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Abstract This paper discusses the issue of how to use fuzzy targets in the target-
based model for decision making under uncertainty. After introducing a target-based
interpretation of the expected value on which it is shown that this model implicitly
assumes a neutral behavior on attitude about the target, we examine the issue of using
fuzzy targets considering different attitudes about the target selection of the decision
maker. We also discuss the problem for situations on which the decision maker’s
attitude about target may change according to different states of nature. Especially,
it is shown that the target-based approach can provide an unified way for solving
the problem of fuzzy decision making with uncertainty about the state of nature and
imprecision about payoffs. Several numerical examples are given for illustration of
the discussed issues.

Keywords Decision making · Uncertainty · Fuzzy target · Expected utility · Risk
attitude

1 Introduction

Traditionally, when modelling a decision maker’s rational choice between acts with
uncertainty, it is assumed that the uncertainty is described by a probability distribution
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on the space of states, and the ranking of acts is based on the expected utilities of the
consequences of these acts. This utility maximization principle was justified axiomat-
ically in Savage (1954) and Von Neumann and Morgenstern (1944). As Simon argued
in (Simon 1955), the traditional utility theory presumes that a rational decision maker
was assumed to have “a well-organized and stable system of preferences, and a skill
in computation” that was unrealistic in many decision contexts (Bordley 2003). At the
same time, Simon proposed a behavioral model for rational choice, by enunciating
the so-called theory of bounded rationality, that implied that, due to the cost or the
practical impossibility of searching among all possible acts for the optimal, the deci-
sion maker simply looked for the first ‘satisfactory’ act that met some predefined
target. It was also concluded that human behavior should be modelled as satisficing
instead of optimizing. Intuitively, the satisficing approach has some appealing features
because thinking of targets is quite natural in many situations.

Particularly, in an uncertain environment, each act a may lead to different outcomes
usually resulting in a random consequence Xa . Then, given a target t , the agent can
only assess the probability P(Xa � t) of the act a’s consequence meeting the target.
In this case, according to the optimizing principle, the agent should choose an act a
that maximizes the probability v(a) = P(Xa � t) (Manski 1998). Although simple
and appealing from this target-based point of view, its resulted model is still not com-
plete because there may be uncertainty about the target itself. Therefore, Castagnoli
and LiCalzi (1996) and Bordley and LiCalzi (2000) have relaxed the assumption of a
known target by considering a random consequence T instead. Then the target-based
decision model prescribes that the agent should choose an act a that maximizes the
probability v(a) = P(Xa � T ) of meeting an uncertain target T , provided that the
target T is stochastically independent of the random consequences to be evaluated.
Interestingly, despite the differences in approach and interpretation, both target-based
decision procedure and utility-based decision procedure essentially lead to only one
basic model for decision making. In particular, Castagnoli and LiCalzi (1996) provided
a formal equivalence of von Neumann and Morgenstern’s expected utility model and
the target-based model with reference to preferences over lotteries and laterly, Bordley
and LiCalzi (2000) showed a similar result for Savage’s expected utility model with
reference to preferences over acts. More details on target-based decision models as
well as their potential applications and advantages could be referred to Abbas and
Matheson (2005, 2004), Bordley (2002), Bordley and Kirkwood (2004), Castagnoli
and LiCalzi (2006) and LiCalzi (1999).

In this paper,1 we consider the problem of decision making in the face of uncertainty
that can be most effectively described using the decision matrix shown in Table 1; see,
e.g., Brachinger and Monney (2002), Chankong and Haimes (1983), Yager (1999,
2000, 2002b). In this matrix, Ai (i = 1, . . . , n) represent the alternatives (or acts)
available to a decision maker (shortly, DM), one of which must be selected. The ele-
ments S j ( j = 1, . . . , m) correspond to the possible values/states associated with the
so-called state of nature S. Each element ci j of the matrix is the payoff the DM receives
if alternative Ai is selected and state S j occurs. The uncertainty associated with this

1 This paper is a substantially expanded and revised version of the paper (Huynh et al. 2006) presented at
FUZZ–IEEE 2006.
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problem is generally a result of the fact that the value of S is unknown before DM
must choose an alternative Ai .

Generally, as indicated in the literature, the procedure used to select the optimal
alternative should depend upon the type of uncertainty assumed over the domain
S = {S1, . . . , Sm} of variable S. Most often, it is assumed that there exists a proba-
bility distribution PS over S such that p j = PS(S = S j ) and

∑m
j=1 p j = 1. In this

case we call the problem decision making under risk. The most classical method for
decision making under risk is to use the expected value:

– For each alternative Ai , calculate its expected payoff as v(Ai ) � EVi = ∑m
j=1

p j ci j .

– Select as the best alternative the one which maximizes the expected value, i.e. that

Abest = arg max
i

{v(Ai )}

In the case if probability information is not available, the problem is called decision
making under ignorance, and various decision strategies as maximin, maximax, aver-
age and Hurwicz rules are often used depending on different attitudes of the decision
maker.

