÞ þ Pnði� 1; j; kÞ

þ Pnði; jþ 1; kÞ þ Pnði; j� 1; kÞ þ Pnði; j; kþ 1Þ
þ Pnði; j; k� 1Þ þ 2Pnði; j; kÞ� � Pn�1ði; j; kÞ: ð3Þ

In Eq. (3), the multipliers are easily implemented by right
and left shifters in hardware.

2.2 Boundary condition
Reflections from the boundaries of an acoustic space play a
pivotal role for sound rendering, and therefore attention
has been given to the problem of formulating numerical
approximations of boundaries. A reflective boundary can be
modeled as a locally reacting surface by assuming that waves
do not propagate vibrations in the direction parallel to the
boundary surface. The acoustical behavior of a reflective
boundary is therefore based on the sound pressure and the

particle velocity perpendicular to the boundary surface, and
described by the boundary impedance. If a sound wave
travels in a positive axis ðx; y; zÞ direction, the boundary
impedance Z relates the sound pressure to the particle
vibration by17)

Z ¼ P

U
; ð4Þ

where U denotes the particle velocity component perpendic-
ular to the boundary. For sound waves traveling in a negative
axis direction, Eq. (4) is changed to Z = ¹P/U. Differ-
entiating both sides of Eq. (4), then

@P

@t
¼ Z

@U

@t
: ð5Þ

For a boundary perpendicular to an axis, the momentum
conservation equation of wave propagation is

rPþ �
@U

@t
¼ 0; ð6Þ

where μ is the air density. Substituting @U/@t in Eq. (5) with
Eq. (6) yields the boundary condition in terms of sound
pressure18)

@P

@t
¼ �c�rP; ð7Þ

where ² = Z/μc is the normalized boundary impedance, also
known as the specific boundary impedance.

For a rectangular sound space, such as the sound space
with 4 © 4 © 4 grids shown in Fig. 2, grids on boundaries
are classified into three types according to their positions,
namely, interior grid of a boundary, edge, and corner.
Different equations are derived to update the sound pressures
for different types of grids on boundaries. During derivation,
the normalized boundary impedances of all boundaries are
assumed to be ².

2.2.1 Interior grids of a boundary When a grid is on the
interior of a boundary, it matches the boundary condition
defined by Eq. (7). For example, for the interior grids on the
right boundary (the yellow points in Fig. 2), wave propagates
along the positive x direction. Equation (8) is achieved by
using the centered finite difference method on Eq. (7):

(i,j,k) (i+1,j,k)

(i,j,k+1)

(i-1,j,k)

(i,j,k-1)

(i,j-1,k)

(i,j+1,k)

l
x

y
z

Fig. 1. A three-dimensional cubic element. Fig. 2. (Color online) A rectangular sound space.
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By rearranging the related terms in Eq. (8) and replacing
c¦t/¦x with », Eq. (9) is derived as an expression for a point
lying outside of the modeled space, which is referred to as a
“ghost point” shown in Fig. 3:19)
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Inserting Eq. (9) into Eq. (2), then
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If the boundary reflection factor R is defined as (² ¹ 1)/
(² + 1) and » is assumed to be 1/2, Eq. (10) is changed to
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2.2.2 Edges When grids are on edges, which are
intersections of two boundary planes, two boundary con-
ditions are satisfied simultaneously. For example, the
boundary conditions for the edge of the right and front
boundaries (the red points in Fig. 2) are

@P

@t
¼ �c�

@P

@x
;

@P

@t
¼ c�

@P

@y
: ð12Þ

In Eq. (12), the first formula is the boundary condition for the
right boundary, and the second one is for the front boundary
where the wave propagates in the negative y direction.

By using the centered finite difference method on Eq. (12),
the sound pressures of the corresponding ghost points are
calculated using Eq. (13):
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By inserting Eq. (13) into Eq. (2), then
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Eliminating ² by R and assuming » to be 1/2 in Eq. (14),
Eq. (15) is derived to update the sound pressures of grids on
the edge of right and front boundaries.
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2.2.3 Corners If a grid is at the intersection of three
boundary planes, three boundary conditions are required
simultaneously. For example, for the intersection grid of
front, left, and top boundaries (the purple point in Fig. 2), the
boundary conditions are

@P
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¼ c�
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@x
;

@P
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¼ c�

@P
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; ð16Þ
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:

The formulas in Eq. (16) show the boundary conditions for
the left, front, and top boundaries, respectively. Equation (17)
is obtained to update the sound pressure of the corner by
grids and edges:
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Equations (11), (15), and (17) show that the sound
pressures of grids on a boundary are calculated using the
sound pressure of its neighbors at previous time steps, and no
data dependency exists during computation. The equations
consist of two parts. One is the sum of the sound pressures of
a grid and its neighbors at the time step n ¹ 1, and the other
is the sound pressure of a grid at the time step n ¹ 2, i.e.,
Pn�2
i;j;k . Furthermore, these equations have a similar format

except for the multiplicands for different type of grids. Thus
two uniform multipliers can be applied to implement different
boundary conditions by hardware. For the same type of
grids on boundaries, the multiplicands of two multipliers
are same, and the terms in the sum part are different. For
example, when a grid is located at the interior of the left
boundary, the multiplicands in the equation to calculate the
sound pressure are same as those in Eq. (11), but the sum part
is changed from ð2Pn

i�1;j;k þ Pn
i;jþ1;k þ Pn

i;j�1;k þ Pn
i;j;kþ1 þ

Pn
i;j;k�1 þ 2Pn

i;j;kÞ to ð2Pn
iþ1;j;k þ Pn

i;jþ1;k þ Pn
i;j�1;k þ

Pn
i;j;kþ1 þ Pn

i;j;k�1 þ 2Pn
i;j;kÞ.

Fig. 3. Right boundary condition.
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3. System design

In traditional rendering systems based on the parallel
architecture, a uniform computing unit is applied at each
grid to model the acoustical phenomena. At each time step,
computing units read data from their neighbors, carry out
computations, and finally output the calculation results to
their neighbors. This procedure loops again until the
calculated time steps are finished. The main disadvantage
of these rendering systems is the small simulated area by a
FPGA chip. Since a computing unit is located at each grid,
the hardware resources are increased linearly with the number
of grids. When a sound space becomes larger, the hardware
resources increase significantly. Hence, a sound rendering
system with small number of grids is implemented by a
FPGA chip owing to its limited hardware resources. To
enlarge the simulated area, many FPGA chips are required to
be cascaded and work in parallel, but data exchange between
FPGA chips is a troublesome problem when the clock
frequency is increased. An alternative solution is to apply the
time-sharing architecture.

3.1 Time-sharing architecture
Because computing units generally run at a high clock
frequency, and the sound frequency is relatively low, a
computing unit can be used to analyze several grids. As
shown in Fig. 4, the sound pressure of a grid is calculated at
each clock cycle by the computing unit. The computation is
moved to the next grid at the next clock cycle until the sound
pressures of all grids are obtained. In principle, the sound
pressures of all grids are calculated grid by grid through a
computing unit in the time-sharing architecture, and hardware
resources are saved. If a computing unit runs at 100MHz,
and the sound frequency is 10 kHz, a computing unit may
calculate 104 grids. During calculation, the sound pressures
of all grids are required to be kept for further computation.
From Eqs. (3), (11), (15), and (17), two RAMs are required
to store the sound pressures at the time steps n ¹ 1 and n ¹ 2.

When two RAMs are used to store data, an incident datum
is read into the system after system initialization. The reading
addresses of the RAMs are generated according to the grid
position. On the basis of these addresses, the related data are
read from two RAMs, computations are carried out by the
computing unit, and the calculation result is written back into
the corresponding RAM. Computations are then moved to
the next grid, and the calculation procedure repeats until the
sound pressures of all grids are obtained. Once computations
at a time step are completed, the writing/reading operations
on two RAMs are switched. Another incident datum is then
read into the system, and computations occur again at the

next time step. This whole procedure is iterated until the
calculated time steps are over.

3.2 System architecture
The whole rendering system, as shown in Fig. 5, consists of
two FPGA boards, and each FPGA board contains two FPGA
chips. The incident signal, such as a song, is sampled by a
high-speed A/D board (ADS5474), which is attached to the
FPGA 1 on board 1. Then, the sampled data are processed by
the rendering engine DHM module. The sound pressures at
the observation point are sent to the FPGA 2 through the
extended data transfer module (EDT_IF). Finally, they are
transferred to the D/A board (DAC5682Z) on board 2
through the ATCA bus, and output to drive the speaker
system. The whole procedure is handled in real-time. The
hardware system is extended by modifying the data transfer
interface between FPGAs (EDT_IF) and FPGA boards
(ATCA_IF) to make multiple FPGAs work in parallel to
enlarge the simulated area. As shown in Fig. 5, only one
FPGA is applied as the computing engine in the current
system.

