
A Scheduling Method for Divisible Workload Problem in Grid
Environments

Nguyen The Loc
Japan Advance Institute of Science and Technology

1-1, Asahidai, Nomi, Ishikawa, Japan 923-1292
lnguyen@jaist.ac.jp

Said Elnaffar
College of IT, UAE University

Al-Ain, UAE
elnaffar@uaeu.ac.ae

Takuya Katayama, Ho Tu Bao
Japan Advance Institute of Science and Technology

1-1, Asahidai, Nomi, Ishikawa, Japan 923-1292
{katayama, bao}@jaist.ac.jp

Abstract

Scheduling divisible workloads in distributed systems
has been one of the interesting research problems over
the last few years. Most of the scheduling algorithms
previously introduced are based on the master-worker
model. However, the majority of these algorithms as-
sume that workers are dedicated machines, which is a
wrong assumption in distributed environments such as
Grids. In this work, we propose a dynamic scheduling
methodology that takes into account the three promi-
nent aspects of Grids: heterogeneity, dynamicity, and
uncertainty. Our contribution is threefold. First, we
present an analytical model for processing local and
Grid tasks at each non-dedicated worker. Second,
we present a simple prediction method to forecast the
available CPU capacity and bandwidth at each worker.
Third, we introduce a dynamic, multi-round scheduling
algorithm.

Keywords: divisible tasks; dynamic scheduling algo-
rithm; multi-round algorithm; Grid computing; perfor-
mance prediction.

1 Introduction

A critical issue for the performance of a Grid is the
task-scheduling problem, i.e. the problem of how to
divide an application’s workload into many parts and
assign them to computers of the Grid, here thereafter
called workers, so that the execution time is minimum.

Many algorithms for scheduling divisible workloads
[1, 2, 8, 10] assume that computational resources are

dedicated. This assumption renders these algorithms
impractical in distributed environments such as Grids
where computational resources are expected to serve lo-
cal tasks in addition to the Grid tasks. Another short-
coming in these algorithms is that they do not take the
dynamicity of Grids into account.

Our contribution is threefold. First, we present a
model to represent a worker’s activity with respect to
processing local and external Grid tasks. Unlike the
work done in [1, 2, 8, 10], this model help estimate the
computing power of a worker under the fluctuation of
number of local and Grid applications in the system.
Second, we provide a simple method for predicting the
computing power of processors, i.e. the portion of orig-
inal CPU power that the owner can donate to Grid
applications. Third, we incorporate the performance
model and the prediction method described above into
the UMR (Uniform Multi-Round) algorithm [8], which
is originally a static scheduling algorithm.

The rest of this paper is organized as follows. Sec-
tion 2 reviews some of the static and dynamic schedul-
ing algorithms. Section 3 briefly describes our hetero-
geneous computation platform. Section 4 introduces
our dynamic scheduling methodology. Section 5 con-
cludes the paper and sketches future work.

2 Related work

Single round algorithm [1, 3] is the early and most
simple way for the scheduling problem. As showed in
[1], for a large workload, the single-round approach is
not efficient due to a large idle timing suffered by the
last worker to receive its chunk. Multi-round schedul-



ing algorithm was introduced firstly in [2] but au-
thors assume that the computation and communica-
tion startup times are zero, therefore this algorithm
does not reflect correctly the real conditions in Grids.
The studies in [1, 8, 9, 10] focus on affine model in
which computation and communication startup time
are different from zero. UMR [8] is the only algorithm
that computes the approximately optimal number of
rounds and the sizes of workload chunks. In fact, our
method is inspired by the UMR model [8].

All above static algorithms assume that the perfor-
mance of workers are stable during execution, which
make them impractical for Grid applications. RUMR
[9] is designed to tolerate performance prediction errors
by using Factoring method, however all of its parame-
ters are fixed before RUMR starts, which makes RUMR
a non-adaptive scheduling algorithm. Apparently, dy-
namic algorithms [6, 7, 11] are more appropriate for
Grids. Our method falls in this category, and in our
knowledge, it is the first dynamic method for divisible
workload. In [11], the authors use M/M/1 queue to
model the tasks processing, however [11] lacks an ef-
ficient prediction strategy because it is merely based
on probability parameters. On the other hand, the ef-
forts in [6, 7, 11] are not for concerned with divisible
workloads.

