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Protein-protein interactions (PPI) are intrinsic to almost all cellular processes. Different
computational methods offer new chances to study PPI. To predict PPI, while the inte-
grative methods use multiple data sources instead of a single source, the domain-based
methods often use only protein domains. Integrating both protein domain features and
genomic/proteomic features from multiple databases could be more powerful in PPI
prediction. Moreover, it can allow discovering reciprocal relationships between PPI and
biological features of their interacting partners.

We develop a novel integrative domain-based method for predicting protein-protein
interactions using inductive logic programming (ILP). Two principal domain features
used are domain fusions and domain-domain interactions. Various relevant features of
proteins are exploited from five popular genomic and proteomic databases. By integrat-
ing these features, we constructed biologically significant ILP background knowledge of
more than 278,000 ground facts. The experimental results through multiple 10-fold cross-
validation demonstrated that our method can better predict protein-protein interactions
than other computational methods in terms of typical performance measures. The pro-
posed ILP framework can be applied to predict domain-domain interactions with high
sensitivity and specificity. The induced ILP rules give us a lot of interesting biological
reciprocal relationships among PPI, protein domains, and genomic/proteomic features
related to PPI.

Supplementary materials: http://www.jaist.ac.jp/%7Es0560205/PPIandDDI/

Keywords: protein-protein interaction; domain-domain interaction; inductive logic pro-
gramming.

1. Introduction

Protein-protein interactions are indispensable at almost every level of cell function,
in the structure of sub-cellular organelles, in the transport across the various biolog-
ical membranes, in muscle contraction, signal transduction, and regulation of gene
expression, etc. Detecting protein functions via prediction of protein-protein inter-
actions (PPI) has emerged as a new trend, both in vitro and in silico. Therefore,
prediction of protein-protein interactions has become one of the most challenging
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tasks in the post-genomic era. Experimental techniques have marked unmistakable
progress in finding out and verifying protein interactions for diverse organisms, in-
cluding well-known ones such as two-hybrid assay,1,2 affinity purification and mass
spectrometry,3 phage display.4 Because of little overlap among these experimental
databases, the question about their reliability is raised.

With the recent blooming of public proteomic and genomic databases, numerous
computational approaches offer a chance to study more widely and deeply regarding
protein-protein interactions. Depending on the source of information used, compu-
tational approaches can be categorized in three groups: structure-based approach,
sequence-based approach, and genome-based approach, typically the work of,5,6,7

respectively. Besides methods based on a single data source, many bioinformaticians
make the effort in the integrative approach that employs multiple data sources to
better predict PPI. Jansen et al. used a Bayesian network approach for integrating
weakly predictive genomic features into predictions of protein-protein interactions.8

Several kernels for different data sources like protein sequences, Gene Ontology an-
notations, local properties of networks, etc. are combined to infer PPI.9 Some other
efforts were probabilistic decision tree approach,10 inductive logic programming
method,11 probabilistic model,12 etc. From multiple data sources, these works can
extract and combine various genomic and proteomic features related to PPI. The
obtained results showed many advantages of multiple data source integration.

Protein domains are structural and/or functional units of proteins that are con-
served through evolution to represent protein structures or functions. They are
the key regulators in protein-protein interactions. Interactions among domains are
needed as stable channels of PPI. Recently, the domain-based approach to prediction
of PPI has received much attention in many ongoing studies. One of the pioneering
works based on protein domains is an association method.13 Kim et al. improved the
association method by considering the number of domains in each protein.14 Han et
al. proposed a domain combination-based method by considering the possibility of
domain combinations appearing in both interacting and non-interacting sets of pro-
tein pairs.15 A graph-oriented method is proposed by Wojcik and Schachter called
the interacting domain profile pairs (IDPP) method.16 Chen et al. used domain-
based random forest framework to predict PPI.17 Martin et al. used signatures gen-
erated from sequences to predict PPI, and they constructed domain-sized amino
acid subsequences through sliding a window across each of the protein sequences to
predict domains.18

The shortcoming of integrative methods is that they do not take protein domains
into account while there are evidences that the biological mechanism underlying
protein-protein interactions involves protein domains and their interactions.19 On
the other hand, while domain-based methods all treasured the biological roles of pro-
tein domains in PPI prediction, most of them merely considered the co-occurrence
of domains/domain pairs. To comprehensively predict PPI it seems necessary that
domain-based methods could also employ genomic/proteomic features.

