YES
0 QTRS
↳1 Overlay + Local Confluence (⇔, 3 ms)
↳2 QTRS
↳3 DependencyPairsProof (⇔, 0 ms)
↳4 QDP
↳5 DependencyGraphProof (⇔, 0 ms)
↳6 AND
↳7 QDP
↳8 UsableRulesProof (⇔, 0 ms)
↳9 QDP
↳10 QReductionProof (⇔, 0 ms)
↳11 QDP
↳12 QDPSizeChangeProof (⇔, 0 ms)
↳13 YES
↳14 QDP
↳15 UsableRulesProof (⇔, 0 ms)
↳16 QDP
↳17 QReductionProof (⇔, 0 ms)
↳18 QDP
↳19 QDPSizeChangeProof (⇔, 0 ms)
↳20 YES
↳21 QDP
↳22 UsableRulesProof (⇔, 0 ms)
↳23 QDP
↳24 QReductionProof (⇔, 0 ms)
↳25 QDP
↳26 QDPSizeChangeProof (⇔, 0 ms)
↳27 YES
↳28 QDP
↳29 UsableRulesProof (⇔, 0 ms)
↳30 QDP
↳31 QReductionProof (⇔, 0 ms)
↳32 QDP
↳33 TransformationProof (⇔, 0 ms)
↳34 QDP
↳35 DependencyGraphProof (⇔, 0 ms)
↳36 QDP
↳37 TransformationProof (⇔, 0 ms)
↳38 QDP
↳39 DependencyGraphProof (⇔, 0 ms)
↳40 QDP
↳41 TransformationProof (⇔, 0 ms)
↳42 QDP
↳43 TransformationProof (⇔, 0 ms)
↳44 QDP
↳45 Induction-Processor (⇒, 12 ms)
↳46 AND
↳47 QDP
↳48 DependencyGraphProof (⇔, 0 ms)
↳49 TRUE
↳50 QTRS
↳51 QTRSRRRProof (⇔, 31 ms)
↳52 QTRS
↳53 QTRSRRRProof (⇔, 0 ms)
↳54 QTRS
↳55 RisEmptyProof (⇔, 0 ms)
↳56 YES
minus(0, y) → 0
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
mod(x, 0) → 0
mod(x, s(y)) → if1(lt(x, s(y)), x, s(y))
if1(true, x, y) → x
if1(false, x, y) → mod(minus(x, y), y)
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
lt(x, 0) → false
lt(0, s(x)) → true
lt(s(x), s(y)) → lt(x, y)
minus(0, y) → 0
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
mod(x, 0) → 0
mod(x, s(y)) → if1(lt(x, s(y)), x, s(y))
if1(true, x, y) → x
if1(false, x, y) → mod(minus(x, y), y)
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
lt(x, 0) → false
lt(0, s(x)) → true
lt(s(x), s(y)) → lt(x, y)
minus(0, x0)
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
mod(x0, 0)
mod(x0, s(x1))
if1(true, x0, x1)
if1(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
MINUS(s(x), y) → IF(gt(s(x), y), x, y)
MINUS(s(x), y) → GT(s(x), y)
IF(true, x, y) → MINUS(x, y)
MOD(x, s(y)) → IF1(lt(x, s(y)), x, s(y))
MOD(x, s(y)) → LT(x, s(y))
IF1(false, x, y) → MOD(minus(x, y), y)
IF1(false, x, y) → MINUS(x, y)
GT(s(x), s(y)) → GT(x, y)
LT(s(x), s(y)) → LT(x, y)
minus(0, y) → 0
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
mod(x, 0) → 0
mod(x, s(y)) → if1(lt(x, s(y)), x, s(y))
if1(true, x, y) → x
if1(false, x, y) → mod(minus(x, y), y)
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
lt(x, 0) → false
lt(0, s(x)) → true
lt(s(x), s(y)) → lt(x, y)
minus(0, x0)
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
mod(x0, 0)
mod(x0, s(x1))
if1(true, x0, x1)
if1(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
LT(s(x), s(y)) → LT(x, y)
minus(0, y) → 0
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
mod(x, 0) → 0
mod(x, s(y)) → if1(lt(x, s(y)), x, s(y))
if1(true, x, y) → x
if1(false, x, y) → mod(minus(x, y), y)
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
lt(x, 0) → false
lt(0, s(x)) → true
lt(s(x), s(y)) → lt(x, y)
minus(0, x0)
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
mod(x0, 0)
mod(x0, s(x1))
if1(true, x0, x1)
if1(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
LT(s(x), s(y)) → LT(x, y)
minus(0, x0)
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
mod(x0, 0)