3 The Divisible workload scheduling
problem in Grid environments

Let us consider a computation Grid, in that, a mas-
ter process controls N worker processes and each pro-
cess runs in a particular computer. We denote the total
workload by Wtotal, the master can divide it into arbi-
trary chunks and delivers them to appropriate workers.
We assume that the master uses its network connection
in a sequential fashion, i.e., it does not send chunks
to some workers simultaneously. The communication
and computation platforms of our system are hetero-
geneous. Workers can receive data from network and
perform computation simultaneously.

3.1 Notation

• N : the number of workers, M : the number of
rounds.

• Wtotal: the total amount of workload.

• chunkj,i: the fraction of total workload Wtotal

that the master deliver to workeri in roundj (i =
1, 2, ..., N, j = 1, 2, ...,M).

• Si: computational speed of the workeri, its mea-
sure is the number of units of workload performed
per second.

• ESi: estimated average speed of workeri for Grid
tasks on the next round. ESi is derived from equa-
tion (12).

• Tcompj,i: computation time required for worker i

to process chunkj,i.

• Tcommj,i: communication time required for mas-
ter to send chunkj,i to workeri

Tcommj,i = nLati +
chunkj,i

Bi
(1)

Tcompj,i = cLati +
chunkj,i

ESi
(2)

where cLati is a fixed overhead time for starting
a computation in workeri and nLati is the over-
head time incurred by the master to initiate a data
transfer to workeri.

• Bi: the data transfer rate, of the connection link
between the master and worker i.

• roundj : the amount of workload

roundj =
N∑

i=1

chunkj,i (3)

UMR [8] makes the the time required for each worker
to process its workload during a round constant, constj

cLati +
chunkj,i

ESi
= constj (4)

chunkj,i = αi × roundj + βi (i, j = 1, ..., N) (5)

where

αi =
ESi∑N

k=1 ESk

(6)

βi =
ESi∑N

k=1 ESk

N∑
k=1

(ESk × cLatk) − ESi × cLati (7)

3.2 Problem statement

The task scheduling problem in non-dedicated envi-
ronments can be defined as follows. Given:

• Divisible workload Wtotal that reside at the master



• Non-dedicated computational platform consists of
the master and N workers, computational speed of
the workeri is Si with latency cLati.

• Data transfer rate of the connection link between
the master and workeri is Bi with latency nLati

• Si vary over time (i = 1, 2, ..., N). This is nature
of non-dedicated environments.

Our ultimate question is: given the above Grid set-
tings, in what proportion should the workload Wtotal

be split up among the heterogeneous, dynamic work-
ers so that the overall execution time is minimum?
Formally, we need to minimize the following objective
function:

maxi=1,2,...,N


Tcomm1,i +

M∑
j=1

Tcompj,i


→ min (8)

4 The proposed method

Proposed method for this problem consists of two
steps.

1. Predicting an adaptive factor (explained below).

2. Scheduling tasks.

In order to minimize the execution time, we have to
carry out two tasks. First, the performance of workers
should be predicted effectively. The proposed method
performs this task by using the Grid computation
model described in Sec. 4.1 and applying the Mixed
Tendency-based strategy (Sec. 4.2). Second, schedul-
ing the workload (Sec. 4.3) is carried out by using the
UMR algorithm [8] after integrating it with our CPU
prediction mechanism.

4.1 Grid computation model

Most static scheduling algorithms [1, 2, 8, 10] as-
sume that execution time is well-known based on the
assumption that workers have fixed, predefined CPU
speeds. On a nondedicated, dynamic platform such as
Grid, these assumptions are not realistic. Thus in this
paper we present a new model of executing local and
Grid tasks at a given, non-dedicated worker.

During the execution of a Grid task on a certain
worker, some local tasks may arrive causing to inter-
rupt the execution of the lower priority Grid tasks. The
arrival of the local tasks of workeri is assumed to follow
a Poisson distribution with arrival rate λi, their exe-
cution process follows an exponential distribution with

service rate µi and the local task process in the worker
is an M/M/1 queueing system [4] (i = 1, 2, ..., N).

The execution time Tcompj,i of chunkj,i on the
workeri can be expressed as:

Tcompj,i = X1 + Y1 + X2 + Y2 + ... + XNL + YNL (9)

where:

• NL: the number of local tasks which arrive during
the execution of chunkj,i.

• Yk: execution time of the local task k (k =
1, 2, ..., NL), these are independent identical dis-
tribution random variables.