This work, early initialized in,20 presents a novel integrative domain-based ap-
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proach using inductive logic programming to predict protein-protein interactions.
The key idea of this computational method is to integrate protein domain features
and multiple genomic/proteomic features. To efficiently integrate such two kinds
of feature in predicting PPI, we specified two main tasks. The first is to extract
as many as possible useful domain and genomic/proteomic features related to PPI.
From seven popular databases, we extracted more than 278,000 ground facts of
domain fusion, domain-domain interaction features and various other biologically
significant genomic/proteomic features. The second is to employ inductive logic pro-
gramming (ILP) with the huge amount of background knowledge to effectively infer
PPI.

To demonstrate the advantages of the integration domain features and ge-
nomic/proteomic features in PPI prediction, we conducted multiple 10-fold cross
validation for comparing our methods with two other methods based on single
domain features, as well as with the non domain-based approach using multiple
genomic databases. The performance measures include ROC curves, sensitivity and
specificity. In all cases, our method performed considerably better than the others.
Furthermore, with numerous protein and domain data, domain-domain interactions
were successfully inferred by our method with high sensitivity and specificity. At
last, analyzing various produced rules (of both PPI and DDI), many interesting
relationships among PPI and DDI and protein functions, biological processes, con-
served motifs and pattern sites were found. Our proposed methods can be tuned to
predict PPI and DDI for diverse organisms and other genomic and proteomic data
sources.

The remainder of the paper is organized as follows. In Section 2, we present our
proposed method to predict PPI based on domains using ILP and multiple genomic
and proteomic databases. The comparative evaluation of the experiments is given
in Section 3. Predictive rules of PPI and DDI, as well as discussion, are presented
in Section 4. Some concluding remarks are given in Section 5.

2. Materials and Methods

In this section, we present our proposed method to predict protein-protein interac-
tions based on domain and multiple genomic/proteomic data using ILP. Two main
tasks of the method are: (1) Constructing integrated background knowledgea of
domain features and multiple genomic/proteomic features, and (2) Learning PPI
predictive rules by ILP from the constructed background knowledge. Construct-
ing ILP background knowledge requires two steps. The first one is defining ILP
predicates. The second one is extracting ground facts to extensionally define pred-
icates. When choosing a feature, we concentrated on two points: (i) the biological
role of that feature in protein-protein interactions or domain-domain interactions,

athe terms ‘background knowledge’ and ‘ground facts’ (the second task) are used in terms of the
language of inductive logic programming.
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and (ii) the availability of data for that feature. Consulting results of experimental
and computational research on PPI, twenty two features of protein domains and
genomes/proteomes are chosen and are formulated using ILP predicates. The large
database of more than 278,000 ground facts of twenty two predicates is sufficient
for accurate PPI prediction.

We first briefly introduce about Inductive Logic Programming and some bioin-
formatics applications of ILP in Section 2.1. Then the first task in our proposed
method is presented in Subsections 2.2, 2.3, and 2.4. Subsection 2.5 describes the
second task.

2.1. Inductive Logic Programming

Inductive logic programming is the intersection of machine learning and logic
programming.21 Inductive logic programming uses logic programming as a uni-
form representation for examples, background knowledge and hypotheses. Given an
encoding of the known background knowledge and a set of examples (positive and
negative examples) represented as a logical database of ground facts, an ILP system
will derive hypotheses in form of logical rules which entails all the positive and none
of the negative examples. The schema of ILP as following

Positive examples + Negative examples + Background knowledge ⇒ Hypotheses

Distinguishing features of ILP are its ability to take into account background
(domain) knowledge in the form of logic programs, and the expressive power of the
language of discovered patterns.22

There have been many ILP systems that were applied to different problems
in bioinformatics. ILP is particular suitable for bioinformatics tasks because of its
ability to take into account background knowledge and work directly with structured
data.23 The ILP system GOLEM has been applied to find the predictive theory
about the relationship between chemical structure and activity.24 Other central
concerns of bioinformatics have been convincingly solved by ILP, such as protein
secondary structure prediction,25 protein fold recognition,26, etc. With abundant
biological and biomedical data, ILP is potential to appropriately combine them in
background knowledge to settle various problems in bioinformatics.