mod(x0, s(x1))
if1(true, x0, x1)
if1(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
mod(x0, 0)
mod(x0, s(x1))
if1(true, x0, x1)
if1(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
LT(s(x), s(y)) → LT(x, y)
From the DPs we obtained the following set of size-change graphs:
GT(s(x), s(y)) → GT(x, y)
minus(0, y) → 0
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
mod(x, 0) → 0
mod(x, s(y)) → if1(lt(x, s(y)), x, s(y))
if1(true, x, y) → x
if1(false, x, y) → mod(minus(x, y), y)
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
lt(x, 0) → false
lt(0, s(x)) → true
lt(s(x), s(y)) → lt(x, y)
minus(0, x0)
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
mod(x0, 0)
mod(x0, s(x1))
if1(true, x0, x1)
if1(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
GT(s(x), s(y)) → GT(x, y)
minus(0, x0)
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
mod(x0, 0)
mod(x0, s(x1))
if1(true, x0, x1)
if1(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
mod(x0, 0)
mod(x0, s(x1))
if1(true, x0, x1)
if1(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
GT(s(x), s(y)) → GT(x, y)
From the DPs we obtained the following set of size-change graphs:
IF(true, x, y) → MINUS(x, y)
MINUS(s(x), y) → IF(gt(s(x), y), x, y)
minus(0, y) → 0
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
mod(x, 0) → 0
mod(x, s(y)) → if1(lt(x, s(y)), x, s(y))
if1(true, x, y) → x
if1(false, x, y) → mod(minus(x, y), y)
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
lt(x, 0) → false
lt(0, s(x)) → true
lt(s(x), s(y)) → lt(x, y)
minus(0, x0)
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
mod(x0, 0)
mod(x0, s(x1))
if1(true, x0, x1)
if1(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
IF(true, x, y) → MINUS(x, y)
MINUS(s(x), y) → IF(gt(s(x), y), x, y)
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
gt(0, y) → false
minus(0, x0)
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
mod(x0, 0)
mod(x0, s(x1))
if1(true, x0, x1)
if1(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
mod(x0, 0)
mod(x0, s(x1))
if1(true, x0, x1)
if1(false, x0, x1)
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
IF(true, x, y) → MINUS(x, y)
MINUS(s(x), y) → IF(gt(s(x), y), x, y)
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
gt(0, y) → false
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
From the DPs we obtained the following set of size-change graphs:
IF1(false, x, y) → MOD(minus(x, y), y)
MOD(x, s(y)) → IF1(lt(x, s(y)), x, s(y))
minus(0, y) → 0
minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
mod(x, 0) → 0
mod(x, s(y)) → if1(lt(x, s(y)), x, s(y))
if1(true, x, y) → x
if1(false, x, y) → mod(minus(x, y), y)
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
lt(x, 0) → false
lt(0, s(x)) → true
lt(s(x), s(y)) → lt(x, y)
minus(0, x0)
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
mod(x0, 0)
mod(x0, s(x1))
if1(true, x0, x1)
if1(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
IF1(false, x, y) → MOD(minus(x, y), y)
MOD(x, s(y)) → IF1(lt(x, s(y)), x, s(y))
lt(0, s(x)) → true
lt(s(x), s(y)) → lt(x, y)
lt(x, 0) → false
minus(0, y) → 0
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
gt(0, y) → false
minus(0, x0)
