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Abstract—Complex biological data generated from various
experiments are stored in diverse data types in multiple datasets.
By appropriately representing each biological dataset as a kernel
matrix then combining them in solving problems, the kernel-
based approach has become a spotlight in data integration
and its application in bioinformatics and other fields as well.
While linear combination of unweighed multiple kernels (UMK)
is popular, there have been effort on multiple kernel learning
(MKL) where optimal weights are learned by semi-definite
programming or sequential minimal optimization (SMO-MKL).
These methods provide high accuracy of biological prediction
problems, but very complicated and hard to use, especially for
non-experts in optimization. These methods are also usually of
high computational cost and not suitable for large data sets.

In this paper, we propose two simple but effective methods for
determining weights for conic combination of multiple kernels.
The former is to learn optimal weights formulated by our
measure FSM for kernel matrix evaluation (feature space-based
kernel matrix evaluation measure), denoted by FSM-MKL. The
latter assigns a weight to each kernel that is proportional to
the quality of the kernel, determining by direct cross validation,
named proportionally weighted multiple kernels (PWMK). Ex-
perimental comparative evaluation of the four methods UMK,
SMO-MKL, FSM-MKL and PWMK for the problem of protein-
protein interactions shows that our proposed methods are sim-
pler, more efficient but still effective. They achieved performances
almost as high as that of MKL and higher than that of UMK.

I. INTRODUCTION

PPIs are elementary in biological activities and processes.
As for the foreknowledge of the interactions, it is an important
means to assist scientists to examine a point that genetic
phenomenon leads to a physiologic expression phenomenon of
special protein structures in a special cell process. Convention-
ally, there are several experimental approaches to detect PPIs,
such as yeast two hybrid [1], mass spectrometry [2], protein
chips [3], etc. In particular, yeast two hybrid methods are
considered a comprehensive protein-protein network analysis
in Saccharomyces cerevisiae [4], [5]. Computational methods
for detecting PPIs, derived from a number of machine learning
techniques for various types of available biological data, allow
studying more widely and deeply about PPIs. For example,
Matthews et al. [6] investigated the extent to which a protein
interaction map generated in one species can be used to predict
interactions in another species under the interacting orthologs.

Deng et al. [7] proposed Bayesian network models for motifs
and domains to predict PPIs.

So far, PPIs computational prediction has been based on
genomic sequence analysis. These approaches apply tech-
niques to obtain sequence information for biological patterns.
Recently, it is desirable to handle multiple data sources and
heterogeneous sets of biological data, e.g., protein sequences,
gene expression, protein structures, gene ontology annotation,
etc. to predict PPIs. Different data sources contain different
and independent features in proteins. If those features can be
appropriately combined as one data source, it is possible to
enhance the PPIs prediction. However, those data are stored in
multiple databases in various types, including gene expression
expressed as numerical value vector and time-series, protein-
protein interactions as graph, amino acid sequence as alphabet,
etc. Therefore, it was necessary to work with a common
feature format.

One solution to the problem is using inductive logic pro-
gramming (ILP) which has been recognized as appropriate for
exploiting multiple biological data types [8]. Nguyen and Ho
[9] applied the ILP to predict PPIs using multiple data sources,
including sequences, structures, and textual data. Additionally,
kernel methods were suggested as an alternative solution to the
problem [10], [11], [12]. Kernel methods were shown to enable
the combination of these heterogeneous data into a common
format. These methods represent various data by means of
a kernel function, which generally defines similarity between
pairs of objects, called kernel matrix. When there are n pro-
teins, the kernel matrix is an n×n similarity matrix. Yamanishi
et al. [13] used the kernel similarity matrix between protein
networks, and inferred protein function networks with kernel
canonical correlation analysis from multiple data sources.

So far, the best popular kernel method is SVM algo-
rithm [12], which can map the original data objects into a
high dimensional space by replacing the inner product in
the input space. SVM is a binary supervised classification
method having a solid theoretical foundation and performs the
classification task more accurately than most other algorithms
in many applications. SVM can be applied to classify various
protein function categories, e.g. ribosomal proteins, membrane
proteins, etc.

Pavlidis et al. [14] combined kernel matrices generated from
microarray gene expression data and phylogenetic profiles,



and classified gene functions in discriminant of SVM. Ben-
Hur et al. [15] predicted PPIs using pairwise kernel and
simple linear combination with sequence kernels. Vert et al.
[16] proposed metric learning pairwise kernel for biological
network inference. In those works, they used simple kernel
linear combination by do not weighting kernels (or equal
weights of 1 for all data sources). On the contrary, Lanckriet et
al. [17] formualte a multiple kernel learning (MKL) problem
which optimizes kernel weights by training a SVM classifier
using with semi-definite programming. Bach et al. [18] applied
sequential minimal optimization (SMO) techniques for MKL
by solving non differentiable problem in the cost function.
The MKL formulation based on a semi-infinite linear problem
(SILP) was proposed by Sonnenberg et al. [19]. One common
point among these methods is that they are all expensive for
learning the weights in addition to learning the SVM classifier
itself.

