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Summary

The objectives of this paper are threefold. First to introduce R-measure as an attribute se-
lection measure in decision tree induction (DTI). Second to introduce a model selection tool using a
well designed benchmark that allows the user to carry out an experimental comparative evaluation
of different DTI methods/models in order to select the appropriate one for a given task. Third to
introduce the development of the interactive-graphic system CABRO, particularly its Tree Visualizer

and Interactive Learning Mode.

1. Introduction

The performance of a decision tree induction
(DTI) system depends principally on methods to
solve three problems : attribute selection, pruning,
and duscretization. Most measures for attribute se-
lection in DTI are either information theory-based
such as information gain and gain-ratio [Quin-
lan 93], or statistics-based such as x?, gini-index
[Breiman 84], etc. Stemming from the limitation of
the deterministic model of rough set theory [Pawlak
91] when dealing with uncertain information, the
first objective of our work is to find a rough set-
based measure for attribute selection (R-measure).

It is commonly agreed that there is no universally
superior learning method or model. The problem
of model selection is that of choosing the appropri-
ate learning method/model for a given application
task. Most DTI systems currently do not provide
the user support in model selection. This task is dif-
ficult for most users as it requires many empirical
comparative evaluations and/or meta-knowledge.

Recently, there have been many experimental com-
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parative evaluations of DTI methods for attribute
selection measures, pruning and discretization, e.g.
[Minger 89al, [Minger 89b], [Dougherty 95]. Several
authors have warned that experimental studies in
machine learning should be done more carefully in
order to obtain valid evaluations, e.g. [Salzberg 97].
Though the multiple cross-validation experiments
on a large number of datasets provide reliable eval-
uations, they are costly and not always done well.
The second objective of our work is to develop an
interactive tool that supports doing model selec-
tion and experimental comparative evaluation of
DTI methods/models based on a carefully designed
benchmark.

Though the decision tree is a simple notion it is
difficult to understand a tree of big size. For ex-
ample, the well-known DTI program C4.5 [Quinlan
93] produces a pruned tree of 2,464 leaf nodes from
the census bureau database, introduced recently to
the Knowledge Discovery Nuggets Directory, that
consists of 199,523 instances described by 40 nu-
meric and symbolic attributes (103 Mbytes). It is
very difficult to understand and verify that big tree

in the text form (about 18,500 lines, i.e. about
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18,500 decision and leaf nodes). In such cases, a
graphic visualisation of trees with different ways of
view and navigation is of great support for the user.
The third objective of this work is to develop an
interactive-graphic DTI system CABRO for DTI.
The paper is organized as follows. In section 2 we
briefly recall some basic notions in rough set the-
ory and DTI. In section 3 we propose R-measure
as a DTI attribute selection measure. In section 4
we describe the model selection tool and report ex-
perimental comparative studies of R-measure using
this tool. In section 5 we describe the current de-
velopment of CABRO. Finally, section 6 gives the

conclusion and what we feel to be worth to pursue.
2. Preliminaries

2 *1 Attribute dependency measure in rough
set theory

The starting point of rough set theory [Pawlak
91] is the assumption that our “view” on elements
of an object set O depends on an indiscernibility
relation among them, that means an equivalence
relation £ C O x O. Two objects 01,02 € O are
sald to be indiscernible w.r.t E if o1 Eos. The lower
and upper approximations of any X C O, w.r.t. an
equivalence relation F, are defined as

E.(X)={o€O:[og C X} (1)
E*(X)={o€O:[oeNX #0} (2)

where [0o]g denotes the equivalence class of objects
which are indiscernible with o w.r.t the equivalence
relation E. A subset P of the set of attributes used
to describe objects of O determines an equivalence
relation that divides O into equivalence classes each
containing objects having the same values on all
attributes of P. A key concept in the rough set
theory is the degree of dependency of a set of at-
tributes @@ on a set of attributes P, denoted by
1p(Q) (0 < up(Q) < 1), defined as

|U[O]Q P.([o]Q)I

pp(Q) = T (3)
If up(Q) = 1 then Q totally depends on P; if
0 < pp(Q) < 1 then @ partially depends on P;
if up(Q) = 0 then @ is independent of P. The

measure of dependency is fundamental in rough set
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theory as based on it important notions are defined,
such as reducts and minimal sets of attributes, sig-
nificance of attributes, etc.