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
mod(x0, 0)
mod(x0, s(x1))
if1(true, x0, x1)
if1(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
mod(x0, 0)
mod(x0, s(x1))
if1(true, x0, x1)
if1(false, x0, x1)
IF1(false, x, y) → MOD(minus(x, y), y)
MOD(x, s(y)) → IF1(lt(x, s(y)), x, s(y))
lt(0, s(x)) → true
lt(s(x), s(y)) → lt(x, y)
lt(x, 0) → false
minus(0, y) → 0
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
gt(0, y) → false
minus(0, x0)
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
MOD(0, s(x0)) → IF1(true, 0, s(x0)) → MOD(0, s(x0)) → IF1(true, 0, s(x0))
MOD(s(x0), s(x1)) → IF1(lt(x0, x1), s(x0), s(x1)) → MOD(s(x0), s(x1)) → IF1(lt(x0, x1), s(x0), s(x1))
IF1(false, x, y) → MOD(minus(x, y), y)
MOD(0, s(x0)) → IF1(true, 0, s(x0))
MOD(s(x0), s(x1)) → IF1(lt(x0, x1), s(x0), s(x1))
lt(0, s(x)) → true
lt(s(x), s(y)) → lt(x, y)
lt(x, 0) → false
minus(0, y) → 0
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
gt(0, y) → false
minus(0, x0)
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
MOD(s(x0), s(x1)) → IF1(lt(x0, x1), s(x0), s(x1))
IF1(false, x, y) → MOD(minus(x, y), y)
lt(0, s(x)) → true
lt(s(x), s(y)) → lt(x, y)
lt(x, 0) → false
minus(0, y) → 0
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
gt(0, y) → false
minus(0, x0)
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
IF1(false, 0, x0) → MOD(0, x0) → IF1(false, 0, x0) → MOD(0, x0)
IF1(false, s(x0), x1) → MOD(if(gt(s(x0), x1), x0, x1), x1) → IF1(false, s(x0), x1) → MOD(if(gt(s(x0), x1), x0, x1), x1)
MOD(s(x0), s(x1)) → IF1(lt(x0, x1), s(x0), s(x1))
IF1(false, 0, x0) → MOD(0, x0)
IF1(false, s(x0), x1) → MOD(if(gt(s(x0), x1), x0, x1), x1)
lt(0, s(x)) → true
lt(s(x), s(y)) → lt(x, y)
lt(x, 0) → false
minus(0, y) → 0
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
gt(0, y) → false
minus(0, x0)
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
IF1(false, s(x0), x1) → MOD(if(gt(s(x0), x1), x0, x1), x1)
MOD(s(x0), s(x1)) → IF1(lt(x0, x1), s(x0), s(x1))
lt(0, s(x)) → true
lt(s(x), s(y)) → lt(x, y)
lt(x, 0) → false
minus(0, y) → 0
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
gt(0, y) → false
minus(0, x0)
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
IF1(false, s(z0), s(z1)) → MOD(if(gt(s(z0), s(z1)), z0, s(z1)), s(z1)) → IF1(false, s(z0), s(z1)) → MOD(if(gt(s(z0), s(z1)), z0, s(z1)), s(z1))
MOD(s(x0), s(x1)) → IF1(lt(x0, x1), s(x0), s(x1))
IF1(false, s(z0), s(z1)) → MOD(if(gt(s(z0), s(z1)), z0, s(z1)), s(z1))
lt(0, s(x)) → true
lt(s(x), s(y)) → lt(x, y)
lt(x, 0) → false
minus(0, y) → 0
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
gt(0, y) → false
minus(0, x0)
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
IF1(false, s(z0), s(z1)) → MOD(if(gt(z0, z1), z0, s(z1)), s(z1)) → IF1(false, s(z0), s(z1)) → MOD(if(gt(z0, z1), z0, s(z1)), s(z1))
MOD(s(x0), s(x1)) → IF1(lt(x0, x1), s(x0), s(x1))
IF1(false, s(z0), s(z1)) → MOD(if(gt(z0, z1), z0, s(z1)), s(z1))
lt(0, s(x)) → true
lt(s(x), s(y)) → lt(x, y)
lt(x, 0) → false
minus(0, y) → 0
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
gt(0, y) → false
minus(0, x0)
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
POL(0) = 0
POL(IF1(x1, x2, x3)) = x1 + x2