3.3 System design
The system diagram of the DHM module, which is the
sound rendering engine, is shown in Fig. 6. The DHM
module mainly consists of the Computing unit, Grid position
controller, System controller, buffers, and two block memo-
ries: Block_RAM_1 and Block_RAM_2. The Computing unit
is the arithmetic unit used to calculate the sound pressure of
a grid according to the input sound pressures of its neighbors.
The Grid position controller generates the grid position.
The System controller maintains the computation flow and
generates control signals according to the grid position, such
as the read/write enable signal (we) of the block RAMs,
addresses to read out data from or write the calculation results
into the block RAMs (raddr_RAM and waddr_RAM), and the
RAM selection signal (ram_we_sel). Two block memories are
used to alternatively store the sound pressures of all grids at
different time steps. Buffers are applied to read data in
advance to reduce latency during calculation.

In Fig. 6, the Computing unit, Grid position controller, and
System controller are simple, and most of the hardware
resources are consumed by the block RAMs and buffers. The
size of each block RAM is determined by the number of grids
and the data width. If the data width is 32 bit, and the sound
space is divided into N © M © L grids, each block RAM is
4NML bytes and each buffer is 4NM bytes in size. As the
simulated space area becomes larger, the number of grids
increases significantly, and the size of the block RAMs and
buffers becomes larger too.

Fig. 4. Principle of time-sharing architecture.
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3.3.1 Computing unit The Computing unit is designed
based on the HO-FDTD algorithm. As discussed in Sect. 2,
different equations are used to calculate the sound pressures
according to the grid position, and they are similar except for
the multiplicands. Based on this, a uniform computing unit is
designed as shown in Fig. 7. The Computing unit contains
one adder, one subtractor, two fixed-point multipliers, and
four multiplexers. The multipliers are used to implement the
boundary conditions. The multiplicands are calculated from
the boundary reflection factor, and chosen by the signal
Loc_indicator, which is a boundary flag to indicate the grid

position. If a grid is not on a boundary, the multiplication
operations are replaced by shift operations, and the multi-
pliers are by passed. The adder (Adder1) is applied to sum up
the sound pressures of the neighbor grids.

3.3.2 RAM operation As shown in Eq. (3), seven sound
pressures at the time step n ¹ 1, and one sound pressure at
the time step n ¹ 2 are required to calculate the sound
pressure of a grid. As shown in Fig. 6, two block RAMs are
used to store the sound pressures of all grids at the time steps
n ¹ 1 and n ¹ 2. At each time step, data are read out from
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Reading ports: 1

Writing ports:   1
System

controller
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Reading ports: 1

Writing ports:   1
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we

data_dvld

dout

wdin

raddr_RAM

waddr_RAM
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Fig. 6. Sound rendering system based on the time-sharing architecture.
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Fig. 5. (Color online) System architecture.
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the block RAMs, calculation is carried out, and the results
are stored back to the block RAMs. Block_RAM_1 and
Block_RAM_2 are written alternately. For example, at a time
step, seven data, namely, Pn�1ði� 1; j; kÞ, Pn�1ðiþ 1; j; kÞ,
Pn�1ði; j� 1; kÞ, Pn�1ði; jþ 1; kÞ, Pn�1ði; j; k� 1Þ,
Pn�1ði; j; kþ 1Þ, and Pn�1ði; j; kÞ, are read out from Block_
RAM_2, and Pn�2ði; j; kÞ is read out from Block_RAM_1 to
the related buffers to calculate the sound pressure of a grid
ði; j; kÞ. When the sound pressures of all grids are obtained
and stored, the reading and writing operations on the block
RAMs are switched at the next time step. Seven data are then
read out from Block_RAM_1 while Pn�2ði; j; kÞ is taken from
Block_RAM_2, and the calculation results are stored in
Block_RAM_2. Such switching of reading and writing
operations on block RAMs repeats along with the time steps
increasing. The block RAMs are written in turn until all the
calculated time steps are over. At the same time, two buffers
are applied to reduce the latency during reading data.

The writing-enable signals of the block RAMs are
controlled by the signal ram_we_sel from the System
controller and the signal data_dvld from the Computing unit.
A counter inside the Grid position controller is updated at
every clock cycle. When its value is equal to the number of
grids, which indicates that the computations at a time step
are finished, the signal ram_we_sel is reversed to make the
writing-enable signals of two block RAMs be inversed. The
calculation results Pnði; j; kÞ are alternately written into one
block RAM at the same time.