Table 1 given by Pawlak consists of eight objects
described by two descriptive attributes Tempera-
ture, Headache, and the class attribute Flu, de-
noted by T', H, and F. From (3) we can calculate
pir,ay(F) =1, pr(F) = 5/8 and pu(F) =0, ie.
according to this measure, Flu totally depends on
{Temperature, Headache}, partially depends on

Temperature and is independent of Headache.

Table 1 Information table

Temperature (T) | Headache (H) | Flu (F)
e1 | normal yes no
ez | high yes yes
e3 | very_high yes yes
e4 | normal no no
es | high no no
eg | very_high no yes
e7 | high no no
eg | very_high yes yes

An interpretation of (3) can be obtained by ex-
pressing the causal relation between attributes in
the form of rules. For example, in considering how
the attribute Flu depends on the attribute Temper-

ature we can verify that

If Temperature = normal then Flu = no

If Temperature = very_high then Flu = yes

The number of objects that satisfy these rules is
5 out of 8. In other words, the proportion of ob-
jects whose values on Flu are correctly predicted
by values on Temperature is 5/8. This argument is
analogous with the definition of the degree of de-
pendency, where each rule corresponds to an equiv-
alent class w.r.t. P which is included in an equiva-

lent class w.r.t. Q.

2 +2 Decision tree induction

Decision tree induction (DTI) is a widely used
technique in supervised inductive learning and
knowledge discovery. From a given set of la-
belled instances, a DTI system induces a classifier
in the form of a decision tree that correctly pre-
dicts classes of unknown instances. The common
framework for most univariate DTI methods can

be briefly described in the following steps.
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S1. Select the “best” attribute by a selection measure

S2. Eztend tree by adding a new branch for each
attribute value

S58. Sort training ezamples to leaf nodes

S4. If ezamples unambiguously classified Then Stop
Else Repeat steps 1-4 for leaf nodes

The attribute selection is carried out by mea-
sures that decide which attribute will be selected to
branch the tree. Often, the discretization and prun-
ing are done as pre-processing and post-processing

steps of the DTI.

3. Formation of R-measure

The limitation of the deterministic model of
rough set theory when dealing with uncertain in-
formation has been recognized and studied, e.g.,
the probabilistic model [Pawlak 88|, the variable
precision model [Ziarko 93].

The variable precision model extends rough sets
by employing relations named majority inclusion
relations. A majority inclusion relation considers
a set A is included in a set B if the intersection
is a majority of set A w.r.t a threshold. Based on
such a relation the model redefines all the notions
of rough sets. Although those redefinitions aimed
at better handling uncertain and noisy data, they
also raised a new problem of specifying appropriate
thresholds in a particular application.

In contrast to the variable precision model, the
probabilistic model requires no threshold. However,
on the one hand, the definitions of the basic no-
tions (e.g. the upper, lower approximations and the
boundary) are totally consistent with Bayes’ deci-
sion procedure. On the other hand, the definitions
of the derived notions (e.g. attribute dependency,
reduct, core) are based exclusively on information
theory. This mixing approach makes the model
somehow incoherent and does not directly inherit
all useful properties of the original model.

We propose alternative definitions of the derived
notions for the probabilistic model that are con-
In short,

these variants aim at (1) overcoming the limita-

sistent with Bayes’ decision procedure.

tions of the original model for noisy data, (2) mak-

ing the probabilistic model more coherent, and (3)
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preserving the convenience without requiring any
threshold. We describe here only our modifications
to pp(Q). Other derived notions of rough sets (at-
tribute significance, reduct, core, superfluous) are
definitely based on this key notion, and can be de-
fined accordingly. Return to the Table 1, we can
obtain the following probabilistic rules about the

relation between Flu and Headache

If Headache = yes then Flu = yes (3/4)
If Headache = no then Flu = no (3/4)

These rules show that Flu somehow depends on
Headache, but formula (3), by its value O in this
case, says that Flu is independent of Headache.
Let us consider further probabilistic rules. Sup-
pose that the value on Headache of a new object is
known, and an agent wants to predict the value on
Flu of this object. For example, if Headache = yes,
then there are two possibilities: Flu = yes (3/4),
or Flu = no (1/4). To minimize the probability of
error, Flu = yes is certainly chosen as it is the value
with the maximum likelihood of occurrence among
all possibilities. Due to the risk of Flu = no, this
prediction is uncertain and has an estimated accu-
racy of 3/4. Similarly, the value Flu = no will be
predicted if Headache = no with the estimated ac-
curacy is also 3/4. Denote by X the event that the
prediction of the agent is true, we have

P(X) =P(H = yes) x P(X | H = yes) +

P(H = no) x P(X | H = no)

=1/2x3/4+1/2x3/4=3/4

This value can be interpreted as the degree of
dependency of Flu on Headache established by the
above argument. This argument can be generalized
and formulated for a measure of degree of depen-
dency of an attribute set Q on an attribute set P

W (Q) = 51 > maspgllela lelel (4)
[o]lp

The degree of dependency Flu on Temperature cal-
culated by (4) is 3/4.