• Xk: execution time of kth section of chunkj,i (k =
1, 2, ..., NL). We have:

X1 + X2 + ... + XNL =
chunkj,i

Si
(10)

From the M/M/1 queueing theory [4] we have:

E (NL) =
λichunkj,i

Si
E (Yk) =

1
µi − λi

(11)

Because of NL and Yk are independent random vari-
ables (k = 1, 2, ..., NL) we derive

E (Tcompj,i) = E (Tcompj,i|NL) =
NL∑
k=1

Xk +

+
NL∑
k=1

E(Yk) =
chunkj,i

Si
+ E(NL) × E(Yk) =

=
chunkj,i

Si(1 − ρi)
(where ρi = λi/µi) (12)

λi, µi, ρi are representative on the long run but can-
not be used to estimate the imminent execution time
that will take place a given worker. Therefore, we in-
troduce the adaptivefactor δi, which represents the
performance of workeri and it is initialized by 1 (i.e.,
full availability of computational capacity) in the first
round. Now the expected value of the execution time
of chunkj,i is

chunkj,i × δi

Si(1 − ρi)
(13)

The actual power of workers delivered to Grid varies
over time, therefore we have to predict the adaptive
factor δi as the below section.



4.2 Predicting the adaptive factor δ

In this section we consider workeri only, thus we will
delete the character i in the notations, for example we
write δ instead of δi. We periodically measure δ and
obtain the original preceding value time series C =
c1, c2, ..., cn. Data point ci is value of δ at time point i.
M : aggregation degree, calculated as
M = execution time of a round × frequency of original
time series
∆ = δ1, δ2, ..., δk(k = �n/M�): the interval CPU load
time series, calculated as

δi =

∑M
j=1 cn−(k−i+1)M+j

M
(i = 1, 2, ..., k) (14)

Each value δi is the average value of adaptive factor
over a round. After collecting the original time series
C and creating interval time series ∆, we apply the
Mixed Tendency-based strategy [6, 7] to estimate the
value in the next round δk+1.

4.2.1 Prediction strategy

Algorithm 4.1: MixedTendency-based()

procedure IncrementValueAdaptation()
Mean = (

∑n
i=1 δi) /n;

RealIncValue = δT − δT−1 ;
NormalInc = IncrementValue + (RealIncValue-

- IncrementValue) × AdaptDegree;
if (δT < Mean)
then IncrementValue = NormalInc;

else




PastGreater = (number of data points
greater than δT ) / n;

TurningPointInc = IncrementValue ×
× PastGreater ;

IncrementValue = Min(NormalInc,
TurningPointInc);

main
if (δT−1 < δT ) //Tendency is increase

then
{
IncrementValueAdaptation()
PT+1 = δT + IncrementValue;

else if (δT−1 > δT ) //Tendency is decrease

then
{
DecrementFactorAdaptation()
PT+1 = δT × DecrementFactor;

Formally, Mixed Tendency-based prediction [6, 7]
strategies can be expressed as above. The adaptation
process in case of Increase and Decrease are similar.
δT is the current value of adaptive factor, and PT+1 is

the predicted value for δT+1. AdaptDegree is optional
parameter that expresses the adaptation degree of the
variation, its value can ranger from 0 to 1. Now we
predict that the average speed ESi of the workeri on
the next round is

ESi =
Si × (1 − ρi)

δi
(15)

where δi is predicted as explained above. Henceforth,
we will use ESi to denote the speed of of workeri.

4.3 Scheduling tasks

4.3.1 Induction on chunk sizes

We rewrite here the deductions and constraints of [8,
10]. While worker N process chunkj , master send (N-
1) chunks to (N-1) remaining workers. To maximize
bandwidth utilization, the master must finish sending
the last chunkj+1,N of roundj to the last worker N
before the worker N finish processing chunkj,N , so we
have

roundj = θj × (round0 − η) (16)

where

θ =

(
N∑

i=1

ESi

Bi

)−1

(17)

η =

(
N∑

i=1

ESi

Bi
− 1

)−1

×

×
(

N∑
i=1

(ESi × cLati) −
N∑

i=1

ESi ×
N∑

i=1

(
βi

Bi
+ nLati

))

(18)

4.3.2 Constrained minimization problem

Our objective is to minimize the execution time of total
workload Wtotal

Ex(M, round0) =

=
∑M−1

j=0 constj + 1
2

∑N
i=1

(
chunk0,i

Bi
+ nLati

)
(19)

G(M, round0) = M×η+
round0 − η

1 − θ
×(1−θM )−Wtotal

(20)
where M and round0 are unknowns.