Recently in Yager (1999), by arguing that the use of the expected value as our
decision function may not be appropriate in many circumstance, Yager has focused
on the construction of decision functions which allows for the inclusion of informa-
tion about decision attitude and probabilistic information about the uncertainty. This
approach has been further discussed in Liu (2004), Yager (2000, 2002b, 2004), with
the help of OWA operators (Yager 1988) and/or fuzzy systems modelling (Yager and
Filev 1994). Basically, the main point in these work is to define a valuation function
for alternatives taking decision attitude and probabilistic information in uncertainty
into account without using the notion of utility. In other words, this valuation-based
approach does not consider the risk attitude factor in terms of utility functions as in
the traditional utility-based paradigm, but focusing on a mechanism for combining
probabilistic information about state of nature with information about DM’s attitude
in the formulation of a valuation function.

The main focus of this paper is put on a fuzzy target-based approach to the issue
of decision making under uncertainty. Essentially, instead of trying to get the payoff-
based valuation for alternatives, it tries to calculate the (expected) probability of meet-
ing some predesigned fuzzy target for each alternative, then select the alternative
which maximizes this probability according to the optimizing principle. From this tar-
get-based point of view, the DM may also have his attitude about the target selection,
we then discuss the problem of formulating targets which simultaneously considers
the DM’s attitude about target selection. An interesting link between the DM’s differ-
ent attitudes about target and different risk attitudes in terms of utility functions is also
established. More interestingly, this target-based approach allows the DM to assess his
target changeable according to the state of nature, which makes it can be classified as
context dependent. It should be worth noting that different targets for different states
can be naturally understood and easily formulated. Furthermore, we also discuss the
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issue of how this target-based approach could be applied for the problem of fuzzy
decision making with uncertainty.

The organization of this paper is as follows. In Sect. 2, a target-based interpretation
of the expected value is presented. Then Sect. 3 discusses the issue of decision making
under risk using fuzzy targets considering different attitudes about the target selec-
tion. In Sect. 4, we introduce context-dependent fuzzy targets and provide a practical
way to implement such a context-dependent target from the decision matrix. Section 5
suggests a general target-based procedure for the problems of decision making under
uncertainty where the payoff matrix may be inhomogeneous. Finally, some concluding
remarks are presented in Sect. 6.

2 Target-based model of the expected value

Let us consider the decision problem as described in Table 1 with assuming a proba-
bility distribution PS over S. Here, we restrict ourselves to a bounded domain of the
payoff variable that D = [cmin, cmax ], i.e. cmin ≤ ci j ≤ cmax .

As mentioned above, the most commonly used method for valuating alternatives
Ai is to use the expected payoff value:

v(Ai ) � EVi =
m∑

j=1

p j ci j (1)

On the other hand, each alternative Ai can be formally considered as a random payoff
having the probability distribution Pi defined, with an abuse of notation, as follows:

Pi (Ai = c) = PS({S j : ci j = c}) (2)

Then, similar to Bordley and LiCalzi’s (2000) result, we now define a random tar-
get T which has a uniform distribution on D with the probability density function PT

defined by

PT (c) =
{ 1

cmax −cmin
, cmin ≤ c ≤ cmax

0, otherwise
(3)

Table 1 The general decision
matrix

Alternatives State of nature

S1 S2 … Sm

A1 c11 c12 … c1m

A2 c21 c22 … c2m

.

.

.
.
.
.

.

.

.
. . .

.

.

.

An cn1 cn2 … cnm
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Under the assumption that the random target T is stochastically independent of any
random payoffs Ai (Bordley and LiCalzi 2000), we have

v†(Ai ) � P(Ai � T )

=
∑

c

P(c � T )Pi (Ai = c)

=
∑

c

⎡

⎣

c∫

−∞
PT (t)dt

⎤

⎦ Pi (Ai = c) (4)

where

P(c � T ) =
∫ c

−∞
PT (t)dt

is the cumulative distribution function of the target T . It should be also mentioned
here that, in a different but similar context, a similar idea has been used in Huynh
and Nakamori (2005) to develop the so-called satisfactory-oriented decision model
for multi-expert decision making with linguistic assessments.

Due to (2)–(3) and the additive property of the probability measure, from (4) we
easily obtain

v†(Ai ) =
m∑

j=1

⎡

⎣

ci j∫

−∞
PT (t)dt

⎤

⎦ PS(S = S j )

=
m∑

j=1

ci j − cmin

cmax − cmin
p j (5)

From the Eqs. (1) and (5), we easily see that there is no way to tell if the DM selects
an alternative by maximizing the expected value or by maximizing the probability of
meeting the uncertain target T . In other words, the target-based decision model with
decision function v†(Ai ) above is equivalent to the expected value model.

In this target-based language, if in a situation where there is no uncertainty about
targets and assuming that the decision maker could assess a certain target t0, then he
would naturally select the alternative Ai which maximizes the probability

v†(Ai ) = PS({S j : ci j ≥ t0})

This clearly is not a good model and inapplicable as the target does not reflect the DM’s
inherent objective that is to select alternatives towards maximizing profit associated
with payoff value.

