When every principal congruence is an intersection of maximal congruences

Daniele Mundici
Department of Mathematics “Ulisse Dini”
University of Florence, Florence, Italy
mundici@math.unifi.it
• maximal congruence of A is one which is maximal among those $\neq A^2$
• the principal congruence generated by two elements a and b of A is the smallest congruence \approx of A such that $a \approx b$
• A is strongly semisimple if every principal congruence of A is an intersection of maximal congruences of A
• Dubuc and Poveda introduce this notion in 2010 (Ann. Pure. Appl. Logic, vol. 161): an MV-algebra A is strongly semisimple if every principal ideal of A is an intersection of maximal ideals of A
the case of boolean algebras

• in every boolean algebra A, every prime ideal is maximal
• every ideal of A is an intersection of prime ideals
• so in particular every principal ideal is an intersection of maximals
• and A is strongly semisimple
• a very general problem: which groups, lattices, Heyting algebras, semigroups, lattice-ordered groups, rings, vector lattices, Banach algebras, etc., are strongly semisimple?
Severi-Bouligand tangents

H. Bouligand, Ann. Soc. Polonaïse Math. 9 (1930) 32-41
u is a tangent unit vector of X in \mathbb{R}^2 at x

Any triangle with vertex x containing $[x, x+u]$ in its interior, contains ∞ many points of X
u is a tangent unit vector of X in \mathbb{R}^2 at x

Any triangle with vertex x containing $[x, x+u]$ in its interior, contains ∞ many points of X
u is a tangent unit vector of X in \mathbb{R}^2 at x

Any triangle with vertex x containing $[x,x+u]$ in its interior, contains ∞ many points of X
u is a tangent unit vector of X in \mathbb{R}^2 at x

Any triangle with vertex x containing $[x, x+u]$ in its interior, contains ∞ many points of X
in all small cones, \([x,x+u]\) intersects \(X\) only at \(x\)
definition of tangent vector u of a closed set X in euclidean space \mathbb{R}^n at a point x

For all small $\partial, h > 0$, the cone C with vertex x, axis parallel to u, angle ∂, and height h, contains infinitely many points of X, but none of them except x lies in the segment $[x, x+u]$

NOTE: X is an *arbitrary* closed set in euclidean space
classical consequence (B. Bolzano) deals with models=valuations=interpretations

we write \(f(m) = 1 \) instead of “\(m \) is a model of \(f \)”

A formula \(f \) is a consequence (in the sense of Bolzano) of a set \(P \) of formulas if every model \(m \) of every \(p \) in \(P \) is also a model of \(f \):

If \(p(m) = 1 \) for all \(p \) in \(P \) then \(f(m) = 1 \)

A completeness theorem often gratifies this definition by showing that all the consequences of \(P \) can be computed by a logical calculus of tautologies and Modus Ponens
For instance, let P be a set of boolean formulas in the variables X_1, \ldots, X_n. Every valuation m is uniquely determined by the tuple $X_1(m), \ldots, X_n(m)$.

Thus a valuation is a point in the space $\{0, 1\}^{\{X_1, \ldots, X_n\}} = \{0, 1\}^n$.

This space of models has the most rudimentary structure: it is the finite discrete topological space with 2^n elements. All finite-valued logics have this zerodimensional structure.
particular case: boolean consequence

given a set $S = \{X_1, \ldots, X_n\}$ of propositional variables,
the set of all possible interpretations of these symbols
= the set of boolean functions on the vertex of the n-cube
= the set of **models** of formulas in the variables of S
= the set of valuations of these formulas
Valuations are functions from $\{X_1,...X_n\}$ into $[0,1]$

Writing $[0,1]^{\{X_1,...X_n\}} = [0,1]^n$ the space of models inherits the rich topological, algebraic, linear, differential structure of the n-cube $[0,1]^n$

Any $[0,1]$-valued logic enjoys this structure
given a set \(S = \{X_1, \ldots, X_n\} \) of propositional variables, the set of all possible interpretations of these symbols
= [0,1]-valued functions on the vertex of the n-cube
= [0,1]-models of formulas in the variables of \(S \)
= [0,1]-valuations of these formulas
an example

the difference between
\{0,1\}-valuations
and \[0,1\]-valuations
Call for projects date: February 15, 2012, hrs 15.18

Application submission deadline: March 9, 2012, 17.00 hrs

Co-fund rule: Applicants must provide 30% of the required funding from sources ≠ the Ministry of Scientific Research.