2.2. Extracting domain fusion and domain-domain interaction

data

Protein domains form the structural or functional units of proteins that partake
in intermolecular interactions. The existence of certain domains in proteins can
therefore suggest the propensity for the proteins to interact or form a stable complex
to bring about certain biological functions. Because of their important biological
roles in PPI prediction,19,27 domain fusion and domain-domain interaction features
are used in our work.



October 29, 2007 16:12 WSPC/INSTRUCTION FILE JBCB

An Integrative Domain-Based Approach to Predicting PPI 5

Let P denote the set of considered proteins pi. Denote by D the set of all protein
domains dk which belong to proteins pi. A pair of interacting proteins (pi, pj) is
denoted by pij , and a protein pair that does not interact with each other by ¬pij .

Domains of interacting proteins have more chance to fuse together than domains
of non-interacting proteins. Therefore, when finding a pair of proteins which have
fused domains, we can predict an interaction between them.28 Domain fusion data is
referred from Domain Fusion Database.29 Truong et al. employed relational algebra
to find domain fusions in protein sequence databases. We extracted domain fusion
data for all protein pairs (pi, pj), pi, pj ∈ P . The following predicate represents the
domain fusion between two proteins

domain fusion(+protein, +protein, #FUSION)

Note that in the ILP system used – the learning engine Aleph for proposing
hypothesis30 – there are some mode declarations to build the bottom clauses, and
a simple mode type is one of the following: (1) the input variable (+), (2) the
output variable (−), or (3) the constant term (#). Predicate domain fusion means
whether two input proteins, A and B, have fused domains or not (valued “yes” by
the constant term #FUSION). This predicate is supported by a set of ground facts
Gdomain fusion, e.g., domain fusion (ap3m yeast, ap3b yeast, yes). After preprocessing,
the set Gdomain fusion consists of 2,761 ground facts.

Let dkl and ¬dkl denote a domain-domain interaction and a non-interacting of
a domain pair (dk, dl), respectively. The assumption that proteins interact with
each other through interactions of their domains is widely accepted and vali-
dated. The domain-domain interaction data is exploited to more reliably predict
PPI. We extracted DDI data from iPfam database (http://www.sanger.ac.uk/Software/

Pfam/iPfam/) that is a resource describing domain-domain interactions observed in
PDB entries. The domains are defined by Pfam. When two or more domains occur in
a single structure, the domains are analysed to see if they form an interaction. If the
domains are close enough to form an interaction, the bonds forming the interaction
are calculated.

We considered two features of DDI. The first feature is whether a protein pair
(pi, pj) has a domain interaction dkl, and if yes, how many dkl it has. This infor-
mation is formulated by predicate

hasddi(+protein, +protein, #DDI)

where the #DDI value is the number of DDI mediating the same PPI pij . The set of
ground facts for this predicate Gddi includes 657 ground facts, some of them are:
hasddi(jsn1 yeast,yip1 yeast,2), hasddi(msh4 yeast,msh5 yeast,5), etc.

The number of domain-domain interactions of a protein is one of the features
which may increase or decrease the probability of its interaction with others. So we
considered the relationship between PPI and the number of DDI of each interacting
partner. This relationship is presented in the following predicate
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num ddi(+protein, #NUM DDI)

Denoted by Gnum ddi the set of ground facts of the above predicate contains 505
ground facts. We found that there are some proteins having a large number of DDI,
for example, num ddi(did4 yeast,20) or num ddi(bud27 yeast,39), and these proteins po-
tentially interact with many other proteins.

2.3. Extracting proteomic and genomic data from multiple

databases

In addition to domain fusion and domain-domain interaction features, we mined
genomic and proteomic data from UniProt database, CYGD database, InterPro
database, Gene Ontology database, and Gene Expression database to detect useful
genomic and proteomic features for PPI prediction. Table 1 shows 19 predicates
corresponding to genomic/proteomic data extracted from multiple databases.

As the world’s most comprehensive catalog of information on proteins, UniProt
database (http://www.pir.uniprot.org/) largely provides functional, structural or other
categories (in Keyword - KW line); regions or sites of interest in the sequences (in
Feature Table - FT lines); describes enzymes coded (EC). Others are pointers to
information related to entries and found in data collections other than UniProt such
as GO database, PIR database, PROSITE database, Pfam database, and Interpro
database (in Database cross-Reference - DR line).

