(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
 
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ZEROS → CONS(0, n__zeros)
ZEROS → 01
U411(tt, V2) → U421(isNatIList(activate(V2)))
U411(tt, V2) → ISNATILIST(activate(V2))
U411(tt, V2) → ACTIVATE(V2)
U511(tt, V2) → U521(isNatList(activate(V2)))
U511(tt, V2) → ISNATLIST(activate(V2))
U511(tt, V2) → ACTIVATE(V2)
U611(tt, V2) → U621(isNatIList(activate(V2)))
U611(tt, V2) → ISNATILIST(activate(V2))
U611(tt, V2) → ACTIVATE(V2)
U711(tt, L, N) → U721(isNat(activate(N)), activate(L))
U711(tt, L, N) → ISNAT(activate(N))
U711(tt, L, N) → ACTIVATE(N)
U711(tt, L, N) → ACTIVATE(L)
U721(tt, L) → S(length(activate(L)))
U721(tt, L) → LENGTH(activate(L))
U721(tt, L) → ACTIVATE(L)
U811(tt) → NIL
U911(tt, IL, M, N) → U921(isNat(activate(M)), activate(IL), activate(M), activate(N))
U911(tt, IL, M, N) → ISNAT(activate(M))
U911(tt, IL, M, N) → ACTIVATE(M)
U911(tt, IL, M, N) → ACTIVATE(IL)
U911(tt, IL, M, N) → ACTIVATE(N)
U921(tt, IL, M, N) → U931(isNat(activate(N)), activate(IL), activate(M), activate(N))
U921(tt, IL, M, N) → ISNAT(activate(N))
U921(tt, IL, M, N) → ACTIVATE(N)
U921(tt, IL, M, N) → ACTIVATE(IL)
U921(tt, IL, M, N) → ACTIVATE(M)
U931(tt, IL, M, N) → CONS(activate(N), n__take(activate(M), activate(IL)))
U931(tt, IL, M, N) → ACTIVATE(N)
U931(tt, IL, M, N) → ACTIVATE(M)
U931(tt, IL, M, N) → ACTIVATE(IL)
ISNAT(n__length(V1)) → U111(isNatList(activate(V1)))
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ISNAT(n__length(V1)) → ACTIVATE(V1)
ISNAT(n__s(V1)) → U211(isNat(activate(V1)))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(V) → U311(isNatList(activate(V)))
ISNATILIST(V) → ISNATLIST(activate(V))
ISNATILIST(V) → ACTIVATE(V)
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__take(V1, V2)) → U611(isNat(activate(V1)), activate(V2))
ISNATLIST(n__take(V1, V2)) → ISNAT(activate(V1))
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V2)
LENGTH(nil) → 01
LENGTH(cons(N, L)) → U711(isNatList(activate(L)), activate(L), N)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
LENGTH(cons(N, L)) → ACTIVATE(L)
TAKE(0, IL) → U811(isNatIList(IL))
TAKE(0, IL) → ISNATILIST(IL)
TAKE(s(M), cons(N, IL)) → U911(isNatIList(activate(IL)), activate(IL), M, N)
TAKE(s(M), cons(N, IL)) → ISNATILIST(activate(IL))
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
ACTIVATE(n__zeros) → ZEROS
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
ACTIVATE(n__0) → 01
ACTIVATE(n__length(X)) → LENGTH(X)
ACTIVATE(n__s(X)) → S(X)
ACTIVATE(n__cons(X1, X2)) → CONS(X1, X2)
ACTIVATE(n__nil) → NIL
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 18 less nodes.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(0, IL) → ISNATILIST(IL)
ISNATILIST(V) → ISNATLIST(activate(V))
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
U511(tt, V2) → ISNATLIST(activate(V2))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → LENGTH(X)
LENGTH(cons(N, L)) → U711(isNatList(activate(L)), activate(L), N)
U711(tt, L, N) → U721(isNat(activate(N)), activate(L))
U721(tt, L) → LENGTH(activate(L))
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__take(V1, V2)) → U611(isNat(activate(V1)), activate(V2))
U611(tt, V2) → ISNATILIST(activate(V2))
ISNATILIST(V) → ACTIVATE(V)
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
U411(tt, V2) → ISNATILIST(activate(V2))
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__length(V1)) → ACTIVATE(V1)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
U411(tt, V2) → ACTIVATE(V2)
U611(tt, V2) → ACTIVATE(V2)
ISNATLIST(n__take(V1, V2)) → ISNAT(activate(V1))
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V2)
LENGTH(cons(N, L)) → ACTIVATE(L)
U721(tt, L) → ACTIVATE(L)
U711(tt, L, N) → ISNAT(activate(N))
U711(tt, L, N) → ACTIVATE(N)
U711(tt, L, N) → ACTIVATE(L)
U511(tt, V2) → ACTIVATE(V2)
TAKE(s(M), cons(N, IL)) → U911(isNatIList(activate(IL)), activate(IL), M, N)
U911(tt, IL, M, N) → U921(isNat(activate(M)), activate(IL), activate(M), activate(N))
U921(tt, IL, M, N) → U931(isNat(activate(N)), activate(IL), activate(M), activate(N))
U931(tt, IL, M, N) → ACTIVATE(N)
U931(tt, IL, M, N) → ACTIVATE(M)
U931(tt, IL, M, N) → ACTIVATE(IL)
U921(tt, IL, M, N) → ISNAT(activate(N))
U921(tt, IL, M, N) → ACTIVATE(N)
U921(tt, IL, M, N) → ACTIVATE(IL)
U921(tt, IL, M, N) → ACTIVATE(M)
U911(tt, IL, M, N) → ISNAT(activate(M))
U911(tt, IL, M, N) → ACTIVATE(M)
U911(tt, IL, M, N) → ACTIVATE(IL)
U911(tt, IL, M, N) → ACTIVATE(N)
TAKE(s(M), cons(N, IL)) → ISNATILIST(activate(IL))
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(5) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → LENGTH(X)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
U611(tt, V2) → ISNATILIST(activate(V2))
ISNATILIST(V) → ACTIVATE(V)
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__length(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
U411(tt, V2) → ACTIVATE(V2)
U611(tt, V2) → ACTIVATE(V2)
ISNATLIST(n__take(V1, V2)) → ISNAT(activate(V1))
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V2)
LENGTH(cons(N, L)) → ACTIVATE(L)
U721(tt, L) → ACTIVATE(L)
U711(tt, L, N) → ISNAT(activate(N))
U711(tt, L, N) → ACTIVATE(N)
U711(tt, L, N) → ACTIVATE(L)
U511(tt, V2) → ACTIVATE(V2)
TAKE(s(M), cons(N, IL)) → U911(isNatIList(activate(IL)), activate(IL), M, N)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
The remaining pairs can at least be oriented weakly.
Used ordering:  Polynomial Order [NEGPOLO,POLO] with Interpretation:
| POL( ISNAT(x1) ) = 2x1 + 1 | 
| POL( ISNATILIST(x1) ) = 2x1 + 2 | 
| POL( ISNATLIST(x1) ) = 2x1 + 2 | 
| POL( LENGTH(x1) ) = 2x1 + 2 | 
| POL( U411(x1, x2) ) = 2x2 + 2 | 
| POL( U511(x1, x2) ) = 2x2 + 2 | 
| POL( U611(x1, x2) ) = 2x1 + 2x2 + 2 | 
| POL( U711(x1, ..., x3) ) = 2x2 + 2x3 + 2 | 
| POL( U721(x1, x2) ) = 2x2 + 2 | 
| POL( U911(x1, ..., x4) ) = 2x2 + 2x3 + 2x4 + 1 | 
| POL( U921(x1, ..., x4) ) = 2x2 + 2x3 + 2x4 + 1 | 
| POL( U931(x1, ..., x4) ) = 2x2 + 2x3 + 2x4 + 1 | 
| POL( U71(x1, ..., x3) ) = max{0, 2x1 + x2 - 2} | 
| POL( U72(x1, x2) ) = max{0, 2x1 + x2 - 2} | 
| POL( U91(x1, ..., x4) ) = 2x2 + x3 + x4 + 2 | 
| POL( U92(x1, ..., x4) ) = 2x2 + x3 + x4 + 2 | 
| POL( U93(x1, ..., x4) ) = max{0, 2x1 + 2x2 + x3 + x4 - 2} | 
| POL( cons(x1, x2) ) = x1 + x2 | 
| POL( isNatIList(x1) ) = 2 | 
| POL( n__take(x1, x2) ) = x1 + 2x2 + 2 | 
| POL( length(x1) ) = x1 + 2 | 
| POL( take(x1, x2) ) = x1 + 2x2 + 2 | 
| POL( n__length(x1) ) = x1 + 2 | 
| POL( n__cons(x1, x2) ) = x1 + x2 | 
| POL( U81(x1) ) = max{0, x1 - 1} | 
| POL( ACTIVATE(x1) ) = 2x1 + 1 | 
| POL( TAKE(x1, x2) ) = 2x1 + 2x2 + 2 | 
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
take(X1, X2) → n__take(X1, X2)
take(0, IL) → U81(isNatIList(IL))
U81(tt) → nil
U31(tt) → tt
length(nil) → 0
length(X) → n__length(X)
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
U11(tt) → tt
U21(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
s(X) → n__s(X)
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
cons(X1, X2) → n__cons(X1, X2)
zeros → cons(0, n__zeros)
zeros → n__zeros
0 → n__0
nil → n__nil
 
