
A Semi-Supervised Learning Approach to Disease Gene Prediction

Thanh Phuong Nguyen and Tu Bao Ho
Japan Advanced Institute of Science and Technology

{phuong,bao}@jaist.ac.jp

Abstract

Discovering human disease-causing genes (disease
genes in short) is one of the most challenging problems in
bioinformatics and biomedicine, as most diseases are re-
lated in some way to our genes. Various methods have been
proposed to exploit existing data sources for solving the
problem. We aim to develop a novel method to predict dis-
ease genes that takes into account the imbalance between
known disease genes and unknown disease genes. To this
end, our method makes the best of semi-supervised learn-
ing, integrating data of human protein-protein interactions
and various biological data extracted from multiple pro-
teomic/genomic databases. Experimental evaluation shows
high performance of our proposed method. Also, a consid-
erable number of potential disease genes were discovered.

Supplementary materials are now available from
http://www.jaist.ac.jp/∼s0560205/DiseaseGenes/.

1. Introduction

One of the ultimate goals of biological sciences, and cer-
tainly one with a high impact on society, is to improve our
understanding of the processes and events related to dis-
eases. The information contained in our genes is so critical
that simple changes can lead to a severe inheritable disease,
make us more inclined to develop a chronic disease, or make
us more vulnerable to an infectious disease. Genes related
to causing some diseases are called disease-causing genes
or disease genes [11]. Intuitively, proteins corresponding to
disease genes are disease proteins. Previous biological and
medical methods in this area were expensive and laborious.
There is a great need to develop computational methods to
effectively discover disease genes, to support biologists and
pharmacists in their work.

Many studies have tried to discover disease genes with
various methods and data sources. Some work related to
disease gene prediction was based on annotations [15], or
based on sequences [1]. They often treated disease genes
as separate and independent genes. However, it is well

known that biological processes are not realized by the sin-
gle molecule, but rather by the complex interactions of pro-
teins, and the breakdown in protein interaction networks
could result in diseases [13]. From the interactomics point
of view, disease genes could then be investigated through
the interaction networks of disease proteins.

Research on protein-protein interactions (PPI) and dis-
eases has been rapidly increasing in recent years. Disease
genes were discovered by topological features in human PPI
networks using the k-nearest neighbor algorithm [17]. Us-
ing a phenomic ranking of protein complexes linked to hu-
man diseases, a Bayesian model was proposed to predict
new candidates for disorders [8]. In [2], the authors inte-
grated graph kernels for gene expression and human PPI to
predict disease genes. Also, some work concentrated on us-
ing PPI to discover disease genes for specific diseases, i.e.
Alzheimer disease, using heuristic score functions [4], [7].

These previous works tried to apply supervised learning
based on known disease genes (labeled data) to predict new
gene candidates causing diseases. However, nowadays the
ratio of known disease genes to the total number of human
genes is very small. It is shortcoming if biological informa-
tion of genes closed to diseases genes is omitted. We pro-
pose a novel method for disease gene prediction that makes
the best of semi-supervised learning, integrating data of hu-
man protein-protein interactions and various biological data
extracted from multiple proteomic/genomic databases. The
key idea is based on the assumption that disease genes have
close biological associations with other genes whose pro-
teins interact with respective proteins of disease genes.

We employ semi-supervised learning methods to de-
termine the extended set of candidate proteins from hu-
man protein interaction networks, and to predict putative
disease genes from the extended set. We extract various
proteomic/gemomic features such as protein domains, GO
terms, protein keywords, and coded enzymes of protein can-
didates, to comprehensively infer disease genes.

We carefully carried out various experiments with dis-
ease genes extracted from OMIM database – Online
Mendelian Inheritance in Man database (version 2007) [5].
We did five experiments with different sizes of labeled data,



and twenty trials for each experiment to evaluate accuracy
of the method. Accuracy of the prediction was 82%, which
showed that the proposed method is useful for the disease
gene prediction problem. About fifty potential disease pro-
teins were predicted and some of them have been validated
in the scientific literature.

2. Semi-Supervised Learning

Semi-supervised learning (SSL) is halfway between
supervised and unsupervised learning. SSL consid-
ers both labeled data (supervised learning) and unla-
beled data (unsupervised data). A given data set X =
{x1, ..., xl, xl+1, ..., xn} can always be divided into two
parts. The first one is the set of l data points Xl

= {x1, ..., xl} which are labeled by the label set Yl=
{y1, ..., yl}, and the other one is the data set of u data points
Xu = {xl+1, ..., xn}, the labels of which are not known. The
goal is to predict labels of unlabeled data. Some often-used
semi-supervised learning methods include EM with genera-
tive mixture models, self-training, co-training, transductive
support vector machines, and graph-based methods [3].