POL(MOD(x1, x2)) = x1
POL(false_renamed) = 0
POL(gt(x1, x2)) = 1 + x2
POL(if(x1, x2, x3)) = 1 + x2
POL(lt(x1, x2)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = 1 + x1
POL(true_renamed) = 0
proof of internal
# AProVE Commit ID: 3a20a6ef7432c3f292db1a8838479c42bf5e3b22 root 20240618 unpublished
Partial correctness of the following Program
[x, v30, v31, v32, x5, y1, y'', x6, y3, y4, x', y, x'', x2, x3, y', y2]
equal_bool(true, false) -> false
equal_bool(false, true) -> false
equal_bool(true, true) -> true
equal_bool(false, false) -> true
true and x -> x
false and x -> false
true or x -> true
false or x -> x
not(false) -> true
not(true) -> false
isa_true(true) -> true
isa_true(false) -> false
isa_false(true) -> false
isa_false(false) -> true
equal_sort[a22](0, 0) -> true
equal_sort[a22](0, s(v30)) -> false
equal_sort[a22](s(v31), 0) -> false
equal_sort[a22](s(v31), s(v32)) -> equal_sort[a22](v31, v32)
equal_sort[a21](true_renamed, true_renamed) -> true
equal_sort[a21](true_renamed, false_renamed) -> false
equal_sort[a21](false_renamed, true_renamed) -> false
equal_sort[a21](false_renamed, false_renamed) -> true
equal_sort[a39](witness_sort[a39], witness_sort[a39]) -> true
if'(false_renamed, x5, y1) -> true
if'(true_renamed, 0, y'') -> false
if'(true_renamed, s(x6), y'') -> if'(gt(s(x6), y''), x6, y'')
minus'(0, y3) -> false
equal_sort[a21](gt(s(x6), y4), true_renamed) -> true | minus'(s(x6), y4) -> minus'(x6, y4)
equal_sort[a21](gt(s(x6), y4), true_renamed) -> false | minus'(s(x6), y4) -> true
lt(0, s(x)) -> true_renamed
lt(s(x'), s(y)) -> lt(x', y)
lt(x'', 0) -> false_renamed
gt(s(x2), 0) -> true_renamed
gt(s(x3), s(y')) -> gt(x3, y')
gt(0, y2) -> false_renamed
if(false_renamed, x5, y1) -> 0
if(true_renamed, 0, y'') -> s(0)
if(true_renamed, s(x6), y'') -> s(if(gt(s(x6), y''), x6, y''))
minus(0, y3) -> 0
equal_sort[a21](gt(s(x6), y4), true_renamed) -> true | minus(s(x6), y4) -> s(minus(x6, y4))
equal_sort[a21](gt(s(x6), y4), true_renamed) -> false | minus(s(x6), y4) -> 0
using the following formula:
z0:sort[a22],z1:sort[a22].if'(gt(z0, z1), z0, s(z1))=true
could be successfully shown:
(0) Formula
(1) Induction by algorithm [EQUIVALENT, 0 ms]
(2) AND
(3) Formula
(4) Symbolic evaluation [EQUIVALENT, 0 ms]
(5) Formula
(6) Induction by data structure [EQUIVALENT, 0 ms]
(7) AND
(8) Formula
(9) Symbolic evaluation [EQUIVALENT, 0 ms]
(10) YES
(11) Formula
(12) Symbolic evaluation under hypothesis [EQUIVALENT, 0 ms]
(13) YES
(14) Formula
(15) Symbolic evaluation [EQUIVALENT, 0 ms]
(16) YES
(17) Formula
(18) Symbolic evaluation [EQUIVALENT, 0 ms]
(19) Formula
(20) Hypothesis Lifting [EQUIVALENT, 0 ms]
(21) Formula
(22) Inverse Substitution [SOUND, 0 ms]
(23) Formula
(24) Inverse Substitution [SOUND, 0 ms]
(25) Formula
(26) Induction by algorithm [EQUIVALENT, 0 ms]
(27) AND
(28) Formula
(29) Symbolic evaluation [EQUIVALENT, 0 ms]
(30) YES
(31) Formula
(32) Symbolic evaluation [EQUIVALENT, 0 ms]
(33) YES
(34) Formula
(35) Symbolic evaluation under hypothesis [EQUIVALENT, 0 ms]
(36) YES
----------------------------------------
(0)
Obligation:
Formula:
z0:sort[a22],z1:sort[a22].if'(gt(z0, z1), z0, s(z1))=true
There are no hypotheses.