Co-funding deadline: BEFORE March 9, 2012, 17.00 hrs
Applicant A’s co-funding record

% = certified cofunding percentage

t = normalized time

0 = February 15, 15.18
1 = March 9, 17.00
Applicant B’s cofunding record

% = certified cofunding percentage

t = normalized time

0 = February 15, 15.18

1 = March 9, 17.00
Applicant C’s cofunding record

Too late!
The system didn’t accept this application.

% = certified cofunding percentage

0 = February 15, 15.18
1 = March 9, 17.00

t = normalized time
A formula f is a consequence of a set P of premises if every model m of every p in P is also a model of P.
A formula f is a consequence of a set P of premises if every model m of every p in P is also a model of P

but now any “model” looks around all directions d

$p(m) = 1$ for all p in P \textbf{and} $\partial p(m)/\partial d = 0$ for all p in P

$f(m) = 1$ \textbf{and} $\partial f(m)/\partial d = 0$
telling the difference between $<$ and \leq

• Applicant C got the full percentage of cofunding at the very instant when the deadline expired.

• in Lukasiewicz logic \mathcal{L}_∞ we can write a set P of formulas such that a formula f is a consequence of P iff f describes a cofunding record where the required cofunding is obtained before ($<$) the deadline.

• \mathcal{L}_∞ distinguishes between $<$ and \leq
Lukasiewicz-Chang axioms (logic-algebra)

\[A \rightarrow (B \rightarrow A) \]
\[(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C)) \]
\[(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A) \]
\[((A \rightarrow B) \rightarrow B) \rightarrow ((B \rightarrow A) \rightarrow A) \]

MV-algebras are involutive abelian monoids with 1, satisfying

\[x + 1 = 1 \] and \[\neg(\neg x + y) + y = \neg(\neg y + x) + x \]

where \(a + b \) stands for \(\neg a \rightarrow b \)
the prototypical MV-algebra

the unit real interval \([0,1]\)
equipped with the distinguished constant 0
with the unary operation \(-x = 1-x\)
with the binary operation \(x \oplus y = \min(1, x+y)\)

THEOREM (Chang) \(\text{MV} = \text{HSP}[0,1]\)
the free MV-algebra on 1 generator FREEMV_1 is the set of functions $f: [0,1] \rightarrow [0,1]$ obtained from the identity function x by pointwise application of the operations of the prototypical MV-algebra.

A typical element of FREEMV_1
the free MV-algebra over one generator has enough expressive power to describe the Italian co-fund system

let P be a set of all functions in FREEMV_1 which have value 1 arbitrarily close to the deadline

then f is accepted by the Italian co-fund system iff it complies with the conditions in P. These conditions ask that f must get value 1 at the deadline 1, and must also keep value 1 over some left neighbourhood of 1.

$$f(1) = 1 \quad \text{and} \quad \frac{\partial f(1)}{\partial (x^-)} = 0$$
The expressive power of Lukasiewicz logic goes beyond the Bolzano paradigm.

\[\frac{\partial f(1)}{\partial x} = 0 \]

\(f \) is accepted by the Italian co-fund system iff it complies with the conditions in \(P \).

These conditions ask that \(f \) must get value 1 at the deadline 1, and must also keep value 1 over some left neighbourhood of 1.

Yes

\[f \]

No

\[g \]
For a formula \(f \) to be a **stable consequence** of a set \(P \) of premises the following conditions are necessary:

(Bolzano condition for \(\{0,1\}\)-logics) every model \(m \) of every \(p \) in \(P \) is also a model of \(f \),

(Stability condition for \([0,1]\)-logics) if every \(p \) in \(P \) is stably true along some direction \(d \), then so must be \(f \)

\[
p(m) = 1 \quad \text{and} \quad \frac{\partial p(m)}{\partial d} = 0 \quad \text{for all } p \text{ in } P
\]

\[
f(m) = 1 \quad \text{and} \quad \frac{\partial f(m)}{\partial d} = 0
\]
stable consequence is gratified by a **strong completeness theorem**

which is not the case of so called “semantic” consequence

THEOREM. A formula F is a stable consequence of P iff Modus Ponens derives F from P and the tautologies iff F is a syntactic consequence of P.