Some examples of extracted data of these predicates are keyword(ace1 yeast,
transcription regulation), feature(ldb7 yeast, chain chromatin structure remodeling complex),
coded enzyme(uqcr1 yeast, ec1.10.2), and dr go(twoa5d yeast,go0005935), etc. The first
three predicates present general protein features that should effect their interac-
tions. The other give references to other databases. Data from different databases
related to PPI are bound by these predicates.

The MIPS Comprehensive Yeast Genome Database (CYGD) (http://mips.gsf.de

/genre/proj/yeast/) presents information on the molecular structure and functional
network of the entirely sequenced, well-studied model eukaryote, the budding yeast
Saccharomyces cerevisiae. Among various information provided by CYGD, the fol-
lowing should be mined to discover the relationship between CYGD’s categories
and protein-protein interactions, i.e. category of functions, category of subcellular
locations, category of phenotypes, category of complexes, and category of proteins.
A protein has more chance to interact with proteins in the same category than
with proteins in different catagories. Here are some examples: subcell cat (ahc1 yeast,

cytoplasm), phenotype cat(cyk2 yeast, cell cycle defects), etc.
InterPro database (http://www.ebi.ac.uk/interpro/) is a database of protein fam-

ilies, domains and functional sites. We considered the association between Inter-
Pro annotations and GO terms. For example, interpro go(ipr000009,go0007165), inter-

pro go(ipr000009,go0000159).
Gene Ontology database (http://www.geneontology.org/) has three organizing

principles: molecular function, biological process and cellular component. The terms
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Table 1. Predicates used as background knowledge in various genomic/proteomic data sources

Database Background knowledge predicates #Ground fact
keyword(+protein,#Keyword)
A protein has a proteins keyword
feature(+protein,#Feature)
A protein has a protein feature
coded enzyme(+protein,#EC)
A protein has a coded enzyme
dr prosite(+protein, -PROTSITE ID)

UniProt A protein has a PROSITE annotation number 43,539
dr interpro(+protein, -INTERPRO ID)
A protein has an InterPro annotation number
dr go(+protein,-GO TERM)
A protein has a GO term
dr pfam(+protein, -PFAM ID)
A protein has an Pfam annotation number
dr pir(+protein, -PIR ID)
A protein has a Pir annotation number
subcell cat(+protein, #SUBCELLCAT)
A protein has subcellular structures in which it is found
function cat(+protein, #FUNCAT)
A protein has a certain function category

CYGD protein cat(+protein, #PROTEINCAT) 11,909
A protein has a certain protein category
phenotype cat(+protein, #FENCAT)
A protein has a certain phenotype category
complex cat(+protein, #COMPLEXCAT)
A protein has a certain complex category

InterPro interpro go(+INTERPRO ID, -GO TERM)

Relation of InterPro annotations and GO terms 4,965
is a(+GO TERM,-GO TERM)

GO is a relation between two GO terms
part of(+GO TERM,-GO TERM) 1,142
part of relation between two GO terms

Gene expression(+protein, +protein, #COEFFICIENT)

Expression Gene expression correlation coefficient of two proteins 200,000
num ppi(+protein, +protein, #NUM PPI)
A protein has a number of protein-protein interactions

DIP ig(+protein, +protein, #IG) 13,376
Interaction generality of two proteins is the number of protein
that interact with just two considered proteins

in an ontology are linked by two relationships, is a and part of. The relationships
of interacting partners in a PPI may effect their interaction. Some ground facts are
is a (go0000002, go0007005), part of (go0000032, go0007047)).

Interacting proteins are often co-expressed, and then gene expression coefficients
between two proteins are useful in predicting PPI. The Gene Expression coef-
ficients between two proteins are referred to Jansen et al.’s work8 which contains
25,000,000 pairwise coefficients for about 18,773,128 protein pairs. In our work, we
randomly extracted 200,000 gene expression coefficients in terms of ground facts
represented by predicates expression(+protein, +protein, #COEFFICIENT) for
about 11,000 positives and negatives in the training data set.