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TAKE(0, IL) → ISNATILIST(IL)
ISNATILIST(V) → ISNATLIST(activate(V))
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
U511(tt, V2) → ISNATLIST(activate(V2))
LENGTH(cons(N, L)) → U711(isNatList(activate(L)), activate(L), N)
U711(tt, L, N) → U721(isNat(activate(N)), activate(L))
U721(tt, L) → LENGTH(activate(L))
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__take(V1, V2)) → U611(isNat(activate(V1)), activate(V2))
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
U411(tt, V2) → ISNATILIST(activate(V2))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
U911(tt, IL, M, N) → U921(isNat(activate(M)), activate(IL), activate(M), activate(N))
U921(tt, IL, M, N) → U931(isNat(activate(N)), activate(IL), activate(M), activate(N))
U931(tt, IL, M, N) → ACTIVATE(N)
U931(tt, IL, M, N) → ACTIVATE(M)
U931(tt, IL, M, N) → ACTIVATE(IL)
U921(tt, IL, M, N) → ISNAT(activate(N))
U921(tt, IL, M, N) → ACTIVATE(N)
U921(tt, IL, M, N) → ACTIVATE(IL)
U921(tt, IL, M, N) → ACTIVATE(M)
U911(tt, IL, M, N) → ISNAT(activate(M))
U911(tt, IL, M, N) → ACTIVATE(M)
U911(tt, IL, M, N) → ACTIVATE(IL)
U911(tt, IL, M, N) → ACTIVATE(N)
TAKE(s(M), cons(N, IL)) → ISNATILIST(activate(IL))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 19 less nodes.
(8) Complex Obligation (AND)
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(V1)) → ISNAT(activate(V1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(10) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ISNAT(n__s(V1)) → ISNAT(activate(V1))
The remaining pairs can at least be oriented weakly.
Used ordering:  Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:
| POL(ISNAT(x1)) =  | 4A |  +  | 5A | · | x1 | 
| POL(n__s(x1)) =  | 2A |  +  | 1A | · | x1 | 
| POL(activate(x1)) =  | 1A |  +  | 0A | · | x1 | 
| POL(n__take(x1, x2)) =  | 3A |  +  | 2A | · | x1 |  +  | 0A | · | x2 | 
| POL(take(x1, x2)) =  | 3A |  +  | 2A | · | x1 |  +  | 0A | · | x2 | 
| POL(n__length(x1)) =  | 5A |  +  | 3A | · | x1 | 
| POL(length(x1)) =  | 5A |  +  | 3A | · | x1 | 
| POL(n__cons(x1, x2)) =  | -I |  +  | 1A | · | x1 |  +  | 1A | · | x2 | 
| POL(cons(x1, x2)) =  | 0A |  +  | 1A | · | x1 |  +  | 1A | · | x2 | 
| POL(U81(x1)) =  | 3A |  +  | -I | · | x1 | 
| POL(isNatIList(x1)) =  | 3A |  +  | 0A | · | x1 | 
| POL(U31(x1)) =  | 0A |  +  | 0A | · | x1 | 
| POL(isNatList(x1)) =  | 1A |  +  | 0A | · | x1 | 
| POL(U71(x1, x2, x3)) =  | -I |  +  | 4A | · | x1 |  +  | 4A | · | x2 |  +  | 4A | · | x3 | 
| POL(U51(x1, x2)) =  | 1A |  +  | -I | · | x1 |  +  | 0A | · | x2 | 
| POL(isNat(x1)) =  | 2A |  +  | 0A | · | x1 | 
| POL(U11(x1)) =  | 3A |  +  | -I | · | x1 | 
| POL(U61(x1, x2)) =  | 0A |  +  | 1A | · | x1 |  +  | 0A | · | x2 | 
| POL(U21(x1)) =  | 2A |  +  | -I | · | x1 | 
| POL(U62(x1)) =  | -I |  +  | 0A | · | x1 | 
| POL(U41(x1, x2)) =  | 3A |  +  | -I | · | x1 |  +  | 1A | · | x2 | 
| POL(U42(x1)) =  | 2A |  +  | -I | · | x1 | 
| POL(U52(x1)) =  | 0A |  +  | 0A | · | x1 | 
| POL(U72(x1, x2)) =  | 0A |  +  | 4A | · | x1 |  +  | 4A | · | x2 | 
| POL(U91(x1, x2, x3, x4)) =  | 4A |  +  | -I | · | x1 |  +  | 1A | · | x2 |  +  | 3A | · | x3 |  +  | 1A | · | x4 | 
| POL(U92(x1, x2, x3, x4)) =  | 4A |  +  | 0A | · | x1 |  +  | 1A | · | x2 |  +  | 3A | · | x3 |  +  | 1A | · | x4 | 
| POL(U93(x1, x2, x3, x4)) =  | 4A |  +  | 0A | · | x1 |  +  | 1A | · | x2 |  +  | 3A | · | x3 |  +  | 1A | · | x4 | 
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
take(X1, X2) → n__take(X1, X2)
take(0, IL) → U81(isNatIList(IL))
isNatIList(n__zeros) → tt
U81(tt) → nil
isNatIList(V) → U31(isNatList(activate(V)))
isNatList(n__nil) → tt
U31(tt) → tt
length(nil) → 0
length(X) → n__length(X)
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
U11(tt) → tt
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
s(X) → n__s(X)
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
cons(X1, X2) → n__cons(X1, X2)
zeros → cons(0, n__zeros)
zeros → n__zeros
0 → n__0
nil → n__nil
 
