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Abstract

Eukaryotic genomes are packaged by the wrapping of DNA around histone octamers to form
nucleosomes. Nucleosome occupancy, acetylation, and methylation, which have a major impact
on all nuclear processes involving DNA, have been recently mapped across the yeast genome us-
ing chromatin immunoprecipitation and DNA microarrays. However, this experimental protocol is
laborious and expensive. Moreover, experimental methods often produce noisy results. In this pa-
per, we introduce a computational approach to the qualitative prediction of nucleosome occupancy,
acetylation, and methylation areas in DNA sequences. Our method uses support vector machines
to discriminate between DNA areas with high and low relative occupancy, acetylation, or methyla-
tion, and rank k-gram features based on their support for these DNA modifications. Experimental
results on the yeast genome reveal genetic area preferences of nucleosome occupancy, acetylation,
and methylation that are consistent with previous studies. Supplementary files are available from
http://www.jaist.ac.jp/~tran/nucleosome/.
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1 Introduction

Eukaryotic genomes are packaged into nucleosomes that consist of 145–147 base pairs of DNA wrapped
around a histone octamer [11]. The histone components of nucleosomes and their modification state
(of which acetylation and methylation are the most important ones) can profoundly influence many
genetic activities, including transcription [2, 7, 8, 15], DNA repair, and DNA remodeling [12].

The mapping of nucleosome occupancy and acetylation and methylation has been recently con-
ducted by several research groups using the combination of chromatin immunoprecipitation and whole-
genome DNA microarrays, called ChiP-Chip protocol [1, 2, 8, 10, 15, 16, 17]. However, this new ex-
perimental method is laborious and expensive, and produces noisy results [15]. Hence, computational
methods would be valuable.

Since histone octamers are identical for all nucleosomes in all DNA sequences of a species, the
characteristics (for example, acetylation and methylation) of an individual nucleosome depend on the
actual DNA sequence area incorporated. The majority of acetylation and methylation sites in histones
occur at specific highly conserved residues: acetylation sites include at least nine lysines in histone
H3 and H4 (H3K9, H3K14, H3K18, H3K23, H3K27, H4K5, H4K8, H4K12, and H4K16) and less
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Table 1: Datasets of histone occupancy, acetylation, and methylation by ChiP-Chip protocol in
vivo [15]. POS and NEG are the number of positive and negative examples, respectively.

Dataset Full name POS NEG Description
H3 H3.YPD 7,667 7,298 H3 occupancy
H4 H4.YPD 6,480 8,121 H4 occupancy
H3K9ac H3K9acvsH3.YPD 15,415 12,367 H3K9 acetylation relative to H3
H3K14ac H3K14acvsH3.YPD 18,771 14,277 H3K14 acetylation relative to H3
H4ac H4acvsH3.YPD 18,410 15,685 H4 acetylation relative to H3
H3K4me1 H3K4me1vsH3.YPD 17,266 14,411 H3K4 monomethylation relative to H3
H3K4me2 H3K4me2vsH3.YPD 18,143 12,540 H3K4 dimethylation relative to H3
H3K4me3 H3K4me3vsH3.YPD 19,604 17,195 H3K4 trimethylation relative to H3
H3K36me3 H3K36me3vsH3.YPD 18,892 15,988 H3K36 trimethylation relative to H3
H3K79me3 H3K79me3vsH3.YPD 15,337 13,500 H3K79 trimethylation relative to H3

conserved sites in histone H2A and H2B; methylation sites include H3K4, H3K9, H3K27, H3K36,
H3K79, H3R17, H4K20, H4K59, and H4R3 [13]. When a nucleosome appears in a specific DNA
sequence area, these potential sites can have a certain acetylation or methylation level [8, 15].

In this paper, we introduce a computational approach to qualitatively predict nucleosome oc-
cupancy, acetylation, and methylation areas in DNA sequences. Our method uses support vector
machines (SVM) [5, 18], a promising machine learning technique for bioinformatics, to discriminate
DNA areas with high and low relative occupancy, acetylation, and methylation. Furthermore, the
SVM method can rank k-gram features based on their support for these DNA modifications. The
most informative features reveal genetic area preferences of nucleosome occupancy, acetylation, and
methylation that are consistent with previous studies.