Since labeling often requires much human labor,
whereas unlabeled data is far easier to obtain, semi-
supervised learning is very useful in many real-word prob-
lems, and has recently attracted an increasing number of
researchers [3]. In bioinformatics, SSL is also applied to
solve many problems and has achieved considerable results,
for example, in the study of protein classification [16] and
in the functional genomics [9], etc.

In this paper, we employed Harmonic Gaussian method
[18] - the graph-based semi-supervised learning algorithm
- in the proposed framework. Because we integrated hu-
man protein-protein interaction networks, semi-supervised
learning based on the graph was considered to be suitable
for predicting disease genes. The details of our proposed
method are presented in Section 3.

3. Materials and Methods

In this section, we describe our method to predict dis-
ease genes using semi-supervised learning. Subsection 3.1
describes the semi-supervised learning framework for dis-
ease gene prediction. In Subsection 3.2, the score functions
are presented, to estimate the biological significance of ex-
tracted features for disease gene prediction.

3.1. Semi-supervised Learning Framework
for Predicting Disease genes

Figure 1 briefly describes our semi-supervised learning
framework for disease gene prediction which uses inte-
grated human PPI and proteomic/genomic data.

Corresponding to Figure 1, the proposed framework con-
sists of four main tasks, as follows:

Figure 1. Semi-supervised learning frame-
work for disease gene prediction.

1. Identify disease genes as positives, and non-disease
genes as negatives, and map them to the correspond-
ing proteins, called disease proteins and non-disease
proteins, respectively.

2. Extend the initial set of positives by extracting their in-
teracting proteins as positive candidates from a human
PPI database.

3. Extract and represent human PPI and pro-
teomic/genomic data as feature vectors.

4. Apply a semi-supervised learning algorithm to predict
disease genes.

Algorithm 1 presents in detail the algorithm for dis-
ease gene prediction using semi-supervised learning. The
input of the algorithm are positive examples (known dis-
ease genes), negative examples (non-disease genes), the set
of human protein-protein interactions, and the set of pro-
teomic/genomic feature data. The training data sets are de-
scribed in Subsection 4.1. The output of the algorithm is the
set of new disease genes.

In Algorithm 1, there are 12 steps corresponding to the
four main tasks. Steps 1 to 3 are for the first task. Until
Step 3, all disease proteins pi and non-disease proteins p−i
are identified by the Uniprot names, and we have the initial
set of disease proteins P . From the human PPI network Ω,
Step 4 does the second task to generate the extended set of
disease proteins P+ including the interacting proteins p+

i

(positive candidates) of disease proteins in the initial set. In
Step 5, the union set P∗ is formed consisting of positives,
positive candidates and negatives. For the third task, Steps
6 to 9 extract various features fk from databases OPHID,
Uniprot, GO, and Pfam, and estimate the scores scorek of
features for each protein. The k-dimension feature vectors
vi are determined to integrate all feature scores as the in-
put of a semi-supervised learning algorithm. Steps 10 to
12 correspond to the fourth task, where we apply a semi-
supervised learning algorithm to predict new disease genes.

In Step 10, we used the SemiL software developed by
Huang et al. [6] which implements Harmonic Gaussian



Algorithm 1 Semi-supervised learning framework to predict disease genes.
Input:

The set G of disease genes gi and the set G− of non disease genes g−
i .

The protein-protein interaction network Ω.
PPI feature and proteomic/genomic features fk extracted from databases (OPHID, Uniprot, GO, and Pfam).

Output:
The set of new predicted disease genes G+

1: G+ :=∅;
P :=∅; /* P is the initial set of disease proteins. */
P+ :=∅; /* P+ is the extended set of disease proteins. */
P− :=∅; /* P− is the set of non-disease proteins. */

2: Map all disease genes gi ∈ G to the corresponding proteins pi; P = P ∪ {pi}.
3: Map all non-disease genes g−

i ∈ G− to the corresponding proteins p−
i ; P− := P− ∪ {p−

i }.
4: for each pi ∈ P

Extract all interacting proteins p+
i of the disease protein pi from Ω; P+ := P+ ∪ {p+

i }.
5: P∗ := P+ ∪ P− ∪ P . /* P ∗ is the union set of all considered proteins. */
6: for each pi ∈ P∗

7: Extract features fppi, f length, fkw, fec, fgo, fpfam from databases OPHID, Uniprot, GO, and Pfam.
8: Estimate the score scorek of each feature fk.
9: Determine k-dimension feature vectors vi = {vk

i } where the dimension vk
i corresponds to the feature fk.