(11) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(12) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, V2) → ISNATLIST(activate(V2))
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(15) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
U511(
tt, 
V2) → 
ISNATLIST(
activate(
V2)) at position [0] we obtained the following new rules [LPAR04]:
U511(tt, n__zeros) → ISNATLIST(zeros) → U511(tt, n__zeros) → ISNATLIST(zeros)
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1)) → U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
U511(tt, n__0) → ISNATLIST(0) → U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__length(x0)) → ISNATLIST(length(x0)) → U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__s(x0)) → ISNATLIST(s(x0)) → U511(tt, n__s(x0)) → ISNATLIST(s(x0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1)) → U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
U511(tt, n__nil) → ISNATLIST(nil) → U511(tt, n__nil) → ISNATLIST(nil)
U511(tt, x0) → ISNATLIST(x0) → U511(tt, x0) → ISNATLIST(x0)
 
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
U511(tt, n__zeros) → ISNATLIST(zeros)
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
U511(tt, n__nil) → ISNATLIST(nil)
U511(tt, x0) → ISNATLIST(x0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(17) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
ISNATLIST(
n__cons(
V1, 
V2)) → 
U511(
isNat(
activate(
V1)), 
activate(
V2)) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1)) → ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1)) → ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1)) → ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1)) → ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1)) → ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1)) → ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1)) → ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1)) → ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
 
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__zeros) → ISNATLIST(zeros)
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
U511(tt, n__nil) → ISNATLIST(nil)
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(19) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
U511(
tt, 
n__zeros) → 
ISNATLIST(
zeros) at position [0] we obtained the following new rules [LPAR04]:
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros)) → U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__zeros) → U511(tt, n__zeros) → ISNATLIST(n__zeros)
 
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
U511(tt, n__nil) → ISNATLIST(nil)
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__zeros)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(21) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__0) → ISNATLIST(0)
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(23) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
ISNATLIST(
n__cons(
n__zeros, 
y1)) → 
U511(
isNat(
zeros), 
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0)) → ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__zeros), activate(y0)) → ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__zeros), activate(y0))
 
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__0) → ISNATLIST(0)
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__zeros), activate(y0))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(25) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(26) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
U511(tt, n__0) → ISNATLIST(0)
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(27) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
ISNATLIST(
n__cons(
n__0, 
y1)) → 
U511(
isNat(
0), 
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0)) → ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
 
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
U511(tt, n__0) → ISNATLIST(0)
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(29) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
U511(
tt, 
n__0) → 
ISNATLIST(
0) at position [0] we obtained the following new rules [LPAR04]:
U511(tt, n__0) → ISNATLIST(n__0) → U511(tt, n__0) → ISNATLIST(n__0)
 