stable consequence = syntactic consequence = consequence

THEOREM. The consequence relation $G \vdash F$ is coNP-complete.
upon defining two formulas F and G to be T-equivalent iff T proves both $F \Rightarrow G$ and $G \Rightarrow F$, we get the **Lindenbaum algebra** $\text{Lind}(T)$ of T. We then have a correspondence between deductively closed sets T of sentences and ideals I_T in the free MV-algebra F of all formulas.
a set T of formulas in L_∞ contains a wealth of information not only on the set $\text{Mod}(T)$ of models of T

but also on the **tangent space** of $\text{Mod}(T)$ as a subset of the set $[0,1]^n$ of all possible models

when T is finitely axiomatizable, $\text{Mod}(T)$ is a rational polyhedron

unification and admissibility involve a lot of geometry

(Cabrer, Ciabattoni, Jerabek, Marra, Metcalfe, Spada,...)
Problem 1

Notation

\[T'^{-} = \text{the set of consequences of } T \]
\[T'^{=} = \text{the set of Bolzano consequences} \]

Problem 1:

When does \(T'^{-} \) coincide with \(T'^{=} \)?
Definition
Given a set T of formulas we say that $T \models$ *strongly* coincides with T if for any formula b we have $(T + b) \models = (T + b)\vdash$.

Problem 2:
When does $T \vdash$ *strongly* coincide with $T \models$?
Let T be a set of formulas, with its set $T^|=\mid$ of Bolzano consequences, and its set $T^|\leftarrow$ of consequences. The following conditions are equivalent:

$T^|=\mid$ coincides with $T^|\leftarrow$.

The Lindenbaum algebra of T is semisimple

(i.e., the 0 ideal is intersection of maximal ideals)

particular case: when T is finitely axiomatizable
(this is the Hay-Wójcicki theorem)
Theorem

For any set \(T \) of formulas the following conditions are equivalent:

\[T \models \text{strongly coincides with } T^\perp, \text{ i.e., } (T + b) \models = (T + b)^\perp \]

whenever a new axiom \(b \) is added to \(T \)

The Lindenbaum algebra of \(T \) is strongly semisimple

(not only \(0 \), but any principal ideal is an intersection of maximals)
Strongly semisimple → semisimple

- **A is semisimple:**
 - The zero ideal is intersection of maximal ideals:
 - A is semisimple
 - A is archimedean
 - A is algebra of real-valued functions
 - A does not have infinitesimals

- **A is strong semisimple:**
 - Every principal ideal is an intersection of maximals
semisimple → strongly semisimple

semisimple:
the zero ideal is an intersection of maximal ideals

strongly semisimple:
every principal ideal is an intersection of maximals
semisimple → ? strongly semisimple

semisimple:
the zero ideal is an intersection of maximal ideals

example
the subalgebra A of $C([0,1])$ generated by x and x^2 is semisimple; the ideal P generated by x^2 is principal, but differs from the only maximal ideal M above P: x belongs to M but not to P; no multiple of x^2 dominates x near 0

strongly semisimple:
every principal ideal is an intersection of maximals
the subalgebra A of $C([0,1])$ generated by x and x^2 is semisimple; the ideal P generated by x^2 is principal, but differs from the only maximal ideal M above P: x belongs to M but not to P; no multiple of x^2 dominates x near 0

example

no multiple of x^2 dominates x
no multiple of x^2 dominates x

example

the subalgebra A of $C([0,1])$ generated by x and x^2 is semisimple; the ideal P generated by x^2 is principal, but differs from the only maximal ideal M above P: x belongs to M but not to P; no multiple of x^2 dominates x near 0
the subalgebra A of $C([0,1])$ generated by x and x^2 is semisimple; the ideal P generated by x^2 is principal, but differs from the only maximal ideal M above P: x belongs to M but not to P; no multiple of x^2 dominates x near 0.
understanding failure of strong semisimplicity in semisimple algebras

joint work with Manuela Busaniche
we need at least two dimensions, because

for one-generator MV-algebras, semisimplicity coincides with strong semisimplicity
the free MV-algebra on 2 generators is the set of functions \(f:[0,1]^2 \rightarrow [0,1] \) obtained from the identity functions \(x \) and \(y \) by pointwise application of the operations of the prototypical MV-algebra.