A property of ;J,IP(Q) has been proved but the
proof is skipped here due to the length.
[Theorem] For every sets P and Q of attributes

we have
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7"“[]’};”0]“" <pp(@) <1 (5)

We can define that @ totally depends on P
iff ,u’P(Q) = 1; @ partially depends on P iff
maz,),|[0lel/|0] < ,u,;:(Q) < 1; @ is independent
of P iff up(Q) = mazp),|[olel/|O).

Suppose that we are dealing with a problem of
learning a classifier with K classes C1,Ca,...,Cxk
from a set of training instances O described by a
set of attributes. We assume that all attributes are
discrete, each of which is with a finite number of
possible values. Let n.. denotes the total number of
training instances, n;, the number of instances from
class C;, n; the number of instances with the j-th
value of the given attribute A, and n;; the number
of instances from class C; and with the j-th value
of A. Let further

p’-J_n s Pi. = y Pgj = ) pi|j—

S
#;

.

denote the approximation of the probabilities from
the training set. In (4), if we consider P a descrip-
tive attribute and @ the class attribute, we can

rewrite ,u,’p(Q) in the form
p = pymazipi; (6)
J

As this formula describes how much the class at-
tribute depends on a descriptive attribute, we can
naturally consider it as a candidate for a new at-
tribute selection measure. However, despite the
fact that it shows good results in some datasets,
the results become unstable when the dimension
of data increases. The fact is that the measure is
too greedy in finding “best” attributes for the front
step while tree growing is a multistep procedure.
An analysis based on the notion of impurity func-
tion gives us a clearer view of this phenomenon, and
provides a basis to go from u’ to it (R-measure).
Let O be a set of objects each of them belongs
to one of the classes C1,C5,...,Ck, and vector
PC = (g1,92,.--,9K) is the class probability vec-
tor where each component g; is the proportion of
i-class objects [Fayyad 92].
[Definition] An impurity function is a function ¢
defined on PC with the properties

(i) ¢ is mazimum only at the point

4 AN L %08 2
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(1/K, 1/K,..., 1/K);

(i1) ¢ is minimum only at the point (1, 0, ..., 0),

(0,1, ..., 0), ..., (0, ..., 0, 1);

(i11) ¢ is a symmetric function of qi,...,qx .

Given an impurity function ¢, we consider the
impurity of the partition of O after splitting it by
an attribute A as described by step S1 in the DTI
framework. Before splitting, we define the impurity
value of O as I(O) = ¢(p1.,...,PK.), and after split-
ting we define the impurity value of the partition

as

IP(0,A) = ijd’(pl\ja'"?pfﬂj) (7

‘We wish to select an attribute A that most reduces
the partition impurity after splitting or, equiva-

lently, that maximizes

R(0,A4) =1(0) - IP(0, A) (8)
or, equivalently, that maximizes the purity of the
partition which is defined as

P(0,4) = p.i(1 = $(prjss-rpxis)) (9)

J

P(0O,A) can be considered as an attribute selec-
tion measure. In the case of ,u.’ the corresponding

impurity function can be defined as

#(p1 .., ) = 1 — maz;p; (10)
As shown in [Breiman 84], DTI needs another re-
quirement for impurity function, otherwise the cor-
responding attribute selection measure will have
the defects of degeneracy and not adequate for the
overall multistep tree growing procedure
ﬁw§§<0,o<%<L

a2¢
Bpf

is not only neg-

ative but also a constant as it will make ;)Tf not

only decrease as g; increases but also decrease lin-

Furthermore, we prefer that

early. It leads to a significant modification in our

impurity function

¢(p17 7pK) =1- (mamjpj)z (11)
and the corresponding attribute selection measure

will be
i=)_ ps(mazpi;)’ (12)
P

We call i in (12) R-measure and it has the general
form for arbitrary attribute sets P and Q
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- 1
PP(Q) = W Zmam[o]q
[o]lp