Two last predicates represent information about the number of protein-protein
interactions and interaction generality of two interacting partners. Interaction gen-
erality is the number of proteins that interact with both interacting partners in an
interaction. The interacting pairs from DIP core data set (see more in Section 3.1)
are extracted corresponding to these predicates.
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2.4. Constructing background knowledge for predicting

protein-protein interactions

After defining 22 predicates, we exploit data in terms of ground facts for these
predicates from 7 databases (2 databases for domain features and 5 others for ge-
nomic and proteomic features). In succession, we denote the sets of ground facts
extracted from UniProt database, CYGD database, InterPro database, Gene Ontol-
ogy database, and Gene Expression database by GUniProt, GGO, GInterPro, GCY GD,
and Gexpression, respectively. Algorithm 1 presents the procedure to extract data
from multiple databases to construct background knowledge for PPI prediction.

Algorithm 1 Extracting domain feature data and genomic /proteomic feature data
from multiple sources.
Input:

Set of proteins {pi} ⊆ P .

Output:
Sets of ground facts GL = {Gl}, Gl ∈ {Gdomain fusion, Gddi, Gnum ddi, GUniProt, GCY GD,
GInterPro, GGO, Gexpression, Gig , Gnum ppi}.

1: Initialize all sets of ground facts Gl := ∅; D := ∅.
2: Extract all domains dk belonging to proteins pi; D := D ∪ {dk}.
3: for each protein pair (pi, pj)
4: for all dk ∈ pi and dl ∈ pj

5: if fused(dk, dl) = true then
Gdomain fusion := Gdomain fusion ∪ {(pi, pj)}.

6: if ∃ dkl then
Gddi := Gddi ∪ {(pi, pj)}
Count the number of DDI for proteins pi and pj for Gnum ddi, respectively.

7: for each protein pi ∈ P
8: Extract GUniProt and GCY GD from UniProt and CYGD database, respectively.
9: Extract mapping data between GO terms gi and Interpro identifiers ti related to pi from

InterPro database for GInterpro; GInterPro = GInterPro ∪ {ti, gi.}.
10: for each protein pi ∈ P
11: for each protein pj ∈ P
12: Extract the relationship rij between GO terms (gi, gj) related to (pi, pj) from

GO database; GGO = GGO ∪ {rij(gi, gj)}.
13: Extract the expression correlation coefficients eij of (pi, pj);

Gexpression = Gexpression ∪ {pi, pj , eij}.
14: Extract the interaction generality of PPI nij of (pi, pj); Gig = Gig ∪ {pi, pj , nij}.
15: if ∃ pij then

num ppii := num ppii + 1;
16: Gnum ppi := Gnum ppi ∪ {(pi, num ppii)}.
17: return GL.

2.5. Predicting protein-protein interaction with integrative

domain-based ILP framework

Algorithm 2 describes the integrative domain-based ILP framework for predicting
PPI from multiple genomic/proteomic databases.
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Algorithm 2 An integrative domain-based ILP framework for PPI prediction
Input:

Set of protein-protein interactions Sinteract = {pij}
Number of negative examples (¬pij) N

Sets of ground facts Gdomain fusion, Gddi, Gnum ddi, GUniProt, GCY GD, GInterPro, GGO,

, Gexpression, Gig , and Gnum ppi.

Output:
Set of rules R for protein-protein interaction prediction.

1: R := ∅.
2: Extract positive examples for the set Sinteract.
3: Generate N negative examples ¬pij ; S¬interact = {¬pij}.
4: call Algorithm 1 to generate sets of ground facts Gl; Sbackground = GL = {Gl}.
5: Run an ILP program with Sinteract, S¬interact and Sbackground to induce rules r.
6: R := R ∪ {r}.
7: return R.

After initializing the set of rule R in Step 1, Step 2 and Step 3 are for generating
positive and negative examples Sinteract and S¬interact, respectively (see more in
Subsection 3.1). In Step 4, we constructed background knowledge Sbackground in-
cluding both domain features and genomic/proteomic features from sets of ground
facts of defined predicates (see Section 2.4). In Step 5, in our experiments, system
Aleph was applied to induce rules.

Aleph is an advanced ILP system that uses a top-down ILP covering algorithm.
Aleph requires three input files to construct theories: positive examples, negative
examples and background knowledge. Positive and negative examples can simply
be considered as ground facts. Background knowledge is in the form of Prolog
clauses that encode information relevant to the domain. All predicates appearing in
hypothesized clauses have to be declared, and amongst them the target predicate
is learned to induce rules.