4. System performance

To verify and estimate the performance of the proposed
sound rendering system, a three-dimensional sound rendering
system with 32 © 32 © 16 grids was investigated and
implemented by a processor-based FPGA machine TD-
SPP3000. The reflection factor of the boundaries was 0.95.
The incident and observation points were at the middle of the
sound space. The hardware development environment was a
Windows XP platform with EDA tools Xilinx ISE 14.3 and

ModelSim SE 10.1d. As a comparison, the related rendering
systems based on the HO-FDTD and Yee-FDTD were
developed by using the C++ programming language, and
executed on a personal computer (PC) with 4GB RAM and
an AMD Phenom 9500 Quad-core processor running at
2.2GHz. The operating system of the PC was Windows
XP, and the development environment was Microsoft
Visual Studio 2008. The reference C++ codes were
compiled and optimized for the maximum speed with the
option of /O2.

4.1 System stability
In sound rendering systems, when multiplications are
replaced by shift operations in hardware, a numerical
problem will be introduced.20) For example, when a right-
shift operation is performed by simply keeping the sign bit
and truncating the rest bits, the result is rounded toward
zero in the case of positive numbers and rounded away from
zero in the case of negative numbers. Thus rounding down in
both cases is carried out, and a negative offset is introduced
into the system, which may eventually lead to numerical
instability. In addition, since data are fixed-point in the
hardware system, computational errors occur due to data
truncation, which may be accumulated during calculation and
make system divergent and unstable. To investigate system
stability, the impulse response of the sound space, shown in
Fig. 8, was obtained by the FPGA-based sound rendering
system when the incidence was a pulse with amplitude of
16,384 Pa, and the time steps were 1000. Figure 8 shows
that the rendering system becomes stable and convergent
after 400 time steps. This system stability owes much to the
compensation in the hardware system to solve the numerical
problem resulting from the shift operations. For example,
when the operand is negative and the least significant bit is 1
in one-bit right-shift operations, the result of shift operation is
added by 1. Thus rounding toward zero is carried out in both
the negative and positive cases, and the numerical problem
is eliminated.
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4.2 Simulated area
To estimate the system scale, different sound rendering
systems with the parallel architecture and time-sharing
architecture were described by VHDL, and synthesized by
the ISE 14.3. Table I shows the maximum number of grids
in the sound rendering systems implemented by a FPGA
chip XC5VLX330T. When the time-sharing architecture is
applied, the system scale is improved by about 37 (65536/
1700 ¹ 1) times, namely, the simulated sound area is
increased by about 37 times. As shown in Figs. 6 and 7,
data are stored in the block memories in the hardware system
with the time-sharing architecture, while they are stored by
the D flip-flops in the sound rendering system with the
parallel architecture.7,8) A FPGA chip XC5VLX330T con-
tains 51,840 slices, and each slice includes four flip-flops. In
contrast, it contains 11,664Kb block RAMs and about 3MB
distributed RAMs. The capacity of the block memories is
much larger than that of the D flip-flops, which results in the
increase of the number of grids implemented by a FPGA chip
in the rendering system based on the time-sharing architec-
ture. The maximum system scale with the time-sharing
architecture is consequently determined by the size of block
RAMs inside a FPGA. When the whole rendering system
with 65,536 grids was implemented by an XC5VLX330T,
57% of the block RAMs and 4% of the look-up tables were
occupied.

4.3 Rendering time
Table II shows the rendering time taken by the software
simulations and FPGA-based system when a three-minute
Beethoven wave sound was as an incidence. The sampling
rate of the wave sound was 44.1 kHz. In the FPGA-based
rendering system, the Computing unit ran at 200MHz. The
wave sound was played by a player, and sampled by the A/D
converter. The rendering results were output by the D/A
converter to drive the speaker system directly. Data were
32 bit fixed-point in the hardware system while they were
integers in the software simulations on the PC. As a
comparison, the software simulations based on the HO-
FDTD and Yee-FDTD were carried out and analyzed. The

Courant number was 1=
ffiffiffi
3

p
in the software simulation based

on the Yee-FDTD while it was 1/2 in the system based on the
HO-FDTD.