Interestingly, in the target-based model of the expected value above, we can think
of T as an interval target represented as a membership function T (c) = 1 for cmin ≤
c ≤ cmax , and T (c) = 0 otherwise. Then the uniform distribution PT considered

123



V.-N. Huynh et al.

as a probabilistic interpretation of this interval target can be obtained via a simple
normalization proposed in (Yager et al. 2001, Yager 2002a). This observation sug-
gests an interesting extension of target-based decision models using fuzzy targets as
in following. It would be worth noting that defining fuzzy targets is much easier and
intuitively natural than directly defining random targets.

3 Decision making with targets: expected probability of meeting the target

Before discussing about the problem of decision making using fuzzy targets, it is
necessary to briefly recall that when expressing the value of a variable as a fuzzy
set (Zadeh 1965), we are inducing a possibility distribution (Zadeh 1978) over the
domain of the variable. Formally, the soft constraint imposed on a variable V in the
statement “V is F”, where F is a fuzzy set, can be considered as inducing a possibility
distribution � on the domain of V such that F(x) = �(x), for each x . From now on,
we can use “membership function” and “possibility distribution” interchangeably.

Since the introduction of the idea of possibility, the relationship between possibil-
ity and probability has been received much attention from the research community.
Particularly, the issue of associating probability distributions with possibility distri-
butions has been also discussed extensively. Recently, Yager (2002a) has proposed a
procedure for instantiating a possibility variable over a discrete domain by converting
its possibility distribution into a probability distribution, via a simple normalization
as follows:

PF (x) = F(x)
∑

x F(x)

This conversion has been extended into a continuous domain and applied to ranking
fuzzy numbers (Yager et al. 2001) and to defining an “important weight” for OWA
aggregation over a continuous interval argument (Yager 2004) as follows

PF (x) = F(x)
∫

x F(x)dx
(6)

In the following we will use this conversion of a possibility distribution into a
probability distribution for decision making with fuzzy targets.

3.1 State-independent targets

Let us turn back to the problem of decision making in the face of uncertainty shown
in Table 1. We now discuss this problem using fuzzy targets. By a fuzzy target we
mean a possibility variable T over the payoff domain D represented, with an abuse of
notation, by a possibility distribution T : D → [0, 1]. We also assume further that T is
a piecewise continuous function having a bounded support and

∫
D T (x)dx > 0. In the

following of this section, we suppose that Supp(T ) = [cmin, cmax ], where Supp(T )

is the support of T .
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Given a fuzzy target T , let PT be its associated probability distribution and, without
any danger of confusion, we use the same notation T for the random variable having
the probability distribution PT . Then the target-based decision model suggests the
ranking of alternatives be obtained by using the value function defined by

v†(Ai ) � P(Ai � T ) (7)

According to (2) and the additive property of the probability measure, we have

v†(Ai ) =
m∑

j=1

P(ci j � T )PS(S = S j )

= 1

K (T )

m∑

j=1

[∫ ci j

cmin

T (x)dx

]

p j (8)

where K (T ) is the area under the membership function T , i.e.,

K (T ) =
∫ cmax

cmin

T (x)dx

Probabilistically, we may think of the value function (8) as the expected probability
of an alternative meeting a pre-defined uncertain target T .

As we have discussed in the preceding section, the uncertain target in the target-
based model of the expected value can be seen as an interval target represented by
the possibility distribution Tneutral(c) = 1 for cmin ≤ c ≤ cmax , and Tneutral(c) = 0
otherwise. Intuitively, this particular target clearly implies a neutral behavior on atti-
tude about the target selection of the DM. This prototypical decision attitude has been
used very often in the literature. In this case, as shown in preceding section, we have

v†(Ai ) =
m∑

j=1

ci j − cmin

cmax − cmin
p j (9)

which is equivalent to the expected value model. Fig. 1 graphically depicts the mem-
bership function Tneutral , its associated probability distribution and the corresponding
cumulative probability function.

In the following, we shall consider the cases for other two prototypical attitudes
that are pessimist and optimist. Let us first consider the case of a decision maker who
is optimistic in the target selection. In a target-based language, the optimistic attitude
about the target selection represents that the DM assesses higher possibility about his
target towards the maximal payoff, which corresponds to the attitude that he believes
the best thing may happen. Formally, the optimistic fuzzy target, denoted by Topt , can
be defined as follows

Topt (c) = c − cmin

cmax − cmin
(10)
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Fig. 1 Neutral attitude about target
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Fig. 2 Optimistic attitude about target

Then we easily get

P(c � Topt ) = (c − cmin)2

(cmax − cmin)2

and therefore the value function in this case is

v†(Ai ) =
m∑

j=1

(ci j − cmin)2

(cmax − cmin)2 p j (11)

This situation is graphically illustrated by Fig. 2.
Looking at Fig. 2 we see that the optimistic target Topt leads to the convex c.p.f.

P(c � Topt ), which is equivalent to a convex utility function and therefore, exhibits
a risk-seeking behavior. This is because of having an aspiration towards the maximal
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Fig. 3 Pessimistic attitude about target

payoff, the DM always feels loss over the whole domain except the maximum, which
would produce a risk-seeking behavior globally.