----------------------------------------
(1) Induction by algorithm (EQUIVALENT)
Induction by algorithm gt(z0, z1) generates the following cases:
1. Base Case:
Formula:
x2:sort[a22].if'(gt(s(x2), 0), s(x2), s(0))=true
There are no hypotheses.
2. Base Case:
Formula:
y2:sort[a22].if'(gt(0, y2), 0, s(y2))=true
There are no hypotheses.
1. Step Case:
Formula:
x3:sort[a22],y':sort[a22].if'(gt(s(x3), s(y')), s(x3), s(s(y')))=true
Hypotheses:
x3:sort[a22],y':sort[a22].if'(gt(x3, y'), x3, s(y'))=true
----------------------------------------
(2)
Complex Obligation (AND)
----------------------------------------
(3)
Obligation:
Formula:
x2:sort[a22].if'(gt(s(x2), 0), s(x2), s(0))=true
There are no hypotheses.
----------------------------------------
(4) Symbolic evaluation (EQUIVALENT)
Could be shown by simple symbolic evaluation.
----------------------------------------
(5)
Obligation:
Formula:
x2:sort[a22].if'(gt(x2, 0), x2, s(0))=true
There are no hypotheses.
----------------------------------------
(6) Induction by data structure (EQUIVALENT)
Induction by data structure sort[a22] generates the following cases:
1. Base Case:
Formula:
if'(gt(0, 0), 0, s(0))=true
There are no hypotheses.
1. Step Case:
Formula:
n:sort[a22].if'(gt(s(n), 0), s(n), s(0))=true
Hypotheses:
n:sort[a22].if'(gt(n, 0), n, s(0))=true
----------------------------------------
(7)
Complex Obligation (AND)
----------------------------------------
(8)
Obligation:
Formula:
if'(gt(0, 0), 0, s(0))=true
There are no hypotheses.
----------------------------------------
(9) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
True
----------------------------------------
(10)
YES
----------------------------------------
(11)
Obligation:
Formula:
n:sort[a22].if'(gt(s(n), 0), s(n), s(0))=true
Hypotheses:
n:sort[a22].if'(gt(n, 0), n, s(0))=true
----------------------------------------
(12) Symbolic evaluation under hypothesis (EQUIVALENT)
Could be shown using symbolic evaluation under hypothesis, by using the following hypotheses:
n:sort[a22].if'(gt(n, 0), n, s(0))=true
----------------------------------------
(13)
YES
----------------------------------------
(14)
Obligation:
Formula:
y2:sort[a22].if'(gt(0, y2), 0, s(y2))=true
There are no hypotheses.
----------------------------------------
(15) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
True
----------------------------------------
(16)
YES
----------------------------------------
(17)
Obligation:
Formula:
x3:sort[a22],y':sort[a22].if'(gt(s(x3), s(y')), s(x3), s(s(y')))=true
Hypotheses:
x3:sort[a22],y':sort[a22].if'(gt(x3, y'), x3, s(y'))=true
----------------------------------------
(18) Symbolic evaluation (EQUIVALENT)
Could be shown by simple symbolic evaluation.
----------------------------------------
(19)
Obligation:
Formula:
x3:sort[a22],y':sort[a22].if'(gt(x3, y'), s(x3), s(s(y')))=true
Hypotheses:
x3:sort[a22],y':sort[a22].if'(gt(x3, y'), x3, s(y'))=true
----------------------------------------
(20) Hypothesis Lifting (EQUIVALENT)
Formula could be generalised by hypothesis lifting to the following new obligation:
Formula:
x3:sort[a22],y':sort[a22].(if'(gt(x3, y'), x3, s(y'))=true->if'(gt(x3, y'), s(x3), s(s(y')))=true)
There are no hypotheses.