10: Run a semi-supervised learning algorithm on the set P∗ and the set of feature vectors vi to predict disease proteins.
11: Map new predicted disease proteins to their corresponding disease genes g+

i ; G+ := G+ ∪ {g+
i }.

12: return G+.

method. SemiL software is an efficient software for solv-
ing large-scale semi-supervised learning problems. SemiL
provides various options for distance weight, hard or soft
label, normalization, etc.

3.2. Scores of proteomic/genomic features

To have a comprehensive view of the relationship be-
tween disease genes and other proteomic/proteomic fea-
tures, in addition to PPI features from OPHID database, we
also utilized three other databases, Uniprot, GO, and Pfam,
to look for relevant and useful features for disease gene pre-
diction. When integrating proteomic/genomic features, one
difficulty that we have to overcome is representing various
data types of feature data. Extracted data may be numerical
such as sequence length, or categorical such as keywords,
and coded enzymes. Thus, by using score functions we can
represent the extracted data in the form of feature vectors.

Table 1 shows the statistics of extracted features for each
data source. The first two columns are the number of
records extracted according to respective features, and the
last two columns are the number of feature categories.

We describe here how we define the score functions.
First, the protein-protein interaction score was considered,
to determine how close one protein is to other disease
proteins in protein interaction networks. Human protein-
protein interactions are extracted from OPHID database
(http://ophid.utoronto.ca/ophid/). One protein may have many
interactions, however, among these protein interactions, the
more the protein interacts with disease proteins, the more

likely it is to be a disease protein. Also, a protein which is a
hub of many interactions is often very important. The score
scoreppi for the PPI feature fppi is defined as follows:

scoreppi(pi) =

∑
pj∈P

Int(pi, pj)

∑
pj∈P∗

Int(pi, pj)
∗

∑
pj∈P

Int(pi, pj)

Avgppi
(1)

where

Int(pi, pj) =




1 if there is an interaction between

proteins pi and pj ,

0 otherwise.

Avgppi: the average of number of protein interactions be-
longing to disease proteins.

UniProt database (http://www.pir.uniprot.org/) is the
world’s most comprehensive catalog of information on
proteins, and it provides functional, structural or other
categories, lengths of protein sequences, and describes
enzymes coded.

The following equation is the score for the sequence
length feature:

scorelength(pi) =
length(pi)

Avglength
(2)

where
length(pi): the sequence length of a protein pi.
Avglength: the average sequence length of disease proteins.
Disease proteins may share the same keywords, and be

coded by the same enzymes. Some keywords and coded
enzymes were found to be common in the set of disease
proteins. Then, scorekw and scoreec show how probable it



Table 1. Statistics for the set of all proteins considered, and the set of disease proteins with the
extracted features.

Feature fk #Record #Category
The whole data set Set of disease proteins The whole data set Set of disease proteins

fGO 17241 6404 2911 1817
fKW 31465 13597 564 504
fEC 1123 451 133 106

fPfam 6817 2426 1796 1413

is that a protein is a disease protein, in terms of keywords
and enzymes. In Uniprot database, keywords are classified
into 10 categories, i.e. biological process, developmental
stage, disease, molecular function, etc.

Among 5,557 proteins (details in Section 4.1), there are
31,465 data records extracted for keyword features, and
1,123 enzymes. These proteins share the same 564 key-
words and 133 enzymes.

We proposed similar scores for keyword feature fkw and
coded enzymes feature fec. For each protein, we extracted
the corresponding keywords kwi and coded enzymes eci.
The keyword and enzyme data are categorical, for exam-
ple, (P05067, alzheimer disease) and (P01011, disease mu-
tation) where P05067, P01011 are the Uniprot names, and
“alzheimer disease”, “disease mutation” are their keywords;
or (O75688, ec3.1.3) where O75688 is the Uniprot names,
and ec3.1.3, is enzymes coded.

