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Abstract

In this paper, we propose a novel method to measure the dissimilarity of categorical data. The key idea is to consider
the dissimilarity between two categorical values of an attribute as a combination of dissimilarities between the condi-
tional probability distributions of other attributes given these two values. Experiments with real data show that our
dissimilarity estimation method improves the accuracy of the popular nearest neighbor classifier.
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1. Introduction

Measuring the (dis)similarity between data ob-
jects is one of the primary tasks for distance-based
techniques in data mining and machine learning,
e.g., distance-based clustering and distance-based
classification. In this task, measuring (dis)similar-
ity in categorical data is a challenging problem
because the categorical data do not have any
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structures, and thus only an identical comparison
operation can be applied.

The most common similarity measures for
categorical data are binary vector-based methods
(Liebetrau, 1983; Krantz et al.,, 1971; Baulieu,
1989; Gower, 1971; Gower and Legendre, 1986;
Albert, 1983; Jaccard, 1912; Batagelj and Bren,
1995; Hubalek, 1982). These methods transform
each data object into a binary vector, at which
each bit indicates the presence or absence of a pos-
sible attribute value. Then the similarity between
two objects is estimated by the similarity between
two corresponding binary vectors. The most pop-
ular measures for binary vectors belong to two
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families Sy and Ty introduced by Gower and
Legendre (1986). These methods are simple, but
they have two main drawbacks: (1) the transfor-
mation of data objects into binary vectors, in
which making the similarity between two values
either 0 or 1 may leave out many subtleties of
the data; (2) they do not take into account the cor-
relations between attributes that typically exist in
real-life data and are potentially concerned with
the difference among attribute values.

In addition to the binary vector-based methods,
similarity measure methods for mixed numerical
data (Gowda and Diday, 1991a,b, 1992; de Carv-
alho, 1994; de Carvalho, 1998; Goodall, 1966;
Ichino and Yaguchi, 1994) can also be applied to
categorical data. In (Goodall, 1966), Goodall pro-
posed a statistical approach, in which uncommon
attribute values make greater contributions to
the overall similarity between two objects than
common attribute values. The overall similarity
is estimated by combining similarities between val-
ues pairs by using Lancaster’s method (Lancaster,
1949). Setting aside the statistical approach, alge-
braic methods have been also proposed (Gowda
and Diday, 1991a,b, 1992; de Carvalho, 1994; de
Carvalho, 1998; Ichino and Yaguchi, 1994). In
(Gowda and Diday, 1991a,b, 1992), the similarity
between two values of an attribute is based on
three factors: (1) the relative position of two val-
ues, position; (2) the relative sizes of two values
without referring to common parts, span; (3) the
common parts between two values, content. Simi-
larly, the sizes of the union (the joint operation ®)
and the intersection (the meet operation @) of two
attribute values are also taken into account (de
Carvalho, 1994; de Carvalho, 1998; Ichino and
Yaguchi, 1994). Subsequently, similarities of all
attributes are integrated into the similarity be-
tween objects by using Minkowski distance.

In principle, the methods mentioned above can
be considered direct methods because the dissimi-
larity between two attribute values is synthesized
directly from the values. In this paper, we present
anovel indirect method to measure the dissimilarity
for categorical data. It is called indirect in the sense
that the dissimilarity between two values of an at-
tribute is indirectly estimated by using relations
between other attributes under the condition of

giving these two values. The method is composed
of two iterative steps. First, the dissimilarity be-
tween two values of an attribute is estimated as as
the sum of the dissimilarities between conditional
probability distributions of other attributes given
these two values. Then, the dissimilarity between
two data objects is the sum of dissimilarities of their
attribute value pairs. We investigate the efficiency
of the proposed method in terms of theoretical
properties and experiments with real data. Both
theoretical proofs and experiments show that the
method is not proper for data sets with independent
attributes. Fortunately, experiments with real data
show that attributes are typically correlated.