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__0) → ISNATLIST(n__0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(31) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(33) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
U511(
tt, 
n__s(
x0)) → 
ISNATLIST(
s(
x0)) at position [0] we obtained the following new rules [LPAR04]:
U511(tt, n__s(x0)) → ISNATLIST(n__s(x0)) → U511(tt, n__s(x0)) → ISNATLIST(n__s(x0))
 
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__s(x0)) → ISNATLIST(n__s(x0))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(35) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(37) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
ISNATLIST(
n__cons(
n__s(
x0), 
y1)) → 
U511(
isNat(
s(
x0)), 
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1)) → ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
 
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(39) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
U511(
tt, 
n__cons(
x0, 
x1)) → 
ISNATLIST(
cons(
x0, 
x1)) at position [0] we obtained the following new rules [LPAR04]:
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1)) → U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
 
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(41) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
ISNATLIST(
n__cons(
n__cons(
x0, 
x1), 
y1)) → 
U511(
isNat(
cons(
x0, 
x1)), 
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(n__cons(x0, x1), y2)) → U511(isNat(n__cons(x0, x1)), activate(y2)) → ISNATLIST(n__cons(n__cons(x0, x1), y2)) → U511(isNat(n__cons(x0, x1)), activate(y2))
 
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__cons(x0, x1), y2)) → U511(isNat(n__cons(x0, x1)), activate(y2))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(43) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(44) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(45) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
U511(
tt, 
n__nil) → 
ISNATLIST(
nil) at position [0] we obtained the following new rules [LPAR04]:
U511(tt, n__nil) → ISNATLIST(n__nil) → U511(tt, n__nil) → ISNATLIST(n__nil)
 
(46) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__nil) → ISNATLIST(n__nil)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(47) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(48) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(49) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
ISNATLIST(
n__cons(
n__nil, 
y1)) → 
U511(
isNat(
nil), 
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(n__nil, y0)) → U511(isNat(n__nil), activate(y0)) → ISNATLIST(n__cons(n__nil, y0)) → U511(isNat(n__nil), activate(y0))
 
(50) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
ISNATLIST(n__cons(n__nil, y0)) → U511(isNat(n__nil), activate(y0))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(51) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(52) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(53) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
U511(
tt, 
n__zeros) → 
ISNATLIST(
cons(
0, 
n__zeros)) at position [0] we obtained the following new rules [LPAR04]:
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros)) → U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros)) → U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
 
(54) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(55) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
ISNATLIST(
n__cons(
n__zeros, 
y0)) → 
U511(
isNat(
cons(
0, 
n__zeros)), 
activate(
y0)) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(0, n__zeros)), activate(y0)) → ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(n__0, n__zeros)), activate(y0)) → ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(n__0, n__zeros)), activate(y0))
 
(56) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(n__0, n__zeros)), activate(y0))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(57) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(58) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(n__0, n__zeros)), activate(y0))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(59) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
ISNATLIST(
n__cons(
n__zeros, 
y0)) → 
U511(
isNat(
cons(
n__0, 
n__zeros)), 
activate(
y0)) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(n__0, n__zeros)), activate(y0)) → ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(n__0, n__zeros)), activate(y0))
 
(60) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(n__0, n__zeros)), activate(y0))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(61) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(62) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(63) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
U511(
tt, 
n__zeros) → 
ISNATLIST(
cons(
n__0, 
n__zeros)) at position [0] we obtained the following new rules [LPAR04]:
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros)) → U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
 
(64) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(65) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
The remaining pairs can at least be oriented weakly.
Used ordering:  Polynomial Order [NEGPOLO,POLO] with Interpretation:
| POL( ISNATLIST(x1) ) = 2x1 + 1 | 
| POL( U511(x1, x2) ) = x1 + 2x2 + 1 | 
| POL( U81(x1) ) = max{0, -2} | 
| POL( isNatIList(x1) ) = 0 | 
| POL( cons(x1, x2) ) = x1 + 2x2 | 
| POL( U91(x1, ..., x4) ) = x1 + 2x2 + x4 | 
| POL( n__take(x1, x2) ) = x2 | 
| POL( U51(x1, x2) ) = max{0, -2} | 
| POL( U72(x1, x2) ) = x1 + 1 | 
| POL( U92(x1, ..., x4) ) = 2x2 + x4 | 
| POL( U93(x1, ..., x4) ) = 2x2 + x4 | 
| POL( n__length(x1) ) = 2x1 + 1 | 
| POL( U11(x1) ) = max{0, -2} | 
| POL( U71(x1, ..., x3) ) = x3 + 1 | 
| POL( U31(x1) ) = max{0, -2} | 
| POL( U52(x1) ) = max{0, x1 - 2} | 
| POL( U62(x1) ) = max{0, -2} | 
| POL( length(x1) ) = 2x1 + 1 | 
| POL( n__cons(x1, x2) ) = x1 + 2x2 | 
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
take(X1, X2) → n__take(X1, X2)
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
0 → n__0
isNatIList(n__zeros) → tt
U81(tt) → nil
isNatIList(V) → U31(isNatList(activate(V)))
isNatList(n__nil) → tt
U31(tt) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U11(tt) → tt
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
U21(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
s(X) → n__s(X)
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
cons(X1, X2) → n__cons(X1, X2)
zeros → cons(0, n__zeros)
zeros → n__zeros
nil → n__nil
 