In this paper we propose two other simple but effective
methods for combining multiple kernels. The former is to learn
optimal weights formulated in terms of our measure FSM for
kernel matrix evaluation (feature space-based kernel matrix
evaluation measure) [20], denoted by FSM-MKL. This method
is very efficient as it scales quadratically in terms of the
number of training data (as opposed to O(n3) of the previously
proposed methods). It is suitable for large data sets. The latter
is to assign a weight to each kernel that is proportional to the
quality of the kernel, determining by direct cross validation,
called proportionally weighted multiple kernels (PWMK). This
method is efficient as it does not learn the weights but assigns
directly based on some SVM training results on the data.

Experimental comparative evaluation of four methods
UMK, MKL, FSM-MKL and PWMK for the problem of
protein-protein predictions has been carried out. It shown that
simple combinations of multiple kernels is possible and effec-
tive, especially PWMK can nearly achieve high performance
as MKL and higher than that of UMK.

II. KERNEL METHODS

Kernel methods in general, and SVM in particular, are
increasingly used to solve various problems in computational
biology, and now considered as state-of-the-art in various
domains, have just became a part of the mainstream in
machine learning and empirical inference recently. Most kernel
methods must satisfy some mathematical conditions. They can
only process square matrices, which are symmetric positive
definite. This means that if k is an n × n matrix of pairwise
comparisons, it should satisfy kij = kji for any 1 ≤ i, j ≤ n
and c>kc ≥ 0 for any c ∈ Rn.

A function k : X × X → R is called a positive definite
kernel, if it is symmetric, that is k(x, x′) = k(x′, x) for any
two objects x, x′ ∈ X , and positive definite, that is,

n∑
i=1

n∑
j=1

cicjk(xi, xj) > 0

for any n > 0, any choice of n objects x1, ..., xn ∈ X ,
and any choice of real numbers c1, ..., cn ∈ R. Additionally,
all positive semi-definite and symmetric matrix are kernel
matrices. Conversely, we only focus on whether kernel matrix
is semi-definite or not.

There are many kernel functions, so how to select a good
kernel function in an application is also a critical issue. How-
ever, normally, there are several popular kernel functions, such
as linear kernel, RBF kernel, polynomial kernel and hyperbolic
tangent kernel. In addition, for sequence in nonvector, Leslie
et al. [22] proposed spectrum kernel which compares any
two sequences by considering the number of these k-mers
that two sequences share. For these popular kernel functions,
we therefore can choose them in applications by heuristic
selection. For example, for gene expression expressed as
vectors and time-series, the RBF kernel will be used; for
protein localization expressed as binary data, the linear kernel
will be used; for sequences the spectrum kernel will be used,
etc.

A. Pairwise kernel

The standard kernel obtained from each kernel function
is called genomic kernel, which means a similarity between
single objects. While it is possible to use the single similarity
matrix for protein function classification, the task of yeast
interaction prediction also needs to consider similarity between
pairs of proteins.

Ben-Hur et al. [15] addressed pairwise kernels representing
a relationship between pairs of objects. The method maps
an embedding of single objects onto an embedding of pairs
of objects, otherwise, converting a kernel defined on single
objects into pairwise kernel. The mapping of protein implies
that two pairs of proteins are similar when each protein in
a pair is similar to the corresponding protein in the other.
For example, if protein x1 is similar to protein x2, and x3 is
similar to x4, then the pairs (x1, x3) and (x2, x4) are similar.
The pairwise kernel is formulated as follows

Kp((x1, x2), (x3, x4))
= Kg(x1, x3)Kg(x2, x4) +Kg(x1, x4)Kg(x2, x3)

where Kp is the pairwise kernel, Kg is the genomic kernel.

B. Support Vector Machine (SVM)

SVM is a computational algorithm that learns by examples
to assign labels to objects. SVMs have also been success-
fully applied to an increasingly wide variety of biological
applications, e.g. classifying objects as diverse as proteins and
DNA sequences, microarray expression profiles. The method
is defined over a vector space where the classification problem
is to find the decision surface that best separates the data points
of the two classes.

In the case of linearly separable data, the decision surface
is a hyperplane that maximized the margin between the two
classes. This hyperplane can be written as wx+b = 0 , where
x is a data point and vector w and constant b are learned from



the training set. Let yi{+1.−1} be the classification label for
input vector x. Finding the hyperplane can be translated into
the following optimization problem.

min
w,b,ξ

〈w,w〉+ C

n∑
i=1

ξi

subject to yi((w,xi) + b) ≥ 1− ξi, i = 1, ..., n
ξi ≥ 0, i = 1, ..., n

This problem is called soft margin optimization, which
is able to deal with errors in the data by allowing a few
anomalous points to fall on the wrong side of the separating
hyperplane. Generally, this problem has a trade-off between
maximizing geometric margin and minimizing some measure
of classification error