The rest of this paper is organized as follows.
In Section 2 we describe the proposed measure in
detail. In Section 3 we investigate the proposed
measure’s properties and its computational
complexity. Experiments with real data are pre-
sented in Section 4. Conclusions, suggestions for
drawbacks and further work are given lastly.

2. Association-based dissimilarity
2.1. Similarity measure

In the following we introduce some nota-
tions: Let 4,,...,4,, be m categorical attributes
and dom(A4;) be the domain of attribute A,
Let DC A;x---xA4,, denotes a data set and
x=(xy,...,x,) where x; € dom(4,) denote a data
object of D. Let p(4;=v;|4;=v;) be the condi-
tional probability of 4;=uv; given that 4;=uv;,
More generally, let cpd(4,/4; =v;) be the condi-
tional probability distribution of attribute 4; given
that attribute A4; holds value v;.

The first, and perhaps the most important step,
is to estimate the dissimilarity between two values
of an attribute. To motivate the method, consider
a data set D with n objects described by two attri-
butes: Shape = {[(1,$, A} and Color = {R, G, B}.
We suppose that 7 is large enough that conditional
probabilities p(A4;=v]4;=v;) and conditional
probability distributions cpd(4,|4;=v;) can be
approximately estimated from data set D as shown
in Table 1. Now in considering the relation
between the two attributes Shape and Color,
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Table 1

Example: The correlation between attribute Color (dom(Color) = {R, G, B}), and attribute Shape (dom(Shape) = {1, O, A})

Contingent table

Contingent probability table

R G B P(R]) »(Gl) P(Bl.)
] 50 40 10 100 0.5 04 0.1 1.0
o 21 21 28 70 0.3 0.3 0.4 1.0
A 24 24 72 120 0.2 0.2 0.6 1.0

an important observation is that conditional
probability distribution cpd(Color|Shape =) is
closer to cpd(Color|Shape = <) than cpd(Color]|
Shape = A). On the other hand, the nature of
observable dissimilarities also indicates that the
dissimilarity between [J and < is somehow smaller
than the dissimilarity between [0 and A. These
observations suggest that the dissimilarity between
two values of attribute Shape can be estimated
from the conditional probability distributions of
the attribute Color given these two attributes.
Now we are ready to define the dissimilarity be-
tween two values v; and v} of attribute 4; given that
the data set D is composed of m different attributes.

Definition 1. The dissimilarity between two values
v; and v} of attribute 4,, denoted by ¢4 (v;,v}), is
the sum of dissimilarities between conditional
probability distributions of other attributes given
that attribute 4; holds values v; and v}:

b4, (viyv) = Z Y(cpd(4,|4; = v;),cpd(4;]4; = v})),

J
(1)

where (.,.) is a dissimilarity function for two
probability distributions.

Definition 1 means that the dissimilarity be-
tween two values v; and v of attribute A4; is directly
proportional to dissimilarities between the condi-
tional probability distributions of other attributes
given these values. Thus, the great (small) dissimi-
larity between these conditional probability distri-
butions leads to the great (small) dissimilarity
between v; and v.

To date, several dissimilarity measures between
probability distributions have been proposed
(Lin, 1991; Rached et al., 2001; Kullback, 1959;
Kullback and Leibler, 1951). In this paper, we
use the most popular one, the Kullback—Leibler

divergence method (Kullback, 1959; Kullback
and Leibler, 1951)
p(x)

KL(P.P) =Y (p(X) lg iy TP () lg};((;)))

X

2)
where 1g is a logarithm having base 2.
To illustrate our method, the dissimilarities of
value pairs ([J,<) and (O, A) as given in Table 1
are computed as follows:

.5 3 4 3
Gsnape (3, O) = .51g—3 +3lg—+ .4lg—3 + .3lgz

S
1 4
+.11§‘—4+.41§—17.84 ,
ape ([ =S5lg=+ 2lg= + 4lg— + 21g=
¢Shdpe( aA) ng—: g5_|6_ g2+ g4
dlg=+ 6lg==1.
+ g.6+ 6 g 9

Having defined the dissimilarity between values of
an attribute, now dissimilarities of different attri-
butes are combined to estimate the dissimilarity
between two data objects.