Since each protein may have many different keywords,
each keyword kwi is assigned to its significant weight, as
follows:

wkw
i = freq(kwi) ∗ freq(kwi),

where
freq(kwi): the frequency count of kwi observed in the set of

disease proteins P .
freq(kwi): the frequency count of kwi observed in the set of

proteins P∗.
Equation 3 shows the score for the keyword feature:

scorekw(pi) =
1∑

∀kwj∈pi

wkw
j

(3)

Unlike the keyword feature, each protein pi is coded by
only one enzyme eci. The score for the coded enzyme fea-
ture is defined in Equation 4.

scoreec(pi) = freq(eci) ∗ freq(eci) (4)
where

freq(eci): the frequency count of eci observed in the set of
disease proteins P .

freq(eci): the frequency count of eci observed in the set of
proteins P∗.

It is useful to investigate the relationship between GO
terms (http://www.geneontology.org/) and disease proteins.
GO terms are divided into three groups: molecular func-
tion, biological process and cellular component. GO terms

related to the set of proteins considered goi were extracted,
and each of them has its own weight, defined by the follow-
ing equation:

wgo
i =

#goi + 1

#goi + 1
,

where
#goi: the count of goi observed in the set of disease proteins

P .
#goi: the frequency counts of goi observed in the set of pro-

teins P∗.
Then, the score for GO term feature is proposed as fol-

lows:

scorego(pi) =
1∑

∀kwj∈pi

wgo
i

(5)

Protein domains are the building blocks of pro-
teins. Disease proteins may structurally or func-
tionally depend on their domains. Pfam database
(http://www.sanger.ac.uk/Software/Pfam/) is a large collection
of multiple sequence alignments and hidden Markov mod-
els covering many common protein domains and families.
Pfam domains dj of all considered proteins are extracted
and scored by Equation 6.

scorepfam(pi) =
#pfami + 1

#pfami + 1
, (6)

where
#pfami: the number of domains dj of a protein pi observed

in the set of domains belonging to disease proteins.
#pfami: the number of domains dj of the protein pi.

4. Experiments

4.1. Experiment design

We first prepared three data sets to carry out the experi-
ments: (i) the set of disease genes, (ii) the set of non-disease
genes, (iii) the set of protein-protein interactions. Then, we
carried out experiments with various parameters to compu-
tationally evaluate accuracy of the proposed method. Fi-
nally, we looked up newly-predicted disease genes in the
scientific literature to biologically verify the findings of the
proposed method.

The database OMIM is a catalog of human genes and
genetic disorders. In OMIM, the list of hereditary disease



genes is described in the OMIM morbid map. There are
4,512 records with 3,053 unique OMIM ID in the catalog.
As shown in Algorithm 1, the total of 3,053 human dis-
ease genes were mapped, to look for their disease proteins
identified by Uniprot names. The results showed 3,590 cor-
responding disease proteins. Some of these proteins have
published interactions.

Compiling a list of genes that are known not to be in-
volved in hereditary disease is difficult. A recent study [14]
showed that the human genome may contain thousands of
essential genes having features that differ significantly, both
from disease genes and from other genes. In the absence of
a set of well-defined human essential genes, they compiled
the list of ubiquitously expressed human genes (UEHG) as
an approximation of essential genes. Non-disease genes
belong to neither the OMIM morbid map nor the UEHG
set. The genes that satisfy this condition are negative exam-
ples in our experiments. Mapping to Uniprot names, there
are 723 proteins corresponding to UEHG, and 180 proteins
overlapping in the set of disease proteins.

We obtained the human protein-protein interactions from
OPHID database. Among 51,934 human protein-protein in-
teractions stored in OPHID, there are 13,368 interactions
which have at least one interacting partner belonging to the
set of disease proteins. We found that there were 1,502 dis-
ease proteins having interactions in OPHID. From 13,368
interactions, the initial set of disease proteins extended to
5,775 proteins.

4.2. Experiment Results
As mentioned above, we used SemiL software to imple-

ment the Harmonic Gaussian method [19]. The weight ma-
trixes W were calculated with two different distance func-
tions, i.e. Euclidean distance and Cosine distance, and the
degree of graph was 20. The kernel was RBF function, and
other parameters were default.

From the data set, we randomly selected l data points
as labeled data, and the rest (n-l) as unlabeled data. Then,
accuracy was estimated by comparing the predicted labels
and true labels. For each labeled set size l tested, we per-
formed 20 trials. The final result is average accuracy of 20
trials. Accuracy is defined as the ratio of (true positive/(true
positive + false positive))

We chose similar sets of disease genes, non-disease
genes, and protein-protein interactions as those used in the
of of Xu and Li [17], but our method provided higher accu-
racy with similar data. In [17], accuracy ranged from 74%
to 76%. Our accuracy ranged from 78% to 82%. In future
work, we would like to reproduce the same experiments as
in [17] for a comparative evaluation.