(66) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(67) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
The remaining pairs can at least be oriented weakly.
Used ordering:  Polynomial Order [NEGPOLO,POLO] with Interpretation:
| POL( ISNATLIST(x1) ) = 2x1 | 
| POL( U511(x1, x2) ) = 2x1 + 2x2 | 
| POL( take(x1, x2) ) = x2 + 2 | 
| POL( U81(x1) ) = max{0, -2} | 
| POL( isNatIList(x1) ) = 2x1 + 1 | 
| POL( cons(x1, x2) ) = 2x1 + x2 | 
| POL( U91(x1, ..., x4) ) = x2 + 2x4 + 2 | 
| POL( n__take(x1, x2) ) = x2 + 2 | 
| POL( U21(x1) ) = max{0, -2} | 
| POL( U41(x1, x2) ) = x1 + 1 | 
| POL( U61(x1, x2) ) = max{0, -2} | 
| POL( U92(x1, ..., x4) ) = x2 + 2x4 + 2 | 
| POL( U93(x1, ..., x4) ) = x2 + 2x4 + 2 | 
| POL( isNat(x1) ) = max{0, 2x1 - 1} | 
| POL( U71(x1, ..., x3) ) = max{0, x1 - 2} | 
| POL( U42(x1) ) = max{0, -1} | 
| POL( U62(x1) ) = max{0, -2} | 
| POL( n__cons(x1, x2) ) = 2x1 + x2 | 
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
take(X1, X2) → n__take(X1, X2)
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
0 → n__0
U81(tt) → nil
isNatIList(V) → U31(isNatList(activate(V)))
isNatList(n__nil) → tt
U31(tt) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U11(tt) → tt
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
U21(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
s(X) → n__s(X)
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
cons(X1, X2) → n__cons(X1, X2)
zeros → cons(0, n__zeros)
zeros → n__zeros
nil → n__nil
 
(68) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(69) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
The remaining pairs can at least be oriented weakly.
Used ordering:  Polynomial Order [NEGPOLO,POLO] with Interpretation:
| POL( ISNATLIST(x1) ) = x1 + 1 | 
| POL( U511(x1, x2) ) = 2x2 + 1 | 
| POL( U81(x1) ) = max{0, -2} | 
| POL( isNatIList(x1) ) = 2 | 
| POL( s(x1) ) = max{0, -2} | 
| POL( cons(x1, x2) ) = 2x2 | 
| POL( U91(x1, ..., x4) ) = 0 | 
| POL( n__take(x1, x2) ) = 0 | 
| POL( U71(x1, ..., x3) ) = 2 | 
| POL( isNatList(x1) ) = x1 + 2 | 
| POL( U51(x1, x2) ) = 2x2 + 2 | 
| POL( U92(x1, ..., x4) ) = 0 | 
| POL( U93(x1, ..., x4) ) = max{0, x1 - 1} | 
| POL( U31(x1) ) = max{0, -2} | 
| POL( U62(x1) ) = max{0, x1 - 2} | 
| POL( n__cons(x1, x2) ) = 2x2 | 
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
take(X1, X2) → n__take(X1, X2)
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
0 → n__0
isNatIList(n__zeros) → tt
U81(tt) → nil
isNatIList(V) → U31(isNatList(activate(V)))
U31(tt) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U11(tt) → tt
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
U21(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
s(X) → n__s(X)
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
cons(X1, X2) → n__cons(X1, X2)
zeros → cons(0, n__zeros)
zeros → n__zeros
nil → n__nil
 
(70) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(71) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(cons(N, L)) → U711(isNatList(activate(L)), activate(L), N)
U711(tt, L, N) → U721(isNat(activate(N)), activate(L))
U721(tt, L) → LENGTH(activate(L))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(72) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
U711(tt, L, N) → U721(isNat(activate(N)), activate(L))
The remaining pairs can at least be oriented weakly.
Used ordering:  Polynomial Order [NEGPOLO,POLO] with Interpretation:
| POL( U711(x1, ..., x3) ) = max{0, x1 + 2x2 - 1} | 
| POL( U721(x1, x2) ) = 2x2 | 
| POL( U71(x1, ..., x3) ) = 2x2 | 
| POL( U91(x1, ..., x4) ) = 2x2 + 2x3 | 
| POL( U92(x1, ..., x4) ) = 2x2 + 2x3 | 
| POL( U93(x1, ..., x4) ) = 2x2 + 2x3 | 
| POL( cons(x1, x2) ) = 2x2 | 
| POL( isNatList(x1) ) = 2x1 | 
| POL( isNatIList(x1) ) = 2 | 
| POL( n__take(x1, x2) ) = x1 + x2 | 
| POL( take(x1, x2) ) = x1 + x2 | 
| POL( n__length(x1) ) = x1 | 
| POL( n__cons(x1, x2) ) = 2x2 | 
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
take(X1, X2) → n__take(X1, X2)
take(0, IL) → U81(isNatIList(IL))
isNatIList(n__zeros) → tt
U81(tt) → nil
isNatIList(V) → U31(isNatList(activate(V)))
U31(tt) → tt
length(nil) → 0
length(X) → n__length(X)
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
U11(tt) → tt
U21(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
s(X) → n__s(X)
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
cons(X1, X2) → n__cons(X1, X2)
zeros → cons(0, n__zeros)
zeros → n__zeros
0 → n__0
nil → n__nil
 
(73) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(cons(N, L)) → U711(isNatList(activate(L)), activate(L), N)
U721(tt, L) → LENGTH(activate(L))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(74) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.
(75) TRUE
(76) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
U411(tt, V2) → ISNATILIST(activate(V2))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(77) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
ISNATILIST(
n__cons(
V1, 
V2)) → 
U411(
isNat(
activate(
V1)), 
activate(
V2)) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1)) → ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1)) → ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1)) → ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1)) → ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1)) → ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1)) → ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1)) → ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1)) → ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
 