Let us now consider the case of a decision maker who is pessimistic in the target
selection. In this case, the DM assesses lower possibility about his target towards the
maximal payoff, which corresponds to that he believes the worst thing may happen.
Formally, the pessimistic fuzzy target, denoted by Tpess , is defined as follows

Tpess(c) = cmax − c

cmax − cmin
(12)

The behavior of the target in this case is graphically illustrated in Fig. 3. Then we have
as the value function:

v†(Ai ) =
m∑

j=1

[

1 − (cmax − ci j )
2

(cmax − cmin)2

]

p j (13)

As we have seen, the pessimistic target Tpess induces a concave c.p.f. P(c � Tpess),
or equivalently a concave utility function, and then, associates with a risk-aversion
behavior of the DM.

By observing the behavior of cumulative probability functions derived from these
targets, interestingly we can see that the cumulative probability function of the neutral
target has an uniform increasing behavior, and those of the other two have “oppo-
site” behaviors. That is, while the cumulative probability function of the pessimistic
target drastically increases at the beginning and becomes nearly stable at around the
maximal payoff, the cumulative probability function of the optimistic target has a very
little increasing at the beginning but becomes rapidly increasing at around the maximal
payoff. To see how different attitudes about the target selection may lead to different
results, let us consider the following example.
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Assume the following decision structure over the domain D = [−10, 10]:

S1 S2 S3 S4

A1 −8 5 −6 9
A2 −1 −4 2 2

where p1 = 0.3, p2 = 0.1, p3 = 0.2, p4 = 0.4. If the DM has a neutral behavior
about the target and, as a consequent, assesses the interval [−10, 10] as his target, we
obtain

v†(A1) = v†(A2) = 0.525

which results in that the DM is indifferent between the two alternatives. Note that the
same thing happen if we use the expected value as the ranking criterion, as we also
have EV1 = EV2 = 0.5.

Let us consider now for the case of a pessimistic decision maker. In this case the
DM assesses as the membership function for his corresponding target Tpess

Tpess(c) = 0.5 − 1

20
c

Then we obtain by (13) the value function of alternatives as follows

v†(A1) = 0.622 and v†(A2) = 0.764

which implies that A2 is the preferred choice.
Assuming now we have an optimistic decision maker. Then he assesses as the

membership function for his corresponding target Topt

Topt (c) = 1

20
c + 0.5

Similarly we obtain by (11) the value function of alternatives as follows

v†(A1) = 0.428 and v†(A2) = 0.286

which obviously implies that A1 is the preferred choice. As we have seen in this
example, while the optimistic DM pays much more attention on the alternative which
dominates the other in the towards the maximal payoff, the pessimistic DM pays
much more attention on the alternative which dominates the other in the backwards
the minimal payoff.

We have just discussed three prototypical attitudes about the target selection, namely
neutral, pessimistic and optimistic. Other assessments of the target would be also worth
to be mentioned as following.

In practice, based on his feel/experience about the decision environment under
consideration, the DM may also often assess his target via linguistic statements like
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Fig. 4 The target “About c0”

“about c0”, “at most about c0” or “at least about c0”. For example, let us assume that
the DM assesses as the membership function for his target of about c0

Tc̃0(c) =

⎧
⎪⎨

⎪⎩

c − cmin

c0 − cmin
, cmin ≤ c ≤ c0

cmax − c

cmax − c0
, c0 ≤ c ≤ cmax

Then we get (14) as the cumulative probability function induced from this target.

P(c � Tc̃0) =

⎧
⎪⎪⎨

⎪⎪⎩

(c − cmin)2

(cmax − cmin)(c0 − cmin)
, cmin ≤ c ≤ c0

(c0 − cmin)

(cmax − cmin)
+ (c − c0)(2cmax − (c + c0))

(cmax − c0)(cmax − cmin)
, c0 ≤ c ≤ cmax

(14)

This fuzzy target characterizes the situation at which the DM establishes a modal value
c0 as the most likely target and assesses the possibilistic uncertain target as distributed
around it. We call this target the unimodal. Figure 4 graphically depicts the member-
ship function of the unimodal target, its associated probability distribution PTc̃0

and
the corresponding cumulative probability function P(c � Tc̃0).

As illustrated, the unimodal target induces the S-shape c.p.f. P(c � Tc̃0) that is
equivalent to the S-shape utility function of Kahneman and Tversky’s prospect the-
ory (Kahneman and Tversky 1979), according to which people tend to be risk averse
over gains and risk seeking over losses. In the fuzzy target-based language, as the
DM assesses his uncertain target as distributed around the modal value, he feels loss
(respectively, gain) over payoff values that are coded as negative (respectively, positive)
changes with respect to the modal value. This would lead to the behavior consistent
with that described in the prospect theory. A link of this behavior to unimodal probabi-
listic targets has been established by LiCalzi (1999). Further, it has been also suggested
in the literature that this sort of target be the most natural one to occur.
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Fig. 5 The target At least about c0

Similarly, we now assume that the DM assesses as the membership function for his

target of at least about c0 represented as the fuzzy interval ˜[c0, cmax ]

T
˜[c0,cmax ](c) =

⎧
⎨

⎩

c − cmin

c0 − cmin
, cmin ≤ c ≤ c0

1, c0 ≤ c ≤ cmax

Then we easily obtain the following cumulative probability function induced from this
target as (15).