2 Materials and Methods

2.1 Datasets

From the genome-wide map of nucleosome acetylation and methylation reported in [15], we extracted
10 datasets and used them to illustrate the performance of our method. These datasets are described in
detail in Table 1. Each example in the datasets corresponds to a DNA sequence area (segment) with a
fixed length L, called L-DNA sequence area (in our experiments, we selected L = 200, 500, 1000, 1500).
A DNA sequence area is assigned to the positive class if the relative occupancy, acetylation, or methy-
lation [15] measured at its middle position is greater than 1.2, and to the negative class if the relative
occupancy, acetylation, or methylation is lesser than 0.8. Otherwise, noisy examples are ignored.

2.2 Features of a DNA Sequence Area

Each L-DNA sequence area needs to be represented by a set of features that can be input to a machine
learning system, that is, a support vector machine in this paper. Here, we use k-grams (patterns of k
consecutive nucleotide symbols) to generate these features by using a k-sliding window along a DNA
sequence area to compute the number of occurrences of each k-gram. Each example is thus represented
by a 4k-dimensional vector of the number of occurrences of different k-grams.

2.3 Binary Support Vector Machine

The support vector machine (SVM) is a learning technique based on statistical learning theory. The
basic idea of applying SVM to binary pattern classification can be briefly stated as follows. First,
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map the input vectors xi to a vector φ(xi) in a feature space (often with a higher dimension), either
linearly or non-linearly, which is relevant to the selection of the kernel function. Second, obtain an
optimized linear division within the feature space from the first step, that is, construct a hyperplane
wT φ(xi) + b that separates the two classes.

The implementation of SVM is as follows. Let (xi, yi), i = 1, . . . , `, be a training dataset, where xi

is a vector and yi = ±1 is a class attribute. SVM training solves the following primal problem:




min
w,b,ξ

wT w

2
+ C

∑̀

i=1

ξi

yi(wT φ(xi) + b) > 1 − ξi, i = 1, . . . , `

ξi > 0, i = 1, . . . , `

Its dual is a quadratic optimization problem:




min
α

αT Qα

2
− eT α

0 6 αi 6 C, i = 1, . . . , `

yT α = 0

where e is the vector of all ones, C > 0 is an error penalty parameter, y = {yi}i=1,...,`, Qij =
yiyjK(xi, xj), K(xi, xj) = φ(xi)T φ(xj) is a kernel function, and φ(xi) maps xi into a higher (maybe
infinite) dimensional space. So K(xi, xj) is a symmetric positive definite function that reflects the
similarity between examples xi and xj . In our research, we employed a linear function K(xi, xj) = xi.xj

and a radial basis function (RBF) K(xi, xj) = exp(−γ(xi − xj)2) as kernel functions. The SVM
classification function, once trained, has the following form:

f(x) =
∑

i

αiyiK(x, xi) + b (1)

where α = {αi}i=1,...,` is the solution of the above dual problem and b is in the solution of the primal
problem. Based on Karush-Kuhn-Tucker theory [9], the solutions of the primal and dual problems
satisfy the following equation:

αi

{
yi(wT φ(xi) + b) − 1 + ξi

}
= 0 .

Therefore, if αi 6= 0 for some i, then yi(wT φ(xi) + b) − 1 + ξi = 0. In this case, xi is called a support
vector.

SVM has a solid theoretical background, a good performance in practice, and a guaranteed global
optimum. It can also handle large datasets and is easier to implement and train than a neural network.
A more detailed description of SVM can be found in [5, 18].

2.4 SVM Method for Feature Selection

Ranking informative (discriminant) features is of fundamental and practical interest in data mining
and knowledge discovery. SVM has been successfully applied to this task [4, 6, 14]. When SVM uses
a linear kernel, it finds an optimal hyperplane that separates the positive from the negative class in
the original space (not mapping into a higher dimensional space). This optimal hyperplane has then
the following form (replacing K(x, y) = x.y in Eq. 1):

f(X = (f1, f2, . . . , fm)) =
m∑

i=1

wifi + b . (2)
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Table 2: Results of acetylation and methylation prediction acc(cc) from a set of k-gram features and
from two sets of k-gram features. Both the accuracy (acc) and the correlation coefficient (cc) are
shown.