(78) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, V2) → ISNATILIST(activate(V2))
ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(79) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
U411(
tt, 
V2) → 
ISNATILIST(
activate(
V2)) at position [0] we obtained the following new rules [LPAR04]:
U411(tt, n__zeros) → ISNATILIST(zeros) → U411(tt, n__zeros) → ISNATILIST(zeros)
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1)) → U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
U411(tt, n__0) → ISNATILIST(0) → U411(tt, n__0) → ISNATILIST(0)
U411(tt, n__length(x0)) → ISNATILIST(length(x0)) → U411(tt, n__length(x0)) → ISNATILIST(length(x0))
U411(tt, n__s(x0)) → ISNATILIST(s(x0)) → U411(tt, n__s(x0)) → ISNATILIST(s(x0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1)) → U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
U411(tt, n__nil) → ISNATILIST(nil) → U411(tt, n__nil) → ISNATILIST(nil)
U411(tt, x0) → ISNATILIST(x0) → U411(tt, x0) → ISNATILIST(x0)
 
(80) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(zeros)
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
U411(tt, n__0) → ISNATILIST(0)
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
U411(tt, n__s(x0)) → ISNATILIST(s(x0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
U411(tt, n__nil) → ISNATILIST(nil)
U411(tt, x0) → ISNATILIST(x0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(81) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
ISNATILIST(
n__cons(
n__zeros, 
y1)) → 
U411(
isNat(
zeros), 
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0)) → ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__zeros), activate(y0)) → ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__zeros), activate(y0))
 
(82) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(zeros)
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
U411(tt, n__0) → ISNATILIST(0)
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
U411(tt, n__s(x0)) → ISNATILIST(s(x0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
U411(tt, n__nil) → ISNATILIST(nil)
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__zeros), activate(y0))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(83) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(84) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__zeros) → ISNATILIST(zeros)
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
U411(tt, n__0) → ISNATILIST(0)
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(x0))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(85) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
U411(
tt, 
n__zeros) → 
ISNATILIST(
zeros) at position [0] we obtained the following new rules [LPAR04]:
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros)) → U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(n__zeros) → U411(tt, n__zeros) → ISNATILIST(n__zeros)
 
(86) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
U411(tt, n__0) → ISNATILIST(0)
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(x0))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(n__zeros)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(87) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(88) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
U411(tt, n__0) → ISNATILIST(0)
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(x0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(89) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
U411(
tt, 
n__0) → 
ISNATILIST(
0) at position [0] we obtained the following new rules [LPAR04]:
U411(tt, n__0) → ISNATILIST(n__0) → U411(tt, n__0) → ISNATILIST(n__0)
 
(90) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(x0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
U411(tt, n__0) → ISNATILIST(n__0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(91) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(92) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(x0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(93) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
ISNATILIST(
n__cons(
n__0, 
y1)) → 
U411(
isNat(
0), 
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0)) → ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
 
(94) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(x0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(95) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
U411(
tt, 
n__s(
x0)) → 
ISNATILIST(
s(
x0)) at position [0] we obtained the following new rules [LPAR04]:
U411(tt, n__s(x0)) → ISNATILIST(n__s(x0)) → U411(tt, n__s(x0)) → ISNATILIST(n__s(x0))
 
(96) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__s(x0)) → ISNATILIST(n__s(x0))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(97) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(98) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(99) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
U411(
tt, 
n__cons(
x0, 
x1)) → 
ISNATILIST(
cons(
x0, 
x1)) at position [0] we obtained the following new rules [LPAR04]:
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1)) → U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
 
(100) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(101) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
ISNATILIST(
n__cons(
n__s(
x0), 
y1)) → 
U411(
isNat(
s(
x0)), 
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1)) → ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
 
(102) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(103) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
U411(
tt, 
n__nil) → 
ISNATILIST(
nil) at position [0] we obtained the following new rules [LPAR04]:
U411(tt, n__nil) → ISNATILIST(n__nil) → U411(tt, n__nil) → ISNATILIST(n__nil)
 
(104) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
U411(tt, n__nil) → ISNATILIST(n__nil)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(105) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(106) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(107) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
ISNATILIST(
n__cons(
n__cons(
x0, 
x1), 
y1)) → 
U411(
isNat(
cons(
x0, 
x1)), 
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(n__cons(x0, x1), y2)) → U411(isNat(n__cons(x0, x1)), activate(y2)) → ISNATILIST(n__cons(n__cons(x0, x1), y2)) → U411(isNat(n__cons(x0, x1)), activate(y2))
 
(108) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
ISNATILIST(n__cons(n__cons(x0, x1), y2)) → U411(isNat(n__cons(x0, x1)), activate(y2))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(109) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(110) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(111) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
ISNATILIST(
n__cons(
n__nil, 
y1)) → 
U411(
isNat(
nil), 
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(n__nil, y0)) → U411(isNat(n__nil), activate(y0)) → ISNATILIST(n__cons(n__nil, y0)) → U411(isNat(n__nil), activate(y0))
 
(112) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
ISNATILIST(n__cons(n__nil, y0)) → U411(isNat(n__nil), activate(y0))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(113) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(114) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(115) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
ISNATILIST(
n__cons(
n__zeros, 
y0)) → 
U411(
isNat(
cons(
0, 
n__zeros)), 
activate(
y0)) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__cons(0, n__zeros)), activate(y0)) → ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(n__0, n__zeros)), activate(y0)) → ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(n__0, n__zeros)), activate(y0))
 
(116) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(n__0, n__zeros)), activate(y0))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(117) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(118) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(n__0, n__zeros)), activate(y0))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(119) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
U411(
tt, 
n__zeros) → 
ISNATILIST(
cons(
0, 
n__zeros)) at position [0] we obtained the following new rules [LPAR04]:
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros)) → U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros)) → U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros))
 
(120) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(n__0, n__zeros)), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(121) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
ISNATILIST(
n__cons(
n__zeros, 
y0)) → 
U411(
isNat(
cons(
n__0, 
n__zeros)), 
activate(
y0)) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__cons(n__0, n__zeros)), activate(y0)) → ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__cons(n__0, n__zeros)), activate(y0))
 
(122) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__cons(n__0, n__zeros)), activate(y0))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(123) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(124) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(125) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule 
U411(
tt, 
n__zeros) → 
ISNATILIST(
cons(
n__0, 
n__zeros)) at position [0] we obtained the following new rules [LPAR04]:
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros)) → U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
 
