(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(g(X), Y) → f(X, n__f(n__g(X), activate(Y)))
f(X1, X2) → n__f(X1, X2)
g(X) → n__g(X)
activate(n__f(X1, X2)) → f(activate(X1), X2)
activate(n__g(X)) → g(activate(X))
activate(X) → X
Q is empty.
 
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(g(X), Y) → F(X, n__f(n__g(X), activate(Y)))
F(g(X), Y) → ACTIVATE(Y)
ACTIVATE(n__f(X1, X2)) → F(activate(X1), X2)
ACTIVATE(n__f(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__g(X)) → G(activate(X))
ACTIVATE(n__g(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
f(g(X), Y) → f(X, n__f(n__g(X), activate(Y)))
f(X1, X2) → n__f(X1, X2)
g(X) → n__g(X)
activate(n__f(X1, X2)) → f(activate(X1), X2)
activate(n__g(X)) → g(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(g(X), Y) → ACTIVATE(Y)
ACTIVATE(n__f(X1, X2)) → F(activate(X1), X2)
F(g(X), Y) → F(X, n__f(n__g(X), activate(Y)))
ACTIVATE(n__f(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__g(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
f(g(X), Y) → f(X, n__f(n__g(X), activate(Y)))
f(X1, X2) → n__f(X1, X2)
g(X) → n__g(X)
activate(n__f(X1, X2)) → f(activate(X1), X2)
activate(n__g(X)) → g(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(5) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__f(X1, X2)) → ACTIVATE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering:  Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
| POL(F(x1, x2)) =  | 1A |  +  | 1A | · | x1 |  +  | 0A | · | x2 | 
| POL(ACTIVATE(x1)) =  | 0A |  +  | 0A | · | x1 | 
| POL(n__f(x1, x2)) =  | 1A |  +  | 1A | · | x1 |  +  | 0A | · | x2 | 
| POL(activate(x1)) =  | 0A |  +  | 0A | · | x1 | 
| POL(n__g(x1)) =  | -I |  +  | 0A | · | x1 | 
| POL(f(x1, x2)) =  | 1A |  +  | 1A | · | x1 |  +  | 0A | · | x2 | 
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__f(X1, X2)) → f(activate(X1), X2)
activate(n__g(X)) → g(activate(X))
activate(X) → X
f(X1, X2) → n__f(X1, X2)
g(X) → n__g(X)
f(g(X), Y) → f(X, n__f(n__g(X), activate(Y)))
 
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(g(X), Y) → ACTIVATE(Y)
ACTIVATE(n__f(X1, X2)) → F(activate(X1), X2)
F(g(X), Y) → F(X, n__f(n__g(X), activate(Y)))
ACTIVATE(n__g(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
f(g(X), Y) → f(X, n__f(n__g(X), activate(Y)))
f(X1, X2) → n__f(X1, X2)
g(X) → n__g(X)
activate(n__f(X1, X2)) → f(activate(X1), X2)
activate(n__g(X)) → g(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(7) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__g(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering:  Polynomial Order [NEGPOLO,POLO] with Interpretation:
| POL( F(x1, x2) ) = x2 + 2 | 
| POL( n__g(x1) ) = 2x1 + 2 | 
| POL( ACTIVATE(x1) ) = x1 + 2 | 
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__f(X1, X2)) → f(activate(X1), X2)
activate(n__g(X)) → g(activate(X))
activate(X) → X
f(X1, X2) → n__f(X1, X2)
g(X) → n__g(X)
f(g(X), Y) → f(X, n__f(n__g(X), activate(Y)))
 
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(g(X), Y) → ACTIVATE(Y)
ACTIVATE(n__f(X1, X2)) → F(activate(X1), X2)
F(g(X), Y) → F(X, n__f(n__g(X), activate(Y)))
The TRS R consists of the following rules:
f(g(X), Y) → f(X, n__f(n__g(X), activate(Y)))
f(X1, X2) → n__f(X1, X2)
g(X) → n__g(X)
activate(n__f(X1, X2)) → f(activate(X1), X2)
activate(n__g(X)) → g(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(9) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
ACTIVATE(
n__f(
X1, 
X2)) → 
F(
activate(
X1), 
X2) at position [0] we obtained the following new rules [LPAR04]:
ACTIVATE(n__f(n__f(x0, x1), y1)) → F(f(activate(x0), x1), y1) → ACTIVATE(n__f(n__f(x0, x1), y1)) → F(f(activate(x0), x1), y1)
ACTIVATE(n__f(n__g(x0), y1)) → F(g(activate(x0)), y1) → ACTIVATE(n__f(n__g(x0), y1)) → F(g(activate(x0)), y1)
ACTIVATE(n__f(x0, y1)) → F(x0, y1) → ACTIVATE(n__f(x0, y1)) → F(x0, y1)
 
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(g(X), Y) → ACTIVATE(Y)
F(g(X), Y) → F(X, n__f(n__g(X), activate(Y)))
ACTIVATE(n__f(n__f(x0, x1), y1)) → F(f(activate(x0), x1), y1)
ACTIVATE(n__f(n__g(x0), y1)) → F(g(activate(x0)), y1)
ACTIVATE(n__f(x0, y1)) → F(x0, y1)
The TRS R consists of the following rules:
f(g(X), Y) → f(X, n__f(n__g(X), activate(Y)))
f(X1, X2) → n__f(X1, X2)
g(X) → n__g(X)
activate(n__f(X1, X2)) → f(activate(X1), X2)
activate(n__g(X)) → g(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(11) NonTerminationLoopProof (COMPLETE transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s = 
ACTIVATE(
n__f(
n__g(
g(
X)), 
y1)) evaluates to  t =
ACTIVATE(
n__f(
n__g(
g(
X)), 
activate(
y1)))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
-  Matcher: [y1 / activate(y1)]
 
-  Semiunifier: [ ]
 
Rewriting sequenceACTIVATE(n__f(n__g(g(X)), y1)) → 
F(
g(
activate(
g(
X))), 
y1)
with rule 
ACTIVATE(
n__f(
n__g(
x0), 
y1')) → 
F(
g(
activate(
x0)), 
y1') at position [] and matcher [
x0 / 
g(
X), 
y1' / 
y1]
F(g(activate(g(X))), y1) → 
F(
g(
g(
X)), 
y1)
with rule 
activate(
X') → 
X' at position [0,0] and matcher [
X' / 
g(
X)]
F(g(g(X)), y1) → 
F(
g(
X), 
n__f(
n__g(
g(
X)), 
activate(
y1)))
with rule 
F(
g(
X'), 
Y') → 
F(
X', 
n__f(
n__g(
X'), 
activate(
Y'))) at position [] and matcher [
X' / 
g(
X), 
Y' / 
y1]
F(g(X), n__f(n__g(g(X)), activate(y1))) → 
ACTIVATE(
n__f(
n__g(
g(
X)), 
activate(
y1)))
with rule 
F(
g(
X), 
Y) → 
ACTIVATE(
Y)
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
 
(12) NO