Definition 2. The dissimilarity between two data
objects x and y, denoted by ¢(x,y), is the sum of
dissimilarities of their attribute value pairs:

ww:immm 3)

Definition 2 means that the smaller the dissimi-
larities of attribute value pairs of x and y are, the
smaller the dissimilarity between x and y.

2.2. Algorithm for computing similarities between
data objects

In this subsection, we present a three-step
algorithm to measure the dissimilarities of all pairs
of data objects of a data set D (see Fig. 1). At the
first step, all conditional probabilities p(4; = v/
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Algorithm for computing similarities between data objects

Input: Data set D

Output: Dissimilarities between data objects.

BEGIN

Step 1. Estimate all conditional probabilities p(A; = v;|4; = v;).
Step 2. For any pair of values v; and v of attribute A;, compute

¢Al(vi7 U;) = Z

vj€dom(Aj),j#i

p(v;[vi) /
+ p(vjlv;) 1g
p(v;]v) (83l

(p(vj o) Ig

p(vjlvé))

p(vjlv:)

Step 3. For any data object pairs (x,y), compute

¢(X, y) = Z ¢A¢(xir yl)

END

Fig. 1. Algorithm for computing similarities between data objects.

A;=v;) are estimated from data set D. Then the
dissimilarities of the value pairs are computed based
on based on the probabilities p(A4; = v} 4; = v;) con-
ditioned on these values. Finally, the dissimilarities
of data object pairs are determined using Eq. (3).

Let us now turn our attention the complexity of
the algorithm, given that data set D consists of n
objects which are composed of m attributes. At
the first step, estimating all conditional probabili-
ties p(A; = vj|4; = v;) is done in O(nm?) time. Then
it takes O(m?) time to compute the dissimilarities
of all pairs of attribute values where m1, is the num-
ber of attribute values. Finally, all dissimilarities
between data objects are determined in O(n’m)
time. Overall, the complexity of the algorithm is
O(nm?) + O(m?) + O(n*m) = O(n*m) because m
and m, are typically smaller than n. Thus, this
complexity is at the same level as other commonly
used direct measure methods.

3. Characteristics

In this section, we investigate the properties of
the proposed measure.

Proposition 1. For any data object pair (x,y), it
holds true for:

(D) p(x,y) =20
(2) p(x,y) = d(y,x)
(3) p(x,x)=0

Proof

(1) ¢(x,y) = 0: Since KL dissimilarity between
two probability distributions is non-negative,
the dissimilarity of two values x; and y; is
non-negative

m

bu,(xi, ;) = Z KL(cpd(4;4; = x;),

J=Li#j

cpd(4,l4; = y;)) = 0.

This implies that

¢(x7y) = Z¢Ai(xiayi) > O
i=1

(2) p(x,y) = ¢(y,x): Since KL dissimilarity
between two probability distributions is sym-
metric, the dissimilarity between two values
x; and y; is also symmetric

b, (xi,;) = Z KL(cpd(4;4; = x1),
=1

j=

cpd(4;l4; = ;)

= > _KL(cpd(4;l4; = »y),
-

J

cpd(4;l4; = x;)) = ‘f’A,-(yn X;)-
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It means that

Ble) =3 haln)

= b0 = 600 0)

(3) ¢(x,x) =0: Since KL dissimilarity between
two identical probability distributions is
equal to 0, the dissimilarity between two
identical values is equal to 0.

(f)Ai(xf,x,») = Zm: KL(de(Aj|Al = x,‘)7

=1

de(A/|A, = xi)) =0.

It means that

plx,x) =D ¢y (x) =0, O

Proposition 2. The dissimilarity between two values
v; and v, of attribute A; is zero if and only if the con-
ditional probability distributions of other attributes,
given that attribute A; holds values v; and v, are
identical.

(,{)D(U,‘, U:) =0« de(A/|Al = Ui) = de(A/|A, = U;)
forj=1...m, j#Ii.