The target predicate in our work is has int(+protein, +protein), meaning
that two arbitrary proteins interact. Aleph learns three inputs and induces rules
(hypothesized clauses) in terms of the relationships between the target predicate
and other predicates declared in background knowledge.

3. Evaluation

We concentrate on predicting PPI for Saccharomyces cerevisiae, a budding yeast.
We carried out experimental comparative evaluation, consisting of two experiments
corresponding to protein-protein interaction prediction in Section 3.1 and domain-
domain interaction prediction in Section 3.2.
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3.1. Predicting protein-protein interactions

3.1.1. Experiment design of protein-protein interaction prediction

To assess the performance of our method for PPI prediction, we did two comparative
tests to demonstrate: (1) the advantages of the integration of multiple proteomic
and genomic features in our method, (2) the advantages of domain-based approach.
The 10-fold cross validation was produced 10 times with each of two negative sets to
compare our proposed method with other domain-based methods, particularly AM
method and SVMs method. Second, we conducted 10-fold cross validation tests for
an ILP method with multiple genomic databases, but not using domain features,11

and compared those results with our method in terms of sensitivity and specificity.
In two comparative tests with AM and SVMs method, we used the core data of

DIP data set (http://dip.doe-mbi.ucla.edu/). This is a large, reliable set of interactions
each of which was observed by at least three different methods. Each interaction in
DIP database is originally presented by ORF name (Open Reading Frame). After
excluding all interactions in which either bait ORF or prey ORF is not found in
UniProt database, the positive set has 5,512 interacting pairs from the original
5,963 pairs. We generate two sets of negatives according to two popular methods.31

In each set of negatives, 5,512 examples to form a training set of equal numbers
of negatives and positives. The first one is selecting randomly 5,512 protein pairs
from the protein set P where negative examples ¬pij not belonging to the positive
example set Sinteract. The second one is selecting 5,512 protein pairs (pi, pj) where
two protein, pi and pj , are located in different subcellular compartments. In the
test with the negatives generated by the second method, we excluded the predicate
subcell cat(+protein, #SUBCELLCAT). Then, the negative set of the second test were
assured to be independent with the background knowledge.

3.1.2. Result of protein-protein interaction prediction

With the same positives and negatives data sets, we conducted 10-fold cross valida-
tion tests for our method, AM method and SVMs method. AM method calculated
the probability of protein pairs based on protein domains.13 In our experiment, the
probability threshold is set to 0.05. For SVMs method, we used SV M light.32 The
linear kernel with default values of the parameters was used. For Aleph, we selected
minpos = 2 and noise = 0, i.e. the lower bound on the number of positive exam-
ples to be covered by an acceptable clause is 2, and there are no negative examples
allowed to be covered by an acceptable clause. We also used the default evaluation
function coverage which is defined as P −N , where P , N are the number of positive
and negative examples covered by the clause, respectively.

The ROC curves of ILP, AM and SVMs methods with 5,512 randomly selected
negative examples are shown in Figure 1. ROC curve (Receiver Operating Charac-
teristic curve) shows the tradeoff between sensitivity and specificity (any increase
in sensitivity will be accompanied by a decrease in specificity). Sensitivity refers to
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Fig. 1. Comparative ROC curves of ILP, SVMs
and AM method with 5,512 random negative
examples.

Fig. 2. Comparison of sensitivity and speci-
ficity of non-domain based method and our
proposed method with various sets of negative
examples by 10 times 10-fold cross-validation.

the ability of the test to detect individuals who actually have the disorder. On the
other hand, the term specificity means that the test is specific to the disorder being
assessed and that it does not give a positive result because of other conditions.

The ROC curve of our method is close to the left-hand border and then the
top border of the ROC space. On the other hand, ROC curves of AM method and
SVMs method are close to the 45-degree diagonal of the ROC space. The ROC
curve demonstrates that our method has a considerably better performance than
those of AM and SVMs method.

In the test with negatives examples chosen in separate sub-cellular compart-
ments, we carried out 10 trials of 10-folds cross validation, and then calculated the
average sensitivity (SS) and specificity (SP) of these 10 trials. Our method outper-
formed with sensitivity 84% and specificity 90% in the comparison with AM method
with SS 82% and SP 34%, and SVMs method with SS 47% and SP 75%.