----------------------------------------
(21)
Obligation:
Formula:
x3:sort[a22],y':sort[a22].(if'(gt(x3, y'), x3, s(y'))=true->if'(gt(x3, y'), s(x3), s(s(y')))=true)
There are no hypotheses.
----------------------------------------
(22) Inverse Substitution (SOUND)
The formula could be generalised by inverse substitution to:
n:sort[a21],x3:sort[a22],y':sort[a22].(if'(n, x3, s(y'))=true->if'(n, s(x3), s(s(y')))=true)
Inverse substitution used:
[gt(x3, y')/n]
----------------------------------------
(23)
Obligation:
Formula:
n:sort[a21],x3:sort[a22],y':sort[a22].(if'(n, x3, s(y'))=true->if'(n, s(x3), s(s(y')))=true)
There are no hypotheses.
----------------------------------------
(24) Inverse Substitution (SOUND)
The formula could be generalised by inverse substitution to:
n:sort[a21],x3:sort[a22],n':sort[a22].(if'(n, x3, n')=true->if'(n, s(x3), s(n'))=true)
Inverse substitution used:
[s(y')/n']
----------------------------------------
(25)
Obligation:
Formula:
n:sort[a21],x3:sort[a22],n':sort[a22].(if'(n, x3, n')=true->if'(n, s(x3), s(n'))=true)
There are no hypotheses.
----------------------------------------
(26) Induction by algorithm (EQUIVALENT)
Induction by algorithm if'(n, x3, n') generates the following cases:
1. Base Case:
Formula:
x5:sort[a22],y1:sort[a22].(if'(false_renamed, x5, y1)=true->if'(false_renamed, s(x5), s(y1))=true)
There are no hypotheses.
2. Base Case:
Formula:
y'':sort[a22].(if'(true_renamed, 0, y'')=true->if'(true_renamed, s(0), s(y''))=true)
There are no hypotheses.
1. Step Case:
Formula:
x6:sort[a22],y'':sort[a22].(if'(true_renamed, s(x6), y'')=true->if'(true_renamed, s(s(x6)), s(y''))=true)
Hypotheses:
x6:sort[a22],y'':sort[a22].(if'(gt(s(x6), y''), x6, y'')=true->if'(gt(s(x6), y''), s(x6), s(y''))=true)
----------------------------------------
(27)
Complex Obligation (AND)
----------------------------------------
(28)
Obligation:
Formula:
x5:sort[a22],y1:sort[a22].(if'(false_renamed, x5, y1)=true->if'(false_renamed, s(x5), s(y1))=true)
There are no hypotheses.
----------------------------------------
(29) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
True
----------------------------------------
(30)
YES
----------------------------------------
(31)
Obligation:
Formula:
y'':sort[a22].(if'(true_renamed, 0, y'')=true->if'(true_renamed, s(0), s(y''))=true)
There are no hypotheses.