P(c � T
˜[c0,cmax ]) =

⎧
⎪⎪⎨

⎪⎪⎩

(c − cmin)2

(2cmax − (c0 + cmin))(c0 − cmin)
, cmin ≤ c ≤ c0

(2c − (cmin + c0)

(2cmax − (c0 + cmin))
, c0 ≤ c ≤ cmax

(15)

The membership function T
˜[c0,cmax ], its associated probability distribution PT

˜[c0,cmax ]
and the corresponding cumulative probability function P(c � T

˜[c0,cmax ]) are graphi-
cally depicted as in Fig. 5.

In the case if the DM assesses his target as at most about c0 represented as the fuzzy

interval ˜[cmin, c0] and we get as the membership function for this target

T
˜[cmin ,c0](c) =

⎧
⎨

⎩

1, cmin ≤ c ≤ c0
cmax − c

cmax − c0
, c0 ≤ c ≤ cmax

Then we obtain (16) as the cumulative probability function induced from this target
and, similarly, the related functions of this target are graphically illustrated as in Fig. 6.
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Fig. 6 The target At most about c0

P(c � T
˜[cmin ,c0]) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2(c − cmin)

(cmax + c0 − 2cmin)
, cmin ≤ c ≤ c0

−c2 + 2cmax c − 2cmin(cmax − c0) − c2
0

(cmax + c0 − 2cmin)(cmax − c0)
, c0 ≤ c ≤ cmax

(16)

3.2 A numerical example

Let us consider the following example from Samson (1988) to illustrate some points
of the above discussion. Payoffs are shown in thousands of dollars for a problem with
three acts and four states as described in Table 2. It is also assumed a proper prior over
the four possible states of p1 = 0.2, p2 = 0.4, p3 = 0.3, p4 = 0.1.

Applying the above computational results of the cumulative probability function
of different targets and (8), we obtain the value functions for acts shown in Table 3.

As we have seen in the table, while the act A2 is the preferred choice according to
a decision maker who has a neutral (equivalently, who abides by the expected value)
or optimistic-oriented behavior about targets, a decision maker having pessimistic-
oriented behavior about targets selects A1 as his preferred choice. In addition, though
the act A3 is not selected in all cases, its value is much improved with respect to a
pessimistic-oriented decision maker.

Table 2 The payoff matrix
Acts States

1 2 3 4

A1 400 320 540 600

A2 250 350 700 550

A3 600 280 150 400
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Table 3 The target-based value
matrix

Targets The value function

v†(A1) v†(A2) v†(A3)

Neutral 0.51 0.555 0.304

Optimist 0.3 0.41 0.18

Pessimist 0.72 0.7 0.43

3̃00 0.62 0.59 0.33

˜[150, 300] 0.7 0.67 0.41

˜[300, 700] 0.43 0.49 0.24

4 Context-dependent targets

In the above discussion, we have assumed that according to the decision attitude of the
DM, he can assess a common target that does not depend on different states of nature
for the purpose of making decisions. However, quite often in practice the DM’s attitude
about target may change according to different states of nature, i.e., that the DM may
assess different targets for different states (Bordley and LiCalzi 2000). For example,
assume that we are considering the decision problem of what stock we should buy from
different stock portfolios and there are two states S1 = H and S2 = L , respectively,
representing high and low inflation. In such a situation we may assess a target TH for
high inflation and a target TL (possibly different from TH ) for low inflation.

Once having determined different targets for different states of nature, by condi-
tional on the states of nature we would then use the following as the value function

v†(Ai ) = P(Ai � T )

=
m∑

j=1

P(Ai � Tj |S j )PS(S = S j )

=
m∑

j=1

P(ci j � Tj )PS(S = S j ) (17)

where T = [T1, . . . , Tm] represents the state-dependent target with Tj being the target
associated with the state S j .

4.1 An illustrated example

Let us consider the following example for illustration. Assume that the management
of a production company is faced with a decision problem for a new investment and
there are four possible options (alternatives) for its selection. The profit/loss (in thou-
sand of dollars) associated with each alternative depends on the future state of market
which is currently not known. Further assuming that three states of nature have been
considered as favorable market (S1), normal market (S2) and unfavorable market (S3)
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Table 4 Profit/loss matrix
Alternatives States

S1:0.25 S2:0.5 S3:0.25

A1 250 10 −200

A2 150 30 −120

A3 100 10 −20

A4 (do nothing) 0 0 0

with associated probabilities of 0.25, 0.5 and 0.25, respectively. The decision matrix
is given in Table 4.