Reproducing the same experiments to non domain-based approach using ILP11

with the same training negatives (with different numbers of negatives) and positives
(Ito et al.’s date set of at least 3 hit interactions), the results of 10 times 10-fold
cross-validation demonstrated in Figure 2, show that our integrative domain-based
method achieved higher sensitivity, and higher or equal specificity, than the non-
domain based approach.

Furthermore, the unknown interacting protein pairs are in fact much larger than
known ones, we also did the comparative experiments with imbalance training sets.
According to,31 the negative example set should be 4 times larger than the positive
example set, we random selected 2,500 positives from DIP core data set and random
10,000 negatives. Sensitivity and specificity of our method are 78% and 95% (in this
case, SS and SP of AM are 75% and 30% respectively, and SS and SP of SVMs are
30% and 94%, respectively). As the result, even testing with imbalanced training
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data sets, our methods is effectively predict PPI.

3.2. Predicting domain-domain interactions

3.2.1. Experiment design of domain-domain interactions prediction

Similar to protein-protein interactions, domains of proteins interact together to
perform specific biological function in cell. Inheriting the ILP framework for PPI
prediction, we applied ILP framework to infer domain-domain interactions. Com-
bining different databases, both databases of proteins and databases of domains,
the results of experiments for DDI prediction are promising.

To assess the performance of our method for DDI prediction, sensitivity and
specificity were evaluated through the 10-fold cross validation tests. We used about
3000 interaction in InterDom database as positive examples.33 Positive examples
are domain-domain interactions in InterDom database that have score thresholds
over 100 and are not false positives. Because there are currently no efficient experi-
mental and computational methods for detecting non-interacting domain pairs, the
negative examples were randomly generated. A domain pair is considered to be a
negative example, if the pair does not exist in the interaction set. Various numbers
of negatives, i.e. 500, 1000, 2000, 3000 negatives, were chosen.

3.2.2. Result of domain-domain interactions prediction

In fact, the interaction of two domains depends on: (i) domain features of inter-
acting partners themselves, and (ii) protein features of host proteins consisting of
those domains. In case of domain-domain interaction prediction, we did not use
domain-domain interaction data of iPfam database and domain fusion data in ILP
background knowledge.

We modeled 20 predicates from 7 databases (see more in Supplemen-
tary materials34). Among these 20 predicates, there are 14 predicates as pro-
tein features extracted from 3 genomic/proteomic databases such as UniProt
database, CYGD database, and GO database are protein features in forms of
14 predicates. In addition, there are 7 predicates for domain features corre-
sponding to 4 domain databases, i.e. Pfam (http://www.sanger.ac.uk/Software/Pfam/),
PRINT (http://www.bioinf.manchester.ac.uk/dbbrowser /PRINTS/), and PROSITE
(http:// au.expasy.org/prosite/), and Interpro (http://www.ebi.ac.uk/interpro/). With more
than 100,000 ground facts of 20 predicates extracted from 7 databases, we efficiently
predict domain-domain interactions by ILP. The target predicate for DDI prediction
is interact domain(+protein, +protein).

Results conducted from 10 times of 10-fold cross-validation showed that our
method obtains high sensitivity and specificity. The performance of our method in
terms of specificity and sensitivity is also statistically tested by confidence intervals.
The confidence intervals give us an estimate of the amount of error involved in
our data. To estimate 95% confidence interval for each calculated specificity and
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sensitivity, we used t distribution. The 95% confidence intervals of specificity and
sensitivity are shown in Table 2.

Table 2. The sensitivity and specificity are obtained for each
randomly chosen set of negative examples by 10 times 10-fold
cross-validation.

# Negative example Sensitivity Specificity

500 0.83 ± 0.016 0.61 ± 0.075

1000 0.78 ± 0.042 0.68 ± 0.042

2000 0.69 ± 0.027 0.80 ± 0.018

3000 0.73 ± 0.028 0.84 ± 0.010

Besides calculating cross-validated sensitivity and specificity, cross-validated ac-
curacy and precision are considered. All of our experiment results had high accuracy
and precision. The average accuracy and precision of our method were 0.76 and 0.82,
respectively.34

4. Discussion

The experimental results have shown that ILP approach potentially predicts PPI
and DDI with high sensitivity and specificity. Furthermore, the inductive rules
of ILP encouraged us to discover many interesting biological reciprocal rela-
tionships among protein-protein interactions and protein domains, and other ge-
nomic/proteomic features related to protein-protein interactions. Analysing our re-
sults in comparison with information in biological literatures, we found that ILP
induced rules could be further applied to related studies in biology. The list both
of PPI prediction rules and DDI prediction rules are available as Supplemental
materials.34 The following section is the analysis of some of these rules.