----------------------------------------
(32) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
True
----------------------------------------
(33)
YES
----------------------------------------
(34)
Obligation:
Formula:
x6:sort[a22],y'':sort[a22].(if'(true_renamed, s(x6), y'')=true->if'(true_renamed, s(s(x6)), s(y''))=true)
Hypotheses:
x6:sort[a22],y'':sort[a22].(if'(gt(s(x6), y''), x6, y'')=true->if'(gt(s(x6), y''), s(x6), s(y''))=true)
----------------------------------------
(35) Symbolic evaluation under hypothesis (EQUIVALENT)
Could be shown using symbolic evaluation under hypothesis, by using the following hypotheses:
x6:sort[a22],y'':sort[a22].(if'(gt(s(x6), y''), x6, y'')=true->if'(gt(s(x6), y''), s(x6), s(y''))=true)
----------------------------------------
(36)
YES
MOD(s(x0), s(x1)) → IF1(lt(x0, x1), s(x0), s(x1))
lt(0, s(x)) → true
lt(s(x), s(y)) → lt(x, y)
lt(x, 0) → false
minus(0, y) → 0
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
gt(0, y) → false
minus(0, x0)
minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
if'(true_renamed, x4, y'') → minus'(x4, y'')
if'(false_renamed, x5, y1) → true
minus'(0, y3) → false
minus'(s(x6), y4) → if'(gt(s(x6), y4), x6, y4)
lt(0, s(x)) → true_renamed
lt(s(x'), s(y)) → lt(x', y)
lt(x'', 0) → false_renamed
gt(s(x2), 0) → true_renamed
gt(s(x3), s(y')) → gt(x3, y')
if(true_renamed, x4, y'') → s(minus(x4, y''))
if(false_renamed, x5, y1) → 0
gt(0, y2) → false_renamed
minus(0, y3) → 0
minus(s(x6), y4) → if(gt(s(x6), y4), x6, y4)
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a22](0, 0) → true
equal_sort[a22](0, s(v30)) → false
equal_sort[a22](s(v31), 0) → false
equal_sort[a22](s(v31), s(v32)) → equal_sort[a22](v31, v32)
equal_sort[a21](true_renamed, true_renamed) → true
equal_sort[a21](true_renamed, false_renamed) → false
equal_sort[a21](false_renamed, true_renamed) → false
equal_sort[a21](false_renamed, false_renamed) → true
equal_sort[a39](witness_sort[a39], witness_sort[a39]) → true
[if3, minus2] > [if'3, minus'2, s1] > gt2 > truerenamed
[if3, minus2] > [falserenamed, true, 0, false, lt2, equalsort[a22]2, equalsort[a39]2, witnesssort[a39]] > truerenamed
equalbool2 > truerenamed
and2 > truerenamed
or2 > truerenamed
not1 > [falserenamed, true, 0, false, lt2, equalsort[a22]2, equalsort[a39]2, witnesssort[a39]] > truerenamed
isafalse1 > [falserenamed, true, 0, false, lt2, equalsort[a22]2, equalsort[a39]2, witnesssort[a39]] > truerenamed
equalsort[a21]2 > [falserenamed, true, 0, false, lt2, equalsort[a22]2, equalsort[a39]2, witnesssort[a39]] > truerenamed
if'3: [2,3,1]
truerenamed: multiset
minus'2: [1,2]
falserenamed: multiset
true: multiset
0: multiset
false: multiset
s1: multiset
gt2: [1,2]
lt2: [1,2]
if3: [3,2,1]
minus2: [2,1]
equalbool2: multiset
and2: multiset
or2: multiset
not1: [1]
isafalse1: multiset
equalsort[a22]2: multiset
equalsort[a21]2: multiset
equalsort[a39]2: multiset
witnesssort[a39]: multiset
if'(true_renamed, x4, y'') → minus'(x4, y'')
if'(false_renamed, x5, y1) → true
minus'(0, y3) → false
minus'(s(x6), y4) → if'(gt(s(x6), y4), x6, y4)
lt(0, s(x)) → true_renamed
lt(s(x'), s(y)) → lt(x', y)
lt(x'', 0) → false_renamed
gt(s(x2), 0) → true_renamed
gt(s(x3), s(y')) → gt(x3, y')
if(true_renamed, x4, y'') → s(minus(x4, y''))
if(false_renamed, x5, y1) → 0
gt(0, y2) → false_renamed
minus(0, y3) → 0
minus(s(x6), y4) → if(gt(s(x6), y4), x6, y4)
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a22](0, 0) → true
equal_sort[a22](0, s(v30)) → false
equal_sort[a22](s(v31), 0) → false
equal_sort[a22](s(v31), s(v32)) → equal_sort[a22](v31, v32)
equal_sort[a21](true_renamed, true_renamed) → true
equal_sort[a21](true_renamed, false_renamed) → false
equal_sort[a21](false_renamed, true_renamed) → false
equal_sort[a21](false_renamed, false_renamed) → true
equal_sort[a39](witness_sort[a39], witness_sort[a39]) → true
isa_true(true) → true
isa_true(false) → false
isatrue1 > false > true
true=1
false=1
isa_true_1=0
isa_true(true) → true
isa_true(false) → false