Applying the expected value model then yields the following ranking order among
alternatives

A3 � A2 � A1 � A4

Therefore, the DM who obeys the expected value model will select alternative A3 as
the most preferred one. However, if the DM thought that the state S2 would most likely
occur, he may assess a state-dependent target as follows

T = [Tneutral , Topt , Tneutral ]

where the profit domain can be defined as D = [−200, 250]; i.e., the DM assesses an
optimistic target for the state S2 and the neutral target for the others. Then, we easily
obtain the following ranking order among alternatives by using the value function
(17):

A2 � A1 � A3 � A4

with which the alternative A2 becomes the most preferred choice.

4.2 Target-based version of the expected opportunity loss

Let us now consider a special case of the context-dependent target where the DM has
a neutral behavior about targets at every state of nature. In such a case, we can also
define

Tj = [cmin, j , cmax, j ]

where cmin, j = min
i

{ci j }, cmax, j = max
i

{ci j }. With this state-dependent target, we

easily get the following value function
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v†(Ai ) =
m∑

j=1

(ci j − cmin, j )

(cmax, j − cmin, j )
p j

= 1 −
m∑

j=1

(cmax, j − ci j )

(cmax, j − cmin, j )
p j (18)

Essentially, viewing the term

ri j = (cmax, j − ci j )

(cmax, j − cmin, j )

as the relative opportunity loss or regret of selecting Ai at state S j , the maximization of
the expected probability v†(Ai ) of meeting the target is equivalent to the minimization
of the expected relative regret

E R(Ai ) =
m∑

j=1

ri j p j (19)

This can be seen as a target-based version of the expected opportunity loss or regret
(Samson 1988).

Continuing with the example given in Sect. 3.2, we obtain the relative regret table
derived from the payoff table as follows

With this derived table, according to (19) we select A2 as the preferred choice as
having the minimal expected relative regret of 0.225.

5 Target-based decision making with fuzzy payoffs

In the preceding section, we have discussed a target-based approach for probabilistic
decision making, making use of Yager’s method for converting a possibility distri-
bution into a probability distribution and the procedure of comparing two random
variables. Essentially we first begin with a random variable interpretation of alterna-
tives and then proceed with defining the decision function as the probability of each
alternative meeting a designed uncertain target. As we have seen, this target-based
method of uncertain decision making is formally equivalent to a procedure which,
once having designed the target, consists of the following two steps:

1. For each alternative Ai and state S j , we define

pi j = P(ci j � T )

where T = Tj if the target is state-dependent, and then form a “probability of
meeting the target” table described Table 6 from the payoff table (i.e., Table 1).
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Table 5 The relative regret
matrix

Alternatives States

1 2 3 4

A1 0.57 0.43 0.29 0

A2 1 0 0 0.25

A3 0 1 1 1

Table 6 The derived decision
matrix

Alternatives The state of nature S

S1 S2 · · · Sm

A1 p11 p12 · · · p1m

A2 p21 p22 · · · p2m

.

.

.
.
.
.

.

.

.
. . .

.

.

.

An pn1 pn2 · · · pnm

2. Define the value function as the expected probability of meeting the target

v†(Ai ) =
m∑

j=1

pi j p j (20)

5.1 A target-based procedure for fuzzy decision making

We now consider the problem of decision making under uncertainty where payoffs
may be given imprecisely. Let us turn back to the general decision matrix shown in
Table 1, where ci j can be a crisp number, an interval value or a fuzzy quantity. Clearly
in this case we have an inhomogeneous decision matrix and traditional methods can
not be applied directly. One of methods to deal with this decision problem is to use
fuzzy set based techniques with help of the so-called extension principle and many pro-
cedures of ranking fuzzy quantities developed in the literature. Here we shall provide
a target-based procedure for solving this problem.

First using the preceding mechanism, once having assessed a target T , we need to
transform the payoff table into the one of probabilities of meeting the target. For each
alternative Ai and state S j , the probability of payoff value ci j meeting the target is
defined by

pi j = P(ci j � T )

If ci j is a crisp number, as previously discussed we have

pi j =
∫ ci j
−∞ T (x)dx

∫ +∞
−∞ T (x)dx
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If ci j is an interval value or a fuzzy quantity, the procedure for computing pi j is as
follows.

In the case where ci j is an interval value, say ci j = [a, b], we consider ci j as a
random variable with the uniform distribution on [a, b]. If ci j is a fuzzy quantity repre-
sented by a possibility distribution Fi j , we have the associated probability distribution
of Fi j defined by

PFi j (x) = Fi j (x)
∫ +∞
−∞ Fi j (x)dx

and also denote, with an abuse of notation, ci j as the random variable associated with
the distribution PFi j . Recall that the associated probability distribution of the target T
is

PT (x) = T (x)
∫ +∞
−∞ T (x)dx

and also denote T as the random variable associated with the distribution PT .
Having considered ci j and T as two random variables in both these cases, we can

define the probability of ci j meeting the target T as

pi j = P(ci j � T )

=
∫ ∞

−∞
PT (x)P(ci j � x)dx

=
∫ ∞

−∞
PT (x)

[∫ ∞

x
PFi j (y)dy

]

dx

=
∫ ∞

−∞

∫ ∞

x
PFi j (y)PT (x)dydx (21)

provided accepting the independent assumption of ci j and T .
As such, we have provided a method of transforming an inhomogeneous decision

matrix into the derived decision matrix described by Table 6, where each element pi j

of the derived decision matrix is uniformly interpreted as the probability of payoff ci j

meeting the target T . From this derived decision matrix, we can then use the value
function (20) for ranking alternatives and making decisions. It is worth to emphasize
that as an important characteristic of this target-based approach, it allows for including
the DM’s attitude, which is expressed in assessing his target, into the formulation of
decision functions. Consequently, different attitudes about target may lead to different
results of the selection.