Studying the rules of PPI prediction related to domain-domain interaction in-
formation, we found many interesting rules. For example, the following rule shows
that if two proteins, A and B, have domains belonging to domain databases like
PROSITE or InterPro (having a PROSITE or InterPro annotation C) and have at
least one mediating domain-domain interaction, they may interact

has int (A,B) :- dr prosite (B, C), dr prosite (A, C), ddi (A, B, yes)

with 43 positives covered
has int(A,B) :- dr interpro(B,C), dr interpro(A,C), ddi (A, B, yes)

with 90 positives covered.
A large number of positives, which indicates these rules, confirms why domain-

domain interactions are considered as key factors to predict PPI.
Considering the group of proteins which may be required for the production

of pyridoxine (vitamin B6) sno1 yeast, snz3 yeast snz1 yeast, and snz2 yeast, we
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found that each pair in this group has an interaction which satisfies the following
rule

has int(A,B) :- ig (A, B, C), C = 1, ddi (A, B, yes),

function cat (B, cell rescue defense and virulence).

This rule means interaction of protein A and protein B may occur if the proteins
satisfy three conditions. First is that they interact with the same protein. Second
is that they have at least one DDI. Third is that one of them is categorized to
function catalogue ‘cell rescue defense and virulence’. We knows that PPI plays an
important role in drug design, so such rules and their evidence are expected to help
us to discover interesting relationships between PPI, DDI and protein function in
pharmaceuticals.

Two most popular rules related to domain fusion information are
has int(A,B) :- dr go(B,C), part of(C,D), domain fusion(A, B,yes)

has int(A,B) :- dr go(B,C), dr go(A,C), domain fusion(A,B,yes)

The first one covers 199 positives and the second one covers 217 positives. Both
of these rules consist of GO term and domain fusion information. According to the
second rule, if two proteins have GO terms and their domains are fused in another
protein, there may occur an interaction.

Our induced rules with large number of positives prove that if a pair of proteins,
A and B, are located in the same subcellular compartment, protein A potentially
interacts with protein B. There are 216 covered positives for ‘nucleus compartment’,
284 ones for ‘cytoplasm compartment’, and 15 ones for ‘mitochondria compartment’.
However, surprisingly among induced rules, we found a rule with 37 positives that
showed the phenomenon of two proteins being in different subcellular locations but
interacting

has int(A,B) :- subcell cat(B,nucleus), subcell cat(A,cytoplasm),
function cat(A,transcription).

This phenomenon could occur when there is a certain translocation or post-
translation modification of proteins in different subcellular compartments.

Analysing DDI prediction rules, some interesting associations between DDI and
other domain and protein features are discovered.

Related to motif compound feature in domain, we found that the more motifs a
domain has, the more interactions the domain has with other domains. This means
that domains which have many conserved motifs tend to interact with others. The
interactions of these domains play an important role in forming stable domain-
domain interactions in particular, and protein-protein interactions in general.35 If
two domains, A’ and B’, the domain A’ has a PRINTS entry C, and C is with eight
motifs and the rest domain B’ belongs to proteins categorized in protein synthesis
function category, they interact. This rule covers 23 positives

interact domain (A’,B’) :- prints (A’, C), motif compound

(C, compound(8)), function category (B’, protein synthesis).
The combination of inductive rules of ILP will be very useful for not only un-

derstanding PPI and DDI, but also protein functions, and biological processes.
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5. Conclusion

We have presented an integrative domain-based approach using ILP and multiple
genome databases to predict protein-protein interactions. The experimental results
demonstrated that our proposed method could produce comprehensible rules and
perform well in comparison with other methods on protein-protein interaction pre-
diction. In future work, we would like to further investigate the biological signifi-
cance of novel protein-protein interactions obtained by our method, and apply the
ILP approach to other important tasks, such as determining protein functions, and
determining the sites, and interfaces of PPI using DDI data.
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