Dataset k = 3 k = 4 k = 5 k = 6 k = 3, 4 k = 4, 5 k = 5, 6
acc cc acc cc acc cc acc cc acc cc acc cc acc cc

H3 84.93 0.70 85.88 0.72 85.50 0.71 85.10 0.70 85.88 0.72 86.41 0.73 85.23 0.70
H4 85.91 0.71 87.14 0.74 87.77 0.75 87.95 0.75 87.32 0.74 88.09 0.76 87.87 0.75
H3K9ac 71.04 0.41 73.64 0.47 75.58 0.51 77.27 0.54 73.44 0.47 75.99 0.51 77.54 0.54
H3K14ac 68.64 0.35 71.28 0.41 73.25 0.47 76.13 0.51 71.04 0.41 74.63 0.49 76.34 0.51
H4ac 67.65 0.35 69.93 0.39 70.79 0.41 74.91 0.49 68.65 0.39 72.99 0.45 75.57 0.50
H3K4me1 66.21 0.31 68.29 0.35 70.26 0.39 72.11 0.43 67.22 0.35 70.52 0.41 72.42 0.44
H3K4me2 66.09 0.27 67.05 0.29 69.41 0.35 71.14 0.39 61.82 0.30 70.30 0.40 71.27 0.39
H3K4me3 62.37 0.24 65.09 0.30 68.06 0.36 71.56 0.42 62.83 0.29 69.01 0.39 72.45 0.46
H3K36me3 71.74 0.43 73.37 0.46 74.56 0.48 76.99 0.54 73.44 0.46 75.64 0.51 77.12 0.54
H3K79me3 78.25 0.56 79.91 0.60 80.87 0.61 82.15 0.64 79.85 0.59 81.44 0.63 82.57 0.65

Table 3: Detailed information on the best prediction results from Table 2. TP, FP, TN, FN are the
number of true positive, false positive, true negative, and false negative examples, respectively.

Dataset TP FP TN FN
H3 6,490 1,177 6,441 857
H4 5,631 849 7,231 890
H3K9ac 12,523 2,892 9,020 3,347
H3K14ac 15,063 3,168 9,625 4,652
H4ac 14,701 3,709 11,064 4,621
H3K4me1 13,817 3,449 9,125 5,286
H3K4me2 15,675 2,468 6,192 6,348
H3K4me3 15,289 4,315 11,371 5824
H3K36me3 15,322 3,570 11,594 4,394
H3K79me3 13,161 2,176 10,650 2,850

We can change the sign of the weights wi, i = 1, . . . , m, and b in the above function such that if
f(X) > 0 then X would be classified as a positive example and otherwise, as a negative example. It
can be clearly seen that if wi is positive, then feature i would support the positive class. Otherwise,
this feature would support the negative class (or prevent the positive class), and the larger the absolute
value of wi, the stronger feature i supports (or prevents) the respective class. From this remark, we
define the weight wi as the support of feature i.

3 Results and Discussion

3.1 Prediction of Histone Occupancy, Acetylation, and Methylation

We used SVM with a RBF kernel (γ = 0.001) (Section 2.3) to do threefold cross-validation on 10
datasets (Table 1). The accuracy (acc) and correlation coefficient (cc) criteria were used to report the
results:

acc =
(TP + TN)

(TP + FP + TN + FN
, cc =

TP × TN − FP × FN√
(TP + FP ) × (TP + FN) × (TN + FP ) × (TN + FN)

where TP, TN, FP, FN are the number of true positive, true negative, false positive, and false negative
examples, respectively.
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Table 4: Most informative features for positive class, from a set of 3-gram and 4-gram features. TF is
the number of transcription factor binding motifs containing the feature.

Feature Weight TF Feature Weight TF Feature Weight TF
H3 TGGC 2.35 13 GCGA 2.18 15 CCTG 2.16 13

CCT 1.99 51 GGGA 1.87 13 TGCG 1.79 14
CAG 1.78 35 TGTG 1.74 16 CGTT 1.68 20

H4 CAAA 2.78 20 TATC 2.41 15 ATC 2.21 55
TTTG 2.01 22 CCA 1.87 57 GATA 1.80 19
GGA 1.57 52 TGG 1.56 41 ACAG 1.55 9

H3K9ac CCGG 3.12 22 TATA 2.56 21 GGTC 2.20 8
CTTG 2.13 7 GGCC 1.93 12 GGGC 1.73 7
CGGT 1.70 12 GCCC 1.63 11 TCGC 1.59 7

H3K14ac TATA 2.32 21 CCGG 2.19 22 TCGC 2.04 7
TAAG 2.01 13 GTCC 1.92 6 GGCC 1.87 12
TAGT 1.73 10 GGTC 1.71 8 TTTT 1.69 33