Proof. Since KL dissimilarity between two proba-
bility distributions is non-negative, and equal to 0
if and only if the distributions are identical, the
dissimilarity between two values v; and v/ is equal
to 0 if and only if the conditional probability dis-
tributions of other attributes when A4; holds values
v; and v; are identical. It implies that

m

b (v, t)) = D KL(cpd(4;|4; = vy),

J=Lj#i
de(A]|A, = U;)) = 07
which is equivalent to

de(Aj|A, = U,‘) = de(A]‘A, = U;)
for j=1...m,j#Ii. (]

Proposition 3. If all attribute pairs are indepen-
dent, dissimilarities between data objects are all
equal to zero.

Proof. Since A4; and A; are independent for all i

and J,

P(d; = vjld; = vi) = P(4; = vj) = p(4; = v;]d; = v),
Vi, v, V..

It means that cpd(4,/4; = v;) and cpd(4,|4; = v}) is
identical. It leads to

KL(de(A/|AI = x,-)7 de(A/|Al = yl)) = 0, in,yi

and therefore
ba,(xi, ;) = Z KL(cpd(4;|4; = x;),
i

cpd(4,]4; = y;)) = 0.

That is equivalent to
P(x,y) = ¢y (xy) =0, Vxy. O
=1

Two points can be induced from Proposition 3
are

e When attributes can be divided into groups
such that attributes of different groups are inde-
pendent, the dissimilarity between two objects
can be referred to as dissimilarities between
these two objects with respect to groups individ-
ually. If we deem each of the attribute groups
an independent aspect of objects, the dissimilar-
ity between objects is considered with respect to
aspects independently. This leads to an idea of
replacing each of the attribute groups by one
or a few attributes that can have more discrim-
inating power. Investigating this idea however,
is out of the scope of this paper.

e The proposed measure cannot be applied to
databases whose attributes are absolutely inde-
pendent. Discussions about this drawback are
given in Section 5.

4. Evaluations

In this section we show the merit of our approach
when it is applied to real data. To this end, we
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carried out two experiments: the first experiment
analyzes the dependency between attributes of real
data sets to investigate its impact to our method.
In the second experiment, we compare the proposed
measure with measures based on the two following
ideas. The first one (Gower and Legendre, 1986) is
to consider the similarity between objects based on
the number of identical and nonidentical attribute
value pairs. This idea includes most of popular sim-
ilarity measures such as Russell and Rao (1940), Jac-
card (1912), Dice (1945), and Sokal and Sneath
(1963). The second idea is to consider the similarity
between objects based on index probability intro-
duced by Goodall in (Goodall, 1966). Similarity
measures of these two ideas estimate the similarity
between attribute values directly and are different
from the proposed measures where the similarity be-
tween two attribute values are estimated indirectly
based on relations of other attributes given these
two values. To compare similarity measures, we
combine these measures with the popular distance-
based data mining method, nearest neighbor classi-
fier (NN) (Cover and Hart, 1967), and analyze the
accuracies of NN.

4.1. Ty, Sy and Goodall

Let Ay,...,A,, be m attributes, U = |J 4, be
the set of all possible attribute values and M = |U)|.

Denote x=(xy,...,X,) and y=1,---,Vm)
where x,,y; € A; two data objects, and X and Y
corresponding binary vectors with the length M,
respectively. Clearly both X and Y have m 1 bits
and M — m 0 bits. Denote X the complementary
of X and

e g = XY—the number of values which X and Y
share.

e h = XY—the number of values which X has and
Y lacks.

e ¢ = XY—the number of values which X lacks
and Y has.

e d = XY—the number of values which both X
and Y lacks.

Obviously, a+b+c+d= M.
In (Gower and Legendre, 1986), Gower and
Legendre introduced two families of similarities

a a+d
To T a+0(b+co) and Sy Ta+d+0b+e)
where 0 > 0 to avoid negative values. These fami-
lies of similarities contains many popular similar-
ity measures for binary vectors such as Russell
and Rao (1940), Jaccard (1912), Dice (1945), and
Sokal and Sneath (1963).