4. Model Selection and Evaluation of

R-measure

The three common criteria for evaluating DTI
methods/models are size, accuracy and under-
standability of induced trees [Minger 89a]. Under-
standability is difficult to quantify as it is based
on the judgments of domain experts or users. Tree
size and accuracy can be quantitatively evaluated,
and they have been used in the model selection in
different ways. In [Kobayashi 96], the authors used
a genetic algorithm for generating Pareto optimal
decision trees by tradeoffs between accuracy and
simplicity (tree size). Most work focused on statis-
tical evaluations of the tree size and accuracy where
the accuracy is widely considered to be of primary
importance. However, as machine learning has no
curriculum as other sciences do, empirical evalua-
tions of learning systems have not always been done
well. In [Salzberg 97] the authors warned that if
not done carefully, comparative studies of classifi-
cation algorithms can easily result in statistically
invalid conclusions. Recently, k-fold stratified cross
validation (typically with k¥ = 10), has been recom-
mended as a reliable method for real-world datasets
similar to those of the UCI repository of machine
learning databases.

To support doing model selection we have devel-
oped an interactive tool in system CABRO, based
on a k-fold stratified cross validation, that allows
the user to generate different combinations of avail-
able methods, to test and estimate which one will
offer the best performance in an interactive and
visual manner. Generally, independent methods
for solving three DTI problems of attribute selec-
tion, pruning, and discretization can be combined
to form different DTI models. In the current ver-
sion of CABRO several well known methods have
been implemented and other methods can be grad-
ually integrated. For attribute selection we choose
the gain-ratio [Quinlan 93|, gini-index [Breiman
84], x> [Minger 89a] and R-measure. For prun-

ing we choose the error-complexity [Breiman 84],
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reduced-error and pessimistic error [Quinlan 93],
and for discretization we choose the entropy-based
and error-based discretization [Fayyad 92]. Figure
1 illustrates a screen of CABRO and shows how
the user can interactively do the model selection.
The Model Selection window (upper-left) permits to
select and combine methods (by default Measure =
R-measure; Pruning = Error-complexity; and Discretiza-
tion = Entropy-based). After selecting a model, the
user can induce the tree with and/or without inter-
action (subsection 5.2). The induced tree will be
displayed in the Tree Visualizer window (subsection
5.1). By clicking each node in the induced tree we
can see its information in the Decision/Leaf Node In-
formation window (lower-left). Given a dataset (ap-
plication task), CABRO first carries out automat-
ically a random shuffle of the dataset then divides
the dataset into k mutually exclusive subsets (folds)
of approximately equal sizes and the same propor-

tions of labels as in the original dataset.

[T

Fig.1 Model Selection in CABRO

To estimate the performance of a selected model,
CABRO carries out automatically the k-fold cross
validation by doing k times the procedure: run-
ning the corresponding program with training data
(the union of k — 1 folds) for inducing a decision
tree, and estimating the model accuracy with test-
ing data (the rest fold). CABRO takes the final
estimation of the model accuracy and tree size as
the average of those obtained from k runs. When
there are different selected models, CABRO car-
ries out the k-fold cross validation for each model
with the same division of the original dataset into

k folds.
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Table 2 Experimental resutls

S

data sets dimension  type _ gain-ratio _ gini-index ] x  R-measure
size error size error size error size error