A typical element of \(\text{FREEMV}_2 \) and its density plot.
the semisimple quotient operation on FREEMV_2

let \mathbf{X} be a closed set in $[0,1]^2$. Restrict every function f of FREEMV_2 to \mathbf{X}. Then the MV-algebra of restrictions to \mathbf{X} is the most general semisimple two-generator MV-algebra
By mapping $X \rightarrow x$, $Y \rightarrow x^2$ we get a parabola P. We let t be the tangent of P at the point $(1/2, 1/4)$.

Further, we let $M|_P$ denote the algebra of all restrictions to P of the functions of the free algebra FREEMV_2. The MV-algebra of x and x^2.
FREEMV$_2$ contains a function $g : [0,1]^2 \rightarrow [0,1]$ only vanishing along t.
we now let $<g>$ be the ideal of FREEMV_2 given by all functions f which are dominated on P by a multiple of g.
any function f in $\langle g \rangle$ will satisfy $\frac{\partial f(r)}{\partial u} \to 0$ as $u \to t$, because so does g, and directional derivatives of McNaughton functions are continuous.
but the restriction to P of the function j does not satisfy this condition: as we see, $\frac{\partial j(r)}{\partial u} > 0$
Thus \(<g>\) is a principal ideal of \(M|P\) different from the only maximal ideal \(<j>\) above \(<g>\). For, \(j\) belongs to \(<j>\) and does not belong to \(<g>\).
M|P is not strongly semisimple: P has a rational B-S tangent t

we MUST use B-S tangents, for P can be a very general closed set
Theorem (M. Busaniche, D.M. 2012)

If an MV-algebra is semisimple but not strongly semisimple then its maximal spectral space has a Bouligand-Severi (B-S) tangent
Theorem

For any closed nonempty subset X of the unit square, the MV-algebra M/X has the Dubuc-Poveda property if and only if X has no rational tangents.
what happens when $T^\vdash \neq T^\models$?

there is a formula g such that the set of models of $T+g$ has a B-S tangent t at some model r

every model v of $T+g$ satisfies each formula f of $T+g$, and v satisfies f along direction t, $\partial f(v)/\partial t = 0$

but some formula j satisfied by all models of $T+g$, has $\partial j(v)/\partial t \neq 0$
byproduct: a concrete representation of \textit{infinitesimals} as directional derivatives

Let A be the quotient of $M|P$ by the ideal $<g>$ generated by $g|P$

$j|P / <g>$ is \textit{infinitesimal} in A

$j|P / <g>$ has value 0, but is not the zero element of A
let A be the quotient of $M|P$ by the ideal
$\langle g \rangle$ generated by $g|P$

A is the MV-algebra of all possible
behaviours (=germs) of McNaughton
functions f at point r along direction t

these germs are determined by the
value $f(r)$ and its derivative $\frac{\partial f(r)}{\partial t}$
elements of A are GERMS, i.e., values of functions $f(r)$ together with their directional derivatives $\partial f(r)/\partial t$
j is an infinitesimal in A: j has value zero but nonzero derivative.
j is an MV-algebraic infinitesimal

the consequences of S form a smaller set than the set of consequences in the sense of Bolzano

1-j represents a formula with \(j(r)=1 \) but \(\frac{\partial j(r)}{\partial x} < 0 \),

while for every formula \(f \) of S, \(f(r)=1 \) and \(\frac{\partial f(r)}{\partial x} = 0 \)

The deduction rules are so that every consequence of S must have the same stability properties which are common to all formulas of S.

1-j is not a consequence of S because it is unstable
the Dubuc-Poveda property in MV-algebras is decisive in understanding the semantics of ∞-valued Lukasiewicz logic

the classical notion of “semantic (Bolzano-Tarski) consequence” does not coincide with provability, because it is insensitive to small perturbations of the models of a theory

a strongly complete semantics can be obtained by using valuations that take into account the differential behaviour of formulas, and the tangent spaces of their model sets
Contemporary Lukasiewicz logic is a key tool to handle non-boolean information, e.g., in error-correcting codes with feedback (Rényi-Ulam game). Being precisely the zero sets of McNaughton functions, rational polyhedra are the key tool for the analysis of Lukasiewicz consequence relation, projective MV-algebras, and unification.

In 1958 Chang introduced MV-algebras as equivalence classes of Lukasiewicz formulas to prove the completeness of the Lukasiewicz axioms. Today MV-algebras deeply interact with many mathematical areas, e.g., ordered groups, toric varieties, algebraic topology, and approximately finite-dimensional C*-algebras.
thank you