(126) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(127) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ISNATILIST(n__cons(n__take(x0, x1), y1)) → U411(isNat(take(x0, x1)), activate(y1))
The remaining pairs can at least be oriented weakly.
Used ordering:  Polynomial Order [NEGPOLO,POLO] with Interpretation:
| POL( ISNATILIST(x1) ) = 2x1 + 1 | 
| POL( U411(x1, x2) ) = max{0, x1 + 2x2 - 1} | 
| POL( take(x1, x2) ) = 2x1 + 2x2 + 2 | 
| POL( isNatIList(x1) ) = x1 + 2 | 
| POL( cons(x1, x2) ) = x1 + x2 | 
| POL( U91(x1, ..., x4) ) = 2x2 + 2x3 + 2x4 + 2 | 
| POL( n__take(x1, x2) ) = 2x1 + 2x2 + 2 | 
| POL( U72(x1, x2) ) = max{0, -1} | 
| POL( U92(x1, ..., x4) ) = 2x2 + 2x3 + 2x4 + 2 | 
| POL( U93(x1, ..., x4) ) = x1 + 2x2 + 2x3 + x4 | 
| POL( isNat(x1) ) = x1 + 2 | 
| POL( U71(x1, ..., x3) ) = max{0, -1} | 
| POL( U31(x1) ) = max{0, 2x1 - 2} | 
| POL( n__cons(x1, x2) ) = x1 + x2 | 
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
take(X1, X2) → n__take(X1, X2)
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
0 → n__0
isNatIList(n__zeros) → tt
U81(tt) → nil
isNatIList(V) → U31(isNatList(activate(V)))
isNatList(n__nil) → tt
U31(tt) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U11(tt) → tt
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
U21(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
s(X) → n__s(X)
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
cons(X1, X2) → n__cons(X1, X2)
zeros → cons(0, n__zeros)
zeros → n__zeros
nil → n__nil
 
(128) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(129) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
The remaining pairs can at least be oriented weakly.
Used ordering:  Polynomial Order [NEGPOLO,POLO] with Interpretation:
| POL( ISNATILIST(x1) ) = 2x1 | 
| POL( U411(x1, x2) ) = 2x2 | 
| POL( take(x1, x2) ) = x2 + 1 | 
| POL( U81(x1) ) = max{0, -2} | 
| POL( isNatIList(x1) ) = 2x1 + 2 | 
| POL( s(x1) ) = max{0, -1} | 
| POL( cons(x1, x2) ) = 2x1 + x2 | 
| POL( U91(x1, ..., x4) ) = x2 + 2x4 + 1 | 
| POL( n__take(x1, x2) ) = x2 + 1 | 
| POL( length(x1) ) = x1 + 2 | 
| POL( U71(x1, ..., x3) ) = max{0, x1 - 2} | 
| POL( isNatList(x1) ) = x1 + 2 | 
| POL( n__length(x1) ) = x1 + 2 | 
| POL( U41(x1, x2) ) = x1 + 2x2 + 1 | 
| POL( U51(x1, x2) ) = x2 + 1 | 
| POL( U61(x1, x2) ) = x1 + x2 + 2 | 
| POL( U72(x1, x2) ) = max{0, x1 - 2} | 
| POL( U92(x1, ..., x4) ) = max{0, 2x1 + x2 + 2x4 - 1} | 
| POL( U93(x1, ..., x4) ) = max{0, 2x1 + x2 + 2x4 - 1} | 
| POL( n__cons(x1, x2) ) = 2x1 + x2 | 
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
take(X1, X2) → n__take(X1, X2)
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
0 → n__0
isNatIList(n__zeros) → tt
U81(tt) → nil
isNatIList(V) → U31(isNatList(activate(V)))
isNatList(n__nil) → tt
U31(tt) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U11(tt) → tt
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
U21(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
s(X) → n__s(X)
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
cons(X1, X2) → n__cons(X1, X2)
zeros → cons(0, n__zeros)
zeros → n__zeros
nil → n__nil
 
(130) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(131) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
The remaining pairs can at least be oriented weakly.
Used ordering:  Polynomial Order [NEGPOLO,POLO] with Interpretation:
| POL( ISNATILIST(x1) ) = 2x1 | 
| POL( U411(x1, x2) ) = x1 + 2x2 | 
| POL( isNatIList(x1) ) = 2x1 + 1 | 
| POL( cons(x1, x2) ) = 2x1 + 2x2 | 
| POL( U91(x1, ..., x4) ) = 2x2 + 2x4 | 
| POL( n__take(x1, x2) ) = x2 | 
| POL( length(x1) ) = 2x1 + 1 | 
| POL( U71(x1, ..., x3) ) = x1 + 1 | 
| POL( n__length(x1) ) = 2x1 + 1 | 
| POL( U41(x1, x2) ) = 2x2 + 1 | 
| POL( U92(x1, ..., x4) ) = 2x2 + 2x4 | 
| POL( U93(x1, ..., x4) ) = 2x2 + 2x4 | 
| POL( n__cons(x1, x2) ) = 2x1 + 2x2 | 
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
take(X1, X2) → n__take(X1, X2)
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
0 → n__0
isNatIList(n__zeros) → tt
U81(tt) → nil
isNatIList(V) → U31(isNatList(activate(V)))
isNatList(n__nil) → tt
U31(tt) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U11(tt) → tt
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
U21(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
s(X) → n__s(X)
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
cons(X1, X2) → n__cons(X1, X2)
zeros → cons(0, n__zeros)
zeros → n__zeros
nil → n__nil
 