Vote 16x300 sym 4.0£0.0 5.0£2.8 7.0%£4.2 5.9£2.7 7.0£4.2 5.9%2.7 5.8%2.9 5.7£2.7
Cancer 9x700 sym 46.14+19.1 7.442.9 36.2411.9 7.443.5 36.2+11.9 7.443.5 37.3+11.2 7.1+3.4
Shuttle 9x956  sym 53.4+15.8 0.2+0.1 114.2 £12.2 0.2+0.1 162.7+£30.4 0.3+0.1 135.3+18.3 0.340.1
Promoters 45x105 sym 9.844.3 24.5+7.5 9.443.7 22.7+10.0 9.443.7 22.7+10.0 9.443.7 22.74+10.0
Solar Flare 12x1286 sym 26.847.8 25.3%1.5 54.4415.0 27.841.3 45.8418.1 26.642.0 44.6431.1 25.5+1.0
Diabetes 8x768 num 18.249.4 25.3%2.6 22.0+4.8 25.6%2.5 13.6%6.2 25.5+2.5 27.8419.8 25.31+2.6
Splice 45x3189 num 17.34+5.5 34.5+8.2 22.346.9 36.8+6.8 19.1£7.5 37.34+6.4 18.746.8 35.946.9
Waveform 36x3195 sym  223.9472.9 25.74+1.1  244.5+69.5 24.441.6 340.6+191.6 26.8+1.3 249.6178.4 25.141.1
Heart Disease  13x270 mix 8.843.8 25.61+4.1 25.8+2.6 25.6£5.6 9.0£3.2 26.314.9 8.245.1 25.244.6
Vehicle 18x846 num 131.9440.7 32.74+5.1  111.4437.8 32.0+3.7 111.4+47.4 31.943.2 18.244.9 0.9+0.4
Hypothyroid  25x3163 num  131.9440.7 32.745.1  111.4437.8 32.0%3.7 111.4447.4 31.9+3.2 18.2+4.9 0.9+0.4
Audiology 70x226 sym 28.4413.3 30.9+11.0 37.0+16.0  30.9+11.9 66.94+14.9 45.248.7 41.3+13.4 29.1+11.7
Cars 8x392 num 17.149.5 26.042.0 21.448.5 26.8+5.2 17.449.1 26.545.2 21.8+12.8 25.24+4.8
Horse-colic 28x368 num 8.24+4.1 14.3+5.1 30.9+20.3 16.8+3.5 18.5+9.0 23.543.5 30.6+17.4 23.943.2
Pima-diabetes 8x768 num 17.6+5.8 23.4+3.6 25.448.3 23.5+3.5 18.5+9.0 23.543.5 30.6+17.4 23.943.2
Segmentation 19x2310 num  236.4%46.5 6.2+1.6  257.51+81.2 6.1+2.0 310.7+48.3 7.6£2.0 272.0£90.4 6.1+2.1
Iris 4x150 num 4.040.0 3.343.3 4.040.0 2.7+3.2 4.0+0.0 4.0+4.0 4.040.0 4.044.0

In Model Selection window are displayed the se-
lected models, the size and error rate of induced
trees. Two main advantages of this tool are (1) it
makes the model evaluation much easier and avoids
errors caused by manual calculations; (2) it offers a
good solution for model selection if meta-knowledge
is not available, and if meta-knowledge is available
it can be mutually used with experimental results
in order to select more reliable models.

R-measure is evaluated by using this tool as fol-
lows. We compare experimentally four measures
gain-ratio, gini-index, x? and R-measure using 18
datasets from the UCI repository of machine learn-
ing databases. Four DTI models are formed using
these four measures with the same methods of prun-
ing (error-complexity) and discretization (entropy-
based). Table 2 presents experimental results on
size and error rate (pruned trees) of four measures
estimated with the 90% confidence interval.

Some observations and conclusions can be drawn
from these results.

(1)
numbers) are attained by both the gain-ratio
and R-measure at 9 out of 18 datasets, by the
gini-index and x? at 5 and 2 out of 18 datasets,

For the error rates, the lowest values (bold

respectively. We notice that while on a ma-
jority of datasets the error rates of different
measures are significantly different, on some
datasets all or almost the measures attained
the same error rates. If we consider the fact
that x? attained no unique lowest value and
that it had comparatively high values in gen-
eral, we can say that this measure showed a

poor performance in our evaluation. The gini-

AN L BE%RFE

index showed to be better as it attained the

lowest error rates 5 times and the middle val-

ues on almost other datasets. However, it is
worth noting that it attained only 1 unique low-
est value, compared to 5 lowest values attained
by both the gain-ratio and R-measure. Addi-
tionally, if we compare only the gini-index and
R-measure, we can see the ratio of lower error
rate is 5 versus 10 among 15 datasets on those
the two measures attained different values. In
this evaluation, the gain-ratio and R-measure
showed equally low error rates as both attained
9 lowest and 5 unique lowest values. Our eval-
uation again confirms the fact that there are
significant differences between the attribute se-
lection measures and also there is no absolute
superior measure.

(2)
measure showed a significant advantage due to
the fact that it is designed with the bias of small

trees. However, in practice the differences be-

For the tree size, the gain-ratio is the only

tween tree sizes are not very important when
the trees are not very large. From the larger
datasets Spice, Waveform, and Segmentation
we had relatively big trees, the gain-ratio did
not show any significant advantage. The gain-
ratio showed its advantage of smaller tree when
trees are of small or middle-size, but it do not
have this advantage when trees become big.
3)

makes us believe that R-measure is considering

R-measure showed good results and this

as a good alternative measure for DTT attribute

selection.
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5. An interactive-graphic system

To support the understanding and learning de-
cision trees, CABRO has been implemented in a
Visual Interactive Model through a rich graphical
environment. A Visual Interactive Model (VIM)
aims at combining meaningful pictures and easy in-
teractions to stimulate creativity and insight; pro-
moting a process of ’generate and test’, it facili-
tates a rapid cycle of learning. In CABRO, the
VIM offers: (1) Tree Visualizer that supports the
understanding and analysing decision trees; (2) the
Interactive Learning Mode that supports user par-
ticipation in the model selection and the learning
process. CABRO has been implemented in plat-
forms of MS Windows 95 and UNIX workstations
under the X Window.