round0 =
1 − θ

1 − θM
(Wtotal − M × η) + η (21)



where M is solution of the following equation

(M × η − Wtotal) × θM lnθ
∑N

i=1
αi

Bi

(1 − θM )
+ η

N∑
i=1

αi

Bi
−

−2
1 − θM

1 − θ
×
∑N

i=1(ESi × cLati)∑N
i=1 ESi

= 0 (22)

After obtain the value of round0 from (21), we can use
(16) to compute roundi. Subsequently, (5) can be used
to obtain chunkj,i ∀i, j

4.4 Overview of the proposed algorithm

Algorithm 4.2: ProposedAlgorithm()

Collect the value of {Bi, Si,λi, µi, ρi}
Use equation (15) to derive {ESi} (i = 1, 2, ..., N)
Compute M , round0, {chunk0,i} (i = 1, 2, ..., N)
Wremains = Wtotal − round0;
Deliver {chunk0,i} to {workeri} (i = 1, 2, ..., N)
repeat
// Processing on roundj

Collect items of the series C of last round
Use Tendency-based Predictor to obtain { δi }

(i = 1, 2, ..., N)
Use equation (15), (16) to derive roundj and

{ESi} (i = 1, 2, ..., N)
if (roundj > Wremains)
then roundj = Wremains;

Wremains = Wremains − roundj ;
Deliver {chunkj,i} to {workeri} (i = 1, 2, ..., N)

until Wremains = 0;

5 Conclusion

In this paper we presented a dynamic scheduling
method that is based on the UMR algorithm and the
M/M/1 model. We discussed a task execution model
that describes the processing of local and Grid tasks
each individual machine. Then we used this model
to predict the performance of these worker machines.
Based on the estimated performance of each worker,
we decide on how to distribute workload chunks. The
prediction of workers’ performance takes place the be-
ginning of each round based on the historical values
observed in the previous rounds.

In the future, we consider three extensions of the
current work. First, we would like to remove the con-
straint that the master can not send data to many

workers at the same time because current platforms,
such as WAN, support this capability. Second, we will
factor in the time needed to ship the results back to
the master. Finally, we have noticed that the majority
of present algorithms assume that the execution time
is is proportional to the size of the data, therefore the
relation between computation time and transfer time
is linear (see equations (1,2) in Section 3). We believe
that the real relation between them is more complex
and it largely depends on the characteristics of the data
that need processing.

References

[1] O. Beaumont, A. Legrand, and Y. Robert. Scheduling
divisible workloads on heterogeneous platforms. Par-
allel Computing, 29(9), September 2003.

[2] V. Bharadwaj, D.Ghose, V.Mani, and T. G. Rober-
tazzi. Scheduling Divisible Loads in Parallel and Dis-
tributed Systems. IEEE Computer Society Press, 1996.

[3] J. Blazewicz, M. Drozdowski, and M. Markiewicz. Di-
visible task scheduling-concept and verification. Par-
allel Computing, 25(7):87–98, January 1999.

[4] A. Papoulis and S. U. Pillai. Probbility, Random Vari-
ables, and Stochastic Processes. McGraw-Hill, 2002.

[5] R. Wolski. Dynamically forecasting network perfor-
mance using the network weather service. Journal of
Cluster Computing, 1998.

[6] L. Yang, J. Schopf, and I. Foster. Conservative
scheduling: Using predicted variance to improve
scheduling decision in dynamic environments. Super-
Computing 2003, Phoenix, Arizona USA, November
2003.

[7] L. Yang, J. Schopf, and I. Foster. Homeostatic
and tendency-based cpu load predictions. Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS’03) Nice, France, April 2003.

[8] Y. Yang and H. Casanova. Multi-round algorithm
for scheduling divisible workloads application: Anal-
ysis and experimental evaluation. Technical Report
CS2002-0721, Dept. of Computer Science and Engi-
neering, University of California, 2002.

[9] Y. Yang and H. Casanova. Rumr: Robust scheduling
for divisible workloads. 12th IEEE International Sym-
posium on High Performance Distributed Computing
(HPDC’03) Seattle, Washington, USA, 2003.

[10] Y. Yang and H. Casanova. Umr: A multi-round algo-
rithm for scheduling divisible workloads. Proceeding
of the International Parallel and Distributed Process-
ing Symposium (IPDPS’03), Nice, France, April 2003.

[11] Y. Zhang, Y. Inoguchi, and H. Shen. A dynamic
task scheduling algorithm for grid computing system.
Second International Symposium on Parallel and Dis-
tributed Processing and Applications (ISPA’2004), De-
cember 2004.