In Table II, the rendering takes about 63 (3799.921/60)
min in the computer-based software simulation based on the
HO-FDTD algorithm while it is carried out in real-time in the
FPGA-based sound rendering system. Although computa-
tions are performed grid by grid in both the FPGA-based
rendering system and the software simulations in the PC, the
system performance is improved significantly in the FPGA-
based rendering system due to small data access overhead
and parallel processing inside the FPGA. Compared with the
software simulation based on the Yee-FDTD, although the
simulation based on the HO-FDTD is a little faster, the
HO-FDTD is simple, and the multiplication operations are
substituted by shift operations during the calculation of the
sound pressures of general grids. Thus the system data path
in the computing unit is easily optimized in the hardware
implementation, and the maximum clock frequency of the
system is increased. For example, the maximum clock
frequency in the computing unit based on the HO-FDTD is
about 273MHz while it is about 73MHz in the computing
unit based on the Yee-FDTD.8)

Although the music is rendered in real-time in the current
hardware system, the output music quality is worse than the
software simulation results because of the low sampling rate.
In the hardware system, the sampling rate of the output music
( fsample) is determined through the formula shown as

fsample ¼ Mfclk
N

; ð18Þ

where fclk is the clock frequency of the Computing unit, M
denotes the number of computing units, and N is the number
of grids. In Eq. (18), fsample can be increased by increasing
fclk and M, or decreasing N. fclk is usually determined by the
maximum clock frequency of the Computing unit. N is
limited by the hardware resources inside a FPGA, and kept
as large as possible to extend the simulated area. In the
current system, fclk is 200MHz, M is 1, and N is 16,384

Fig. 8. (Color online) Impulse response.

Table I. Number of grids implemented by a XC5VLX330T.

Parallel architecture Time-sharing architecture

1700 65536

Table II. Rendering time (s).

Grid
FPGA system Software simulation

HO-FDTD HO-FDTD Yee-FDTD

32 © 32 © 16 Real-time 3799.921 3803.859
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(32 © 32 © 16), then fsample is about 12.5 kHz (200/16 kHz).
Although a system with more grids, such as 65,536
(32 © 32 © 64), can be implemented by a FPGA, fsample is
decreased to be about 3 kHz and the sound quality is bad and
unacceptable.

On the other hand, the rendering system based on the Yee-
FDTD was easily constructed by designing the computing
unit with the Yee-FDTD, replacing the related modules, and
adjusting the system timing, but the maximum system clock
frequency was decreased to about 73MHz because of the
complexity and data dependency during calculation in the
Yee-FDTD.8) If fclk is therefore chosen to be 70MHz, fsample

is about 4.3 kHz (70/16 kHz), which results in the poor
quality of the output sound.

To increase fsample, an alternative solution is to use two or
more computing units. If two computing units are applied,
since there is no data dependency during calculation, the
computations for grids 0 to N/2 ¹ 1 and N/2 to N ¹ 1 are
carried out by two computing units, respectively. The two
computing units work in parallel and there is no overhead
during computation. The calculation time at a time step is
then shortened in half and fsample is doubled. However, the
disadvantages of this solution are:
(1) The buffers require more reading ports, which results in

low utilization of the buffers and increasing of hardware
resource consumption.

(2) The clock frequency to read out data from the block
RAMs and write them into the buffers is increased.

Another solution to increase fsample is to divide the sound
space into several small spaces. For example, the system
mesh 32 © 32 © 16 is divided into four 16 © 16 © 16 sub-
meshes. Each sub-mesh is implemented as a small DHM
module, and all small DHM modules are connected to
each other to calculate the sound pressures in parallel. fsample

is therefore increased to be about 50 kHz [200 © 1024/
(16 © 16 © 16) kHz]. This solution is promising to increase
fsample because fsample is easily determined by controlling the
sub-mesh scale. However, buffers are required to exchange
data between two neighboring small DHM modules, and the
hardware resource consumption is slightly increased.

5. Conclusions

Sound rendering is computation-intensive. Due to limited
hardware resources, a FPGA chip can be used to implement a
sound rendering system with a small number of grids based
on the parallel architecture. To extend the simulated area by a
FPGA, time-sharing architecture is applied in this study, and
a real-time rendering system based on it and the HO-FDTD is
designed and implemented. The simulated area by a FPGA is
enlarged by about 37 times against the rendering system with
the parallel architecture because data are stored in the on-chip
block memories instead of the D flip-flops. The sound field
rendering is carried out in real-time while it takes a long time

in the PC-based software simulations. Furthermore, since
the computation time at a time step is sufficient enough to
perform data exchange between FPGA chips, the proposed
architecture is easily cascaded many FPGA chips to work in
parallel to enlarge the simulated sound space.

On the other hand, computations in the rendering system
with time-sharing architecture are much slower because they
are carried out grid by grid. From this point of view, the
simulated area is extended by the expense of the computation
speed in the rendering system with time-sharing architecture.
The sampling rate of the output sound is determined by the
clock frequency of the computing unit, and the number of
grids and computing units. When the number of grids is
increased, the output sound quality becomes worse because
of the low sampling rate, which can be increased by adding
the computing units or using the sub-mesh partition
technique. The related systems based on these solutions are
under development.
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