CABRO allows the user to load a dataset, to se-
lect DTI models, to induce decision trees, to ma-
nipulate generated trees, to test and match decision

trees with unknown cases, among other features.

5 *1 Tree Visualizer

The Tree Visualizer is a graphical interface that

displays a tree in graphical form as a set of nodes
and connections. Its main contribution is the trans-
formation of a decision tree from a static form
(text) to a dynamic form (graphic) on which a cer-
tain number of operations can be done. The user
can dynamically navigate through the tree and has
different views on generated trees, switch among
several view modes, choosing alternate parts of the
tree or focus on the paths to one class.

o Viewing the tree structure: The tree can be col-
lapsed or expanded fully from the root or from
any decision node. The user can exploit dif-

ferent multiple views on parts of the tree, such
as to view a subtree from a decision node, to
collapse some nodes and /or expand some other
ones, etc.

e Viewing decision/leaf nodes: The user can click
on a node to see its information (Figure 1, Deci-
sion/Leaf Node Information window (lower-left)):
branching attribute and branched attribute-

value, number of covered cases, the major class,
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the percentage of major class, the path leading
from the root to the decision/leaf node, etc.

e Viewing a class on the tree: The user can fo-
cus on observing decision paths to leaf nodes of
a class. These leaf nodes are highlighted and
proportions of cases bearing this class label are

indicated approximately in decision nodes.

5 +*2 Interactive Learning
The Interactive Learning Mode allows the user

to participate actively in the DTI process, mainly

the generating-and-test process in connection to the
Model Selection and Tree Visualizer.

Measue  [Gainatio < Gm
Step.

Discrelizatior [Ertiopy-hased 2[R

Resuls

bast
Entiopy-based 89

sent (brovim-spat)
=sent (phylostotareat-spot)

T Values [ Missing | Frmeasure | Gain Ration [ G Index [~
7 o 067 072 07z

ves e
ves 043 051 048 rewlk-specks

b

" (e
bes 0 0. 03 | | |nt(dapotinepodt-sten bich

w028 013 [ tered hebicde-ny)
a nx nm 077 =l s prytopttroaen
| sty | 1 e bt ian)
ered podesembigh
Mojor Class [Brommspet %M Cass [15% Hnsances [©3 ez o e odd R
/

Branch Contine_| Back | s |

Fig.2 Interactive Learning in CABRO

The user can execute a full automatic learning of
decision trees without intervention by clicking the
Run button, or execute an interactive learning of de-
cision trees by clicking the Step button, or combine
these two modes. In interactive learning, CABRO
offers the user the chance to participate in selecting
attributes to branch decision nodes from evaluated
attributes. When choosing the interactive learning
mode from a decision node, the user will see the
table listing candidate attributes and their corre-
sponding values on every measures, sorted by the
selected measure (Figure 2). Depending on the user
selection of branching attribute (highlighting the
attribute and clicking the Branch button), CABRO
will split the decision node and display the corre-
sponding tree, as well related information. The user

can do backtracking to regrow the tree at some node

An Interactive-Graphic System for Decision Tree Induction 7



8

with respect to the induction scheme (Back button)
or continue the learning process.

The interactive learning mode is particularly
meaningful at some first levels of the decision tree
where domain knowledge can play a significant role
in generating a desirable tree. The user can switch
from the interactive learning mode to the automatic

learning mode at any moment.
6. Conclusion

We have first presented R-measure for the at-
tribute selection in DTI inspired by rough set the-
ory, then introduced a model selection tool. We
have also described the interactive-graphic system
CABRO with two main components: Tree Visu-
alizer and Interactive Learning. The high perfor-
mance of R-measure and the advantages of the
interactive-graphic environment of CABRO offer
some significant features of a DTI system.

We feel that the following issues are worth pur-
suing (1) to enrich the interactive-graphic system
by implementing other pruning and discretization
techniques, (2) to use R-measure to investigate
other notions in rough set theory, and (3) to use
CABRO in real applications.
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