YES We show the termination of the relative TRS R/S: R: minus(x,|0|()) -> x minus(s(x),s(y)) -> minus(x,y) f(|0|()) -> s(|0|()) f(s(x)) -> minus(s(x),g(f(x))) g(|0|()) -> |0|() g(s(x)) -> minus(s(x),f(g(x))) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: f#(s(x)) -> minus#(s(x),g(f(x))) p3: f#(s(x)) -> g#(f(x)) p4: f#(s(x)) -> f#(x) p5: g#(s(x)) -> minus#(s(x),f(g(x))) p6: g#(s(x)) -> f#(g(x)) p7: g#(s(x)) -> g#(x) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: f(|0|()) -> s(|0|()) r4: f(s(x)) -> minus(s(x),g(f(x))) r5: g(|0|()) -> |0|() r6: g(s(x)) -> minus(s(x),f(g(x))) r7: rand(x) -> x r8: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p3, p4, p6, p7} {p1} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: g#(s(x)) -> g#(x) p2: g#(s(x)) -> f#(g(x)) p3: f#(s(x)) -> f#(x) p4: f#(s(x)) -> g#(f(x)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: f(|0|()) -> s(|0|()) r4: f(s(x)) -> minus(s(x),g(f(x))) r5: g(|0|()) -> |0|() r6: g(s(x)) -> minus(s(x),f(g(x))) r7: rand(x) -> x r8: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: rand > |0| > minus > f > s > g# > g > f# argument filter: pi(g#) = 1 pi(s) = 1 pi(f#) = 1 pi(g) = 1 pi(f) = 1 pi(minus) = 1 pi(|0|) = [] pi(rand) = [1] 2. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: g#_A(x1) = ((1,0,0,0),(0,1,0,0),(1,0,1,0),(0,0,0,1)) x1 + (0,6,0,0) s_A(x1) = ((1,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,1,0)) x1 + (5,0,1,3) f#_A(x1) = ((1,0,0,0),(1,1,0,0),(0,0,1,0),(0,0,1,1)) x1 + (2,0,6,0) g_A(x1) = ((1,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,0,0)) x1 + (2,5,1,1) f_A(x1) = ((1,0,0,0),(0,0,0,0),(1,1,0,0),(1,1,0,0)) x1 + (6,0,3,3) minus_A(x1,x2) = x1 + (1,0,7,7) |0|_A() = (0,1,1,0) rand_A(x1) = (0,0,1,1) The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: f(|0|()) -> s(|0|()) r4: f(s(x)) -> minus(s(x),g(f(x))) r5: g(|0|()) -> |0|() r6: g(s(x)) -> minus(s(x),f(g(x))) r7: rand(x) -> x r8: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: rand > |0| > g > minus > s > f > minus# argument filter: pi(minus#) = 2 pi(s) = 1 pi(minus) = 1 pi(|0|) = [] pi(f) = [1] pi(g) = [1] pi(rand) = [1] 2. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: minus#_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(0,0,1,0),(1,0,1,1)) x2 s_A(x1) = ((1,0,0,0),(1,1,0,0),(1,0,1,0),(0,1,1,1)) x1 + (4,7,1,1) minus_A(x1,x2) = ((1,0,0,0),(0,0,0,0),(0,1,0,0),(0,0,1,0)) x1 + (1,0,0,5) |0|_A() = (3,1,1,1) f_A(x1) = (6,1,6,5) g_A(x1) = (4,2,2,7) rand_A(x1) = (0,0,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.