Figure 2 shows accuracy of our method. When the
size of labeled data is small (10% of the data set), semi-
supervised learning obtained non trivial accuracy, 78%.
When the number of labeled data is at least half of the total

Figure 2. Accuracy of the proposed method
with different sizes of labeled data for the Eu-
clidean and Cosine distance.

data set, accuracy is over 80%. This demonstrates that even
with a very low percent of labeled data, semi-supervised
learning can still predict disease genes with high accuracy.

Table 2 shows some predicted disease proteins and their
corresponding disease genes. The list of 50 newly-predicted
disease proteins is available as supplementary materials at
http://www.jaist.ac.jp/∼s0560205/DiseasePPI/.

Table 2. List of some potential disease pro-
teins and corresponding disease genes.

Disease proteins Disease proteins Disease genes
in Uniprot names in protein names

O14745 NHERF HUMAN SLC9A3R1
P08670 VIME HUMAN VIM
P25490 TYY1 HUMAN YY1
P27348 1433T HUMAN YWHAQ
Q13363 CTBP1 HUMAN CTBP1
Q13813 SPTA2 HUMAN SPTAN1
O43157 PLXB1 HUMAN PLXNB1
P02760 AMBP HUMAN AMBP

Q8WYH8 ING5 HUMAN ING5
O43852 CALU HUMAN CALU

5. Discussion

In addition to computational evaluation, we endeavored
to look for biological evidence to support to our method.
And we found some interesting evidence when verifying the
novel potential disease proteins. As in [14], ubiquitously
expressed human genes, also known as house keeping
genes, should be regarded as most severe ”disease” genes.
Among 50 new predicted disease proteins, there are 6 pro-
teins which correspond to UEHG genes, i.e., nherf human,
ddx3x human, tyy1 human, 1433t human, ctbp1 human,
spta2 human.

Hepatitis C virus (HCV) core influences the expression
of host genes [12]. Ddx3x human (ATP-dependent RNA
helicase DDX3X) acts as a cofactor for XPO1-mediated nu-
clear export of incompletely spliced HIV-1 Rev RNAs, and
is also involved in HIV-1 replication. This protein interacts
specifically with hepatitis C virus core protein, resulting in
a change in intracellular location.



Protein tyy1 human acts as a repressor in absence of ade-
novirus E1A protein, but as an activator in its presence. A
group of viruses that infect the membranes (tissue linings)
of the respiratory tract, the eyes, the intestines, and the uri-
nary tract, adenoviruses account for about 10% of acute res-
piratory infections in children, and are a frequent cause of
diarrhea.

Protein trrap human is the isolation of highly conserved
434 kDa protein, and interacts specifically with the c-Myc N
terminus, and has homology to the ATM/PI3-kinase family.
Trrap human (related to gene trrap) also interacts specif-
ically with the E2F-1 transactivation domain. Expression
of transdominant mutants of the protein trrap human or an-
tisense RNA blocks c-Myc- and E1A-mediated oncogenic
transformation. Then, trrap was suggested as an essential
cofactor for both the c-Myc and E1A/E2F oncogenic tran-
scription factor pathways [10].

Though accuracy is the most common evaluation mea-
surement in the disease gene prediction problem, other mea-
surements such as sensitivity and specificity or the area un-
der the ROC curve, should also be used for evaluation in fu-
ture work. Many semi-supervised learning algorithms have
been proposed, and each of them is suitable for a particu-
lar problem. In this paper, we proposed the general semi-
supervised learning framework for disease gene prediction.
In addition to the Harmonic Gaussian algorithm already ap-
plied, we may also investigate and use other algorithms that
may achieve better results.

6. Conclusion
We have presented an approach using semi-supervised

learning to predict disease genes. The experimental re-
sults demonstrated that our proposed method performed
well with high accuracy, and at the same time, predicted
some new disease genes. In future work, we would like to
investigate further the biological significance of novel dis-
ease genes obtained by our method. Integrating more bio-
logical features, like signal transduction pathway, gene loci,
and gene-expression data, is also a potential method to im-
prove our method results. Other protein-protein interaction
databases should be combined to widen the interaction net-
works of disease genes.
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