Note that in the fuzzy set method (Rommelfanger 2002), we first apply the extension
principle to obtain the fuzzy expected payoff for each alternative and then utilize either
a defuzzification method or a ranking procedure for fuzzy numbers for the purpose of
making the decision. Therefore, we may also get different results if different meth-
ods of ranking fuzzy numbers or defuzzification are used. However, this difference of
results caused by using different ranking methods does not reflect the influence of the
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DM’s attitude. Furthermore, a bunch of methods for ranking fuzzy numbers developed
in the literature may also make it even difficult for people in choosing a most suitable
method for each particular problem.

It should be mentioned here that in the research topic of ranking fuzzy numbers,
the authors in Lee-Kwang and Lee (1999) proposed a ranking procedure based on the
so-called satisfaction function (SF, for short) (Lee et al. 1994), which is denoted by S
and defined as follows. Given two fuzzy numbers A and B,

S(A > B) =
∫ ∞
−∞

∫ ∞
y µA(x) � µB(y)dxdy

∫ ∞
−∞

∫ ∞
−∞ µA(x) � µB(y)dxdy

where � is a T -norm and S(A > B) is interpreted as “the possibility that A is greater
than B” (or, the evaluation of A in the local viewpoint of B). Clearly, by a simple
transformation we easily show that the probability pi j of ci j meeting the target T
defined in (21) above is the SF S(ci j > T ) with T -norm � selected as being the mul-
tiplication operator. However, as having discussed, our motivation and interpretation
here are different.

5.2 A numerical example

For illustrating the applicability of the target-based model in fuzzy decision prob-
lems with uncertainty, let us consider the following application example adapted from
Rommelfanger (2002).

LuxElectro is a manufacturer of electro-utensils and currently the market demand
for its products is higher than the output. Therefore, the management is confronted with
the problem of making a decision on possible expansion of the production capacity.
Possible alternatives for the selection are as following:

A1: Enlargement of the actual manufacturing establishment with an increase in capac-
ity of 25%.

A2: Construction of a new plant with an increase in total capacity of 50%.
A3: Construction of a new plant with an increase in total capacity of 100%.
A4: Renunciation of an enlargement of the capacity, the status quo.

Table 7 Fuzzy profit matrix Ũi j = Ũ (Ai , S j )

Alternatives States

S1:0.3 S2:0.5 S3:0.2

A1 (80;90;100;110) (75;85;90;100) (50;60;70)

A2 (135;145;150;165) (120;130;140) (−40;−30;−20)

A3 (170;190;210;230) (100;110;125) (−90;−80;−70;−60)

A4 70 70 70
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The profit earned with the different alternatives depends upon the demand, which
is not known with certainty. Due to the amount of information the management esti-
mates three states of nature corresponding to ‘high’, ‘average’ and ‘low’ demand
with associated prior probabilities of p1 = 0.3, p2 = 0.5, and p3 = 0.2, respectively.
Moreover, assume that the prior matrix of fuzzy profits Ũi j (measured in million Euro)
is given in Table 7, where fuzzy profits are represented parametrically by triangular
and trapezoidal fuzzy numbers. Then, the expected fuzzy profit of each alternative Ai

(i = 1, . . . , 4) can be calculated as

Ẽ(Ai ) =
3⊕

j=1

(p j ⊗ Ũi j ) (22)

where ⊕ and ⊗ stand for the extended addition and multiplication, respectively, and
risk neutrality is assumed. Using Zadeh’s extension principle for (22) then results in
the expected fuzzy profits of alternatives as shown in Table 8 below. Now, to make a
decision one can apply one of ranking methods developed in the literature on these
fuzzy profits. Looking at the membership functions of the expected profits depicted
in Fig. 7, we can intuitively see that the alternatives A4 and A1 are much worse than
the alternatives A3 and A2. However, it is not so easy to say which alternative is dom-
inated by the other among these two better alternatives. Here, if using for example
the centroid of fuzzy numbers as the ranking criterion we get the ranking order as
A2 � A3 � A1 � A4.