H4ac TCGC 3.12 7 GCGA 3.00 15 CCGG 2.45 22
GGCC 2.13 12 CCCG 2.11 14 GTCC 2.03 6
GGTC 2.01 8 CGGT 1.92 12 TATA 1.75 21

H3K4me1 TATC 2.26 15 GACG 1.97 18 CCGC 1.67 27
CAAA 1.57 20 CGTC 1.56 16 TTTG 1.49 22
CCA 1.47 57 CAT 1.45 67 GATA 1.42 19

H3K4me2 TAAG 1.69 13 CGGT 1.62 12 CGA 1.32 60
GTCC 1.28 6 CCCG 1.23 14 TCGC 1.23 7
TGAG 1.20 9 CACT 1.18 17 CCGG 1.12 22

H3K4me3 CCGG 3.09 22 TCGC 3.04 7 GCGA 2.79 15
CCCG 2.78 14 TATA 2.69 21 GTCC 2.26 6
GGCC 2.11 12 TAAG 2.03 13 ACCC 1.96 23

H3K36me3 CGTC 2.24 16 CACC 1.84 23 GACG 1.78 18
ACGA 1.77 23 ACC 1.72 59 TGG 1.59 41
CTTC 1.52 15 CAAA 1.51 20 GATA 1.49 19

H3K79me3 CAAA 2.44 20 ATC 2.27 55 GATA 2.24 19
TATC 2.24 15 GGTA 1.93 13 TTTG 1.85 22
TACC 1.66 15 ATCC 1.56 13 TGGA 1.55 11

Through various experiments we found that our method gave the best results when predicting
nucleosome occupancy, acetylation, and methylation for DNA sequence areas of length L = 500 (data
not shown). Table 2 shows the accuracy acc and the correlation coefficient cc of relative histone
occupancy predictions (H3, H4), acetylation predictions (H3K9ac, H3K14ac, H4ac), and methylation
predictions (H3K4me1, H3K4me2, H3K4me3, H3K36me3, H3K79me3) with several different types of
k-gram features. Due to the time complexity, we have tried k 6 6 only. As can be seen, our method
offers the best results for predicting histone H3 and H4 occupancy when we use both features of 4-
grams and 5-grams, and for predicting all acetylation and methylation sites when using both features
of 5-grams and 6-grams. The detailed information on the best prediction results is reported in Table 3.

In general, when using more features (increasing k in k-grams), our method would give better
prediction accuracy. But we think that when k is large enough, accuracy would reach the highest
(similar to the case of H3 and H4 occupancy, which reaches the highest accuracy when using both
features of 4-grams and 5-grams) and after that it would deacrease because of the over-representation
(or overfitting) problem. In the future, we will use a more powerful computer or cluster to find the
optimal value of k for the best acetylation and methylation prediction with our method.
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Table 5: Most informative features for negative class, from a set of 3-gram and 4-gram features. TF
is the number of transcription factor binding motifs containing the feature.

Feature Weight TF Feature Weight TF Feature Weight TF
H3 CGCG -5.33 18 GCGC -3.32 11 CGC -2.46 51

TTTT -2.40 33 GCG -2.11 53 CGTG -1.98 22
CGG -1.88 60 GCGG -1.87 18 CCG -1.86 80

H4 CGCG -3.57 18 TTTT -3.14 33 TATA -3.07 21
AAAA -2.96 32 GCG -2.84 53 CGC -2.49 51
CGTG -2.47 22 GCGC -2.15 11 GGCC -1.78 12

H3K9ac TTTG -2.43 22 CAAA -2.43 20 GGGG -2.14 18
CCGC -2.10 27 TACC -2.05 15 AAT -2.04 86
GCGG -1.81 18 CCCC -1.81 15 CGTC -1.77 16

H3K14ac CGGC -2.64 12 CCCC -2.35 15 TATC -2.28 15
CAAA -2.27 20 CGTC -2.18 16 TTTG -2.17 22
CCGC -1.98 27 GGGG -1.80 18 CGCC -1.51 20

H4ac CGGC -2.94 12 GCGG -2.62 18 CCCC -2.46 15
CCGC -2.43 27 GCCG -2.34 26 CGTC -2.17 16
GGGG -2.02 18 CGCC -1.96 20 AAT -1.86 86

H3K4me1 CGCG -2.68 18 TATA -2.29 21 CACG -2.19 20
CCGG -1.81 22 CGTG -1.58 22 TCGC -1.55 7
TTTT -1.52 33 CTTA -1.39 15 CCCG -1.34 14