(132) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(133) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
The remaining pairs can at least be oriented weakly.
Used ordering:  Polynomial Order [NEGPOLO,POLO] with Interpretation:
| POL( ISNATILIST(x1) ) = x1 | 
| POL( U411(x1, x2) ) = x1 + 2x2 | 
| POL( isNatIList(x1) ) = 1 | 
| POL( cons(x1, x2) ) = 2x2 | 
| POL( U91(x1, ..., x4) ) = max{0, -1} | 
| POL( n__take(x1, x2) ) = max{0, -2} | 
| POL( length(x1) ) = 2x1 + 2 | 
| POL( U71(x1, ..., x3) ) = 2x2 + 2 | 
| POL( isNatList(x1) ) = x1 + 2 | 
| POL( n__length(x1) ) = 2x1 + 2 | 
| POL( U21(x1) ) = max{0, -2} | 
| POL( U41(x1, x2) ) = max{0, -2} | 
| POL( U51(x1, x2) ) = 2x2 + 2 | 
| POL( U92(x1, ..., x4) ) = 0 | 
| POL( U93(x1, ..., x4) ) = max{0, -2} | 
| POL( isNat(x1) ) = max{0, -2} | 
| POL( U11(x1) ) = max{0, -2} | 
| POL( U31(x1) ) = max{0, -2} | 
| POL( U42(x1) ) = max{0, 2x1 - 2} | 
| POL( n__cons(x1, x2) ) = 2x2 | 
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
take(X1, X2) → n__take(X1, X2)
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
0 → n__0
isNatIList(n__zeros) → tt
U81(tt) → nil
isNatIList(V) → U31(isNatList(activate(V)))
U31(tt) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U11(tt) → tt
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
U21(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
s(X) → n__s(X)
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
cons(X1, X2) → n__cons(X1, X2)
zeros → cons(0, n__zeros)
zeros → n__zeros
nil → n__nil
 
(134) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(135) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
U411(tt, n__take(x0, x1)) → ISNATILIST(take(x0, x1))
The remaining pairs can at least be oriented weakly.
Used ordering:  Matrix interpretation [MATRO] to (N^2, +, *, >=, >) :
| POL(U411(x1, x2)) =  | 1 |  +  |  | · | x1 |  +  |  | · | x2 | 
| POL(n__take(x1, x2)) =  |  |  +  |  | · | x1 |  +  |  | · | x2 | 
| POL(ISNATILIST(x1)) =  | 1 |  +  |  | · | x1 | 
| POL(take(x1, x2)) =  |  |  +  |  | · | x1 |  +  |  | · | x2 | 
| POL(n__cons(x1, x2)) =  |  |  +  |  | · | x1 |  +  |  | · | x2 | 
| POL(activate(x1)) =  |  |  +  |  | · | x1 | 
| POL(isNatIList(x1)) =  |  |  +  |  | · | x1 | 
| POL(cons(x1, x2)) =  |  |  +  |  | · | x1 |  +  |  | · | x2 | 
| POL(U91(x1, x2, x3, x4)) =  |  |  +  |  | · | x1 |  +  |  | · | x2 |  +  |  | · | x3 |  +  |  | · | x4 | 
| POL(n__length(x1)) =  |  |  +  |  | · | x1 | 
| POL(isNatList(x1)) =  |  |  +  |  | · | x1 | 
| POL(U71(x1, x2, x3)) =  |  |  +  |  | · | x1 |  +  |  | · | x2 |  +  |  | · | x3 | 
| POL(U51(x1, x2)) =  |  |  +  |  | · | x1 |  +  |  | · | x2 | 
| POL(U61(x1, x2)) =  |  |  +  |  | · | x1 |  +  |  | · | x2 | 
| POL(U41(x1, x2)) =  |  |  +  |  | · | x1 |  +  |  | · | x2 | 
| POL(U72(x1, x2)) =  |  |  +  |  | · | x1 |  +  |  | · | x2 | 
| POL(U92(x1, x2, x3, x4)) =  |  |  +  |  | · | x1 |  +  |  | · | x2 |  +  |  | · | x3 |  +  |  | · | x4 | 
| POL(U93(x1, x2, x3, x4)) =  |  |  +  |  | · | x1 |  +  |  | · | x2 |  +  |  | · | x3 |  +  |  | · | x4 | 
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
take(X1, X2) → n__take(X1, X2)
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
0 → n__0
isNatIList(n__zeros) → tt
U81(tt) → nil
isNatIList(V) → U31(isNatList(activate(V)))
isNatList(n__nil) → tt
U31(tt) → tt
length(nil) → 0
length(X) → n__length(X)
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U11(tt) → tt
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
U21(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
s(X) → n__s(X)
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
cons(X1, X2) → n__cons(X1, X2)
zeros → cons(0, n__zeros)
zeros → n__zeros
nil → n__nil
 
(136) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
 
(137) NonTerminationLoopProof (COMPLETE transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s = 
U411(
isNat(
n__0), 
activate(
n__zeros)) evaluates to  t =
U411(
isNat(
n__0), 
activate(
n__zeros))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
-  Matcher: [ ]
 
-  Semiunifier: [ ]
 
Rewriting sequenceU411(isNat(n__0), activate(n__zeros)) → 
U411(
isNat(
n__0), 
n__zeros)
with rule 
activate(
X) → 
X at position [1] and matcher [
X / 
n__zeros]
U411(isNat(n__0), n__zeros) → 
U411(
tt, 
n__zeros)
with rule 
isNat(
n__0) → 
tt at position [0] and matcher [ ]
U411(tt, n__zeros) → 
ISNATILIST(
n__cons(
n__0, 
n__zeros))
with rule 
U411(
tt, 
n__zeros) → 
ISNATILIST(
n__cons(
n__0, 
n__zeros)) at position [] and matcher [ ]
ISNATILIST(n__cons(n__0, n__zeros)) → 
U411(
isNat(
n__0), 
activate(
n__zeros))
with rule 
ISNATILIST(
n__cons(
x0, 
y1)) → 
U411(
isNat(
x0), 
activate(
y1))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
 
(138) NO