Table 8 Expected fuzzy profits
via extension principle

Alternatives Expected fuzzy profit Centroid value

A1 (71.5; 81.5; 87; 97) 84.25

A2 (92.5; 102.5; 104; 115.5) 103.73

A3 (83; 96; 104; 119.5) 100.76

A4 70 70

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

0.2

0.4

0.6

0.8

1

A4 A1 A2A3

Fig. 7 Membership functions of expected profits
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Table 9 Derived decision
matrix pi j = P(Ũi j � Topt )

Alternatives States

S1 S2 S3

A1 0.3346 0.3079 0.2199

A2 0.5584 0.4728 0.0353

A3 0.8229 0.3974 0.0026

A4 0.25 0.25 0.25

Table 10 Derived decision
matrix pi j = P(Ũi j � Tneut )

Alternatives States

S1 S2 S3

A1 0.5781 0.5547 0.4688

A2 0.747 0.6875 0.1875

A3 0.9063 0.6302 0.0469

A4 0.5 0.5 0.5

Table 11 Derived decision
matrix pi j = P(Ũi j � Tpess )

Alternatives States

S1 S2 S3

A1 0.8216 0.8014 0.7176

A2 0.9356 0.9022 0.3397

A3 0.9896 0.8630 0.0911

A4 0.75 0.75 0.75

Now let us apply the target-based procedure suggested above for solving this prob-
lem. According to the information given by this problem, let us define the domain of
profits as D = [−90, 230]. Assuming for instance that a fuzzy optimistic target Topt

has been estimated based upon the optimistic attitude of the management, where

Topt (c) = c + 90

320

Then with this optimistic target, using the above procedure we obtain the derived
decision matrix as shown in Table 9 below.

In the same way, we also obtain the derived decision matrices corresponding to neu-
tral and pessimistic targets, denoted, respectively, by Tneut and Tpess , as shown in Table
10 and Table 11. After assessing a target and obtaining the derived decision matrix
accordingly, the value function (20) is then applied for making the decision. Table 12
shows the results of the value function for three above targets and the corresponding
ranking orders of alternatives.

From Table 12 we see that the result reflects very well the behavior of the DM which
is expressed in assessing the target. In particular, the ranking order of alternatives
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Table 12 The ranking result using different targets

Targets Expected probability Ranking order

A1 A2 A3 A4

Optimistic 0.2983 0.411 0.4461 0.25 A3 � A2 � A1 � A4

Pessimistic 0.7907 0.7997 0.7466 0.75 A2 � A1 � A4 � A3

Neutral 0.5445 0.6053 0.5964 0.50 A2 � A3 � A1 � A4

Table 13 Result for a “more
pessimistic target”

Alternatives States Expected values

S1 S2 S3

A1 0.9244 0.9113 0.8498 0.9029

A2 0.9835 0.9693 0.4632 0.8723

A3 0.9987 0.9491 0.133 0.8008

A4 0.875 0.875 0.875 0.875

−90 −50 50 150 230
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tvery pess (c)

Fig. 8 Membership function of a more pessimistic target

corresponding to the neutral target is the same as that obtained by using the fuzzy
expected profits with centroid-based ranking criterion, where the risk neutrality is
assumed. As noted in Sect. 3, the neutral target Tneut induces a linear utility function
U (c) = P(c � Tneut ) which is also equivalent to risk neutrality behavior. For the case
of optimistic target Topt , it induces a convex utility function U (c) = P(c � Topt )

(refer to Fig. 2) which is equivalent to a risk-seeking behavior. In this case the DM
wishes to have profit as big as possible accepting a risk that if the desirable state will
not occur, he may get a big loss. This attitude leads to the selection of alternative
A3 which has the biggest profit in case of a high demand occurs. By the contrast,
the pessimistic target Tpess yields a concave utility function U (c) = P(c � Tpess)
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corresponding to a risk-aversion behavior (refer to Fig. 3). In this case, we see that
though A2 is still selected, alternatives A1 and A4 become more preferred over the A3.
This reflects the situation that the DM is looking for sure of getting profit. It should
be noted here that we have defined membership degrees for Tpess linearly decrease
over the profit domain, which exhibits a neutral-pessimistic attitude and consequently
the DM is not enough risk averse to refuse alternative A2. Let us now assume a more
pessimistic attitude of the DM and the corresponding target, denoted by Tver y-pess , is
estimated for example by the following membership function:

Tver y-pess(c) = (230 − c)2

3202

and graphically depicted as in Fig. 8. Then we obtain the result corresponding to this
target as shown in Table 13, which yields the ranking order as A1 � A4 � A2 � A3.
In other words, with a more pessimistic attitude the DM is enough risk averse to refuse
alternative A2 and select A1 for surely getting best profit.

6 Concluding remarks

In this paper, we have explored a fuzzy target-based approach to decision making
under uncertainty. In particularly, we have discussed the issue of how to bring fuzzy
targets within the reach of the target-based decision model and also considered differ-
ent attitudes of the decision maker in assessing the target. Moreover, the target-based
formulation for the problem of decision making in the face of uncertainty about the
state of nature and imprecision about payoffs has been also provided. This basically
suggests that the target-based approach would provide an appealing and unified one for
decision analysis under uncertainty. Furthermore, this target-based approach would
also allow for higher generality in the formulation of decision functions taking the
decision maker’s attitudes about different aspects of decision problems into account
(Yager 1999). However, this requires further research in the future.
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