H3K4me2 CGGC -1.68 12 CCGC -1.60 27 ATAT -1.59 28
CCCC -1.47 15 ATT -1.39 102 TCAA -1.28 15
ACAT -1.14 23 TTAA -1.05 22 ATTA -1.04 39

H3K4me3 CGGC -3.44 12 CCCC -3.26 15 CCGC -3.18 27
GGGG -2.69 18 GCGG -2.28 18 TCGG -2.06 12
GCCG -2.06 26 CGTC -1.94 16 CAAA -1.68 20

H3K36me3 CTTA -2.08 15 TCGC -2.03 7 TAAG -1.96 13
TCTC -1.80 16 GCCA -1.69 11 TATA -1.66 21
GATC -1.63 7 CCCT -1.60 11 GCG -1.54 53

H3K79me3 TATA -3.90 21 CGC -2.73 51 GCG -2.57 53
CGCG -2.01 18 AAAA -1.89 32 TTTT -1.80 33
ATGT -1.76 24 CCC -1.65 50 CATG -1.57 11

3.2 Genetic Area Preferences of Histone Occupancy, Acetylation, and Methyla-
tion

We used the SVM with a linear kernel to rank features based on their support for histone occupancy,
acytelation, and methylation (see Section 2.4). Tables 4 and 5 show the most informative positive
and negative features, respectively, from a set of 3-gram and 4-gram features, together with their
support for histone occupancy, acetylation, and methylation. Similarly, tables 6 and 7 show the most
informative positive and negative features from a set of 4-gram and 5-gram features, together with
their support for histone occupancy, acetylation, and methylation. The full and detailed information
on the ranking of features is available from the supplementary files.

The most informative features from the set of 3,4-grams (Tables 4 and 5) and from the set of
4,5-grams (Tables 6 and 7) are consistent with each other. As can be seen, CCTG and CAG appear
in both tables of the most informative features to recognize H3 histone occupancy. Also, CCA, TGG,
TATC, and GGA are in the most informative positive features for H4 histone occupancy from both
the set of 3,4-grams and the set of 4,5-grams. Therefore, our method is self-validated and good for
this feature selection task.

The informative features to discriminate positive from negative classes produced by our method will
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Table 6: Most informative features for positive class, from a set of 4-gram and 5-gram features. TF is
the number of transcription factor binding motifs containing the feature.

Feature Weight TF Feature Weight TF Feature Weight TF
H3 CCTG 1.98 13 GCATT 1.70 4 AGTGC 1.60 3

ACCTG 1.58 5 TCCTG 1.56 1 CTCTT 1.55 5
TTCAC 1.54 4 GGGTT 1.54 8 ACAGC 1.52 4

H4 CCAGT 1.85 4 TCAGG 1.73 1 TGGA 1.65 11
TTGGG 1.55 2 CGTTA 1.51 3 TATC 1.49 15
GGAT 1.49 14 GGATC 1.48 1 TATTG 1.47 5

H3K9ac CCGG 2.04 22 ACCCG 1.97 6 GCCCA 1.87 3
GGTGG 1.78 2 CAGCG 1.77 3 GCGAG 1.76 7
CCGGG 1.71 8 GCCGG 1.71 7 GGCCG 1.66 5

H3K14ac GCGTG 2.21 1 ACCCG 2.06 6 TAGTC 2.02 2
GGTGG 1.85 2 ATGAG 1.85 1 GGGTA 1.85 5
CTCGA 1.84 1 TAGGA 1.72 4 AAGGC 1.70 1

H4ac GCCGG 2.42 7 CTCAT 2.35 4 ACCCG 2.35 6
GGGTA 1.96 5 ATGAG 1.90 1 GGTGG 1.90 2
ACCGC 1.89 5 GCGA 1.87 15 TCGC 1.86 7

H3K4me1 GGGTC 2.31 2 CGGGA 1.96 2 AATTC 1.93 4
CGGAG 1.87 3 AGTTT 1.75 2 TCGTA 1.71 1
AACCC 1.68 4 ACCCA 1.63 13 ATCGA 1.62 0

H3K4me2 ACCAC 2.23 1 GTTGC 2.18 2 GCGAG 2.03 7
CCAGC 1.97 4 CACTT 1.94 1 ACCGC 1.90 5
ATTCC 1.73 5 GAGGG 1.68 3 GTCCA 1.64 1

H3K4me3 ACCCG 3.39 6 CGGGT 2.18 6 ATGAG 2.13 1
TGCGA 2.06 3 GGTGG 1.92 2 CTCGC 1.91 4
CTCAT 1.90 4 GTTGC 1.84 2 GCGA 1.82 15