Proposition 4. Ty and Sy are increasing functions
with a.

Proof

e T, is a increasing function with a.
Clearly, a+b=m, a+c=m. Thus b=c=
m — a. So, Ty is rewritten as

a
To a+20(m—a)’
We have

, 2m6
Ty(a) =

—>0
(a(6 — 1) — m0)

Thus, T} is an increasing function with a.

e Sy is an increasing function with a.
Since a+b+c+d=M, d=2m— M. Sy is
rewritten as

5 — 2a +M —2m
"T2a+M=2m+20(m—a)
We have

2M0O
Syla) =

5> 0
(2a(0—1)4+2m(1 —0) — M)

Thus, Sy is an increasing function with a. O

Proposition 4 implies that the closest neighbors
of a data object with respect to any similarity mea-
sures of family 7 or Sy are identical. It means that
NN products the same accuracy when using any
similarity measures of family 7} or Sp.

4.1.1. Goodall similarity measure

In (Goodall, 1966), Goodall introduced the idea
of using index and probability to estimate the sim-
ilarity between data objects. For each attributes,
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an order relationship between pairs of values is
established so that the similarity between common
identical values is less than that of the uncommon
identical values. Having defined the order relation,
the similarity of one value pair is defined as the
probability of picking up randomly a value pair
that is less than or equally similar to this pair.
After that the similarities of attribute value pairs
of two objects are integrated by Fisher or Lancas-
ter transforms (Fisher, 1950; Lancaster, 1949) into
the similarity of these objects.

4.2. Data sets

We used 30 diverse data sets from UCI (Blake
and Merz, 1998), for which numerical attributes
are automatically discretized using the data mining
system CBA (Liu et al., 1998). Details of these
data sets can be found in Table 2.

4.3. Experimental methodology

4.3.1. Dependency analysis
For each data set D, we estimate dependency
between attributes by a dependency factor p(D)
that is the proportion of the number of dependent
attribute pairs and the total number of attribute
pairs
[{(4:,4;) : A4; and 4; are dependent}|

p(D) = = 1) ,

where p(D) is directly proportional to the depen-
dency between attributes of D. Thus, p(D) is
100% when all attribute pairs are dependent and
0% when they are all independent.

To estimate the dependency of two attributes,
we used the y” test with a 95% significance level.

4.3.2. Accuracy analysis

We compared the accuracy of NN in combina-
tion with the proposed measure (denoted p)
with the accuracy of NN when combined with a
similarity measure of family T, or Sy, or Goodall
(denoted o), using the 10-time 10-fold cross-
validation strategy and hypothesis testing as
follows:

Hy:pg=pn, versus Hj:py < py.

Since each 10-time 10-fold cross-validation result
contains 100 trials, the difference between uo and
up follows the normal distribution

M= Ho

% 0
100 " 100

where ¢ and 0, are the deviations of the accuracy
test results of NN with a measure of Sy or Ty (or
Goodall) and NN with the proposed measure.
The significance probability for Hi(Pyae) 18
Norm(Z <z) where Norm(-) is the standard
normal distribution.

Zz =

4.4. Experimental results and discussion

Experiment results are presented in Table 2,
including:

e Data set information: name of the data set
(name), number of objects (n), number of attri-
butes (m), number of attribute values (m1,).

e Results of the first experiment: dependency
factors p(D).

e Results of the second experiment: average accu-
racy u; of NN with our method (¢(.,.)), average
accuracy (o) of NN with a measure of T or Sy
(Goodall), significant probability (Pyaye) that
indicates how accurate of NN with our method
is in comparison to the accuracy of NN and a
measure of Ty or Sy (Goodall).

As can be seen from Table 2, for almost all data
sets, attributes are strongly dependent on each
other. In particular, there are 14 data sets whose
dependency factors are greater than 90%, and only
one data set whose dependency factor is less than
50%. This proves the experimentally applicability
of the proposed measure to real data.