H3K36me3 GGCGA 1.82 3 CGTCC 1.72 3 ACCCA 1.68 13
GGAAC 1.59 1 AATTC 1.58 4 GATTT 1.58 5
CAACG 1.51 7 TGGAT 1.48 3 CGCAG 1.48 0

H3K79me3 GATTT 2.09 5 TAATG 1.85 3 CATTA 1.81 6
GCGTA 1.66 1 CTCTA 1.63 5 ACAGC 1.55 4
CAGCA 1.54 1 CAATA 1.47 7 TAGGG 1.47 5

be useful to analyze the genetic area preferences of histone occupancy, acetylation, and methylation.
For example, CG (CpG) is a dinucleotide that appears very often in the most informative features
of DNA sequence areas that are neither occupied by histones nor acetylated or methylated (Tables 5
and 7). This agrees with previous studies that show CpG islands are mostly non-methylated [3].

4 Conclusion

We have introduced the use of support vector machines to qualitatively predict histone occupancy,
acetylation, and methylation areas in DNA sequences. The method is the first one to date for this
kind of problem, and empirical results show a high accuracy. Moreover, the support vector machine
method can evaluate the informative features to discriminate between DNA areas with high and
low occupancy, acetylation, or methylation. In the near future, we will improve the method to give a
prediction confidence for each DNA area according to the margin of the corresponding feature example
to the classification hyperplane of the support vector machine.
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Table 7: Most informative features for negative class, from a set of 4-gram and 5-gram features. TF
is the number of transcription factor binding motifs containing the feature.

Feature Weight TF Feature Weight TF Feature Weight TF
H3 CGCG -4.57 18 GCGC -2.94 11 GCGCG -2.41 2

CGGGC -2.21 3 GGCCG -2.11 5 GCGG -2.05 18
CGCGC -2.01 3 GCGGC -1.87 4 GCAGC -1.67 1

H4 CGCG -3.46 18 GCGC -2.42 11 TTTTT -2.31 8
AAAAA -1.96 13 TATA -1.93 21 CGTG -1.88 22
CCCGG -1.82 6 GCGCG -1.70 2 TAATT -1.64 18

H3K9ac GCCGC -3.45 16 CCATA -2.03 5 ACCCC -2.00 2
AAACC -1.97 5 GCGGC -1.86 4 CAATA -1.84 7
GGCGG -1.76 5 GATTT -1.74 5 TGTAA -1.67 5

H3K14ac GCCGC -3.30 16 ACCCC -2.13 2 TACCA -1.88 1
GACGT -1.87 6 TGGTA -1.85 2 AATTC -1.80 4
TCTAA -1.78 2 GATCC -1.76 2 CTCGG -1.66 2

H4ac GCCGC -4.95 16 GCGGC -2.61 4 ACCCC -2.35 2
GTTGT -1.92 1 GCGTC -1.92 5 GTGGG -1.88 5
AATTC -1.78 4 TACGA -1.78 3 TACCA -1.77 1

H3K4me1 GGGTA -2.20 5 TCCTA -2.05 6 TACAC -2.01 5
TGCGA -1.94 3 TGTCC -1.87 0 ACCCG -1.85 6
CTCGA -1.83 1 TACCC -1.82 6 ATCGC -1.80 0

H3K4me2 GCCGC -2.73 16 CCGCC -2.32 13 GGTGC -2.13 3
GACCG -2.10 2 GGGAT -1.93 2 CGCGG -1.82 4
GTTCC -1.82 3 ACCGG -1.64 4 CCGAG -1.63 4

H3K4me3 GCCGC -4.27 16 ACCCC -2.74 2 CGCGG -2.62 4
CACGC -2.15 3 GCGTC -2.13 5 GTGGG -2.09 5
GCGGC -2.05 4 CCGC -2.03 27 AGCCG -1.98 12

H3K36me3 TAGGA -2.58 4 ACCCG -2.39 6 CTCGA -2.32 1
AACCG -2.13 5 CCCTT -1.82 3 CTCAT -1.68 4
CATCG -1.60 3 ATGCG -1.59 6 GTATA -1.53 2

H3K36me3 CGCG -2.36 18 GCGC -2.22 11 TATA -2.22 21
ACATA -2.20 2 ACGTA -2.19 3 TAATT -2.06 18
ATGTA -1.92 8 AATTA -1.91 21 TACAT -1.80 10
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