A more important observation is that in 27 and
24 out of 30 cases, the combination of NN and the
proposed method achieves a higher accuracy than
the combination of NN and a measure of T} or
Sy and Goodall. In addition, NN with our method
is significantly more accurate than NN with a mea-
sure of Ty or Sy and Goodall at 27 and 21 out of 30
cases, respectively (P-values are greater than 95%).
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Table 2

Experiment results

Data sets o(.,.) Ty or Sy Goodall
No. Name n m m, p(D) I Mo Poatue Mo Pyatve
1 Splice 3190 61 296 100 85 66 100 47 100
2 ttt 958 10 27 94 97 69 100 90 100
3 Zoo 101 18 136 92 98 88 100 92 100
4 Wine 178 14 37 97 99 92 100 91 100
5 Waveform 5000 22 106 82 77 70 100 65 100
6 Bridges 106 13 199 100 71 61 100 60 100
7 crx 690 16 60 98 83 77 100 78 100
8 Lymphography 148 19 59 92 85 76 100 76 100
9 Promoters 106 58 228 86 82 73 100 54 100
10 Anneal 898 39 100 58 99 98 100 96 100
11 Flare 1066 13 42 80 70 65 100 67 100
12 Hypo 3163 26 61 92 99 98 100 98 100
13 Krvskp 3196 37 73 93 88 80 100 87 100
14 Post-operative 90 9 24 82 61 52 100 55 100
15 Sick 2800 30 66 78 97 95 100 96 100
16 Hepatitis 155 20 51 81 85 80 100 81 99
17 Cleve 303 14 31 71 79 77 99 77 99
18 Pima 768 9 17 57 74 71 100 73 96
19 Breast 699 11 31 80 96 93 100 96 96
20 Glass 214 10 22 61 64 60 98 61 96
21 Diabetes 768 9 17 57 67 65 100 66 94
22 Mushroom 8124 23 117 91 96 92 100 95 91
23 Iris 151 5 12 100 92 88 100 91 67
24 Vehicle 846 19 71 99 66 63 100 66 64
25 Primary-tumor 339 18 42 92 33 31 98 33 50
26 Heart 270 14 22 54 76 74 97 76 26
27 AllbpCleand 2800 30 70 77 96 97 20 97 2
28 Vote 435 17 48 100 94 90 100 95 1
29 German 1000 21 63 59 68 69 4 70

30 Monks 432 7 17 0 50 56 0 36 100

Moreover, Table 2 shows that for data sets with
high dependency between attributes (e.g., data sets
ttt, spice), NN with the proposed measure are much
more accurate than NN with a measure of T} or Sy
and Goodall (e.g., ttt: 97% versus 69% and 90%,
splice: 85% versus 66% and 47%). However, for
some data sets with low dependency factors (e.g.,
monks, german), the combination of NN and pro-
posed method is slightly worse than the combination
of a measure of Ty or Sy (e.g., monks: 50% versus
56% and 36%, german: 68% versus 69% and 70%).

5. Conclusions

We introduced a novel dissimilarity measure for
categorical data. Our method measures the dissim-

ilarity between two values of an attribute based on
relations between the attribute and the other attri-
butes. Experiments with real data show that cate-
gorical attributes are often correlated to each
other, thus, the proposed measure is appropriate
for many real applications. Moreover, applying
the proposed measure to real data significantly
boosts the accuracy of NN in comparison to com-
bining it with other popular methods, e.g., Jac-
card, Dice, Russell and Goodall. However, there
are some data sets whose attributes are highly
independent, and for these, other measures are
slightly better than our method. Note, the pro-
posed method is not suitable for data sets whose
attributes are significantly independent. Therefore,
one should test the independence of attributes be-
fore deciding the suitable method. If the attributes
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are highly correlated, the proposed method is
recommended. Otherwise, one should chose other
measures such as measures of families Sy and Tj.
To release the assumption about the dependence
of the attributes, we suggest considering the dis-
similarity between two values not only based on
dissimilarities between conditional probability dis-
tributions of other attributes when given these val-
ues but also dissimilarities between the conditional
probability distributions and the distributions of
attributes. However, the idea is beyond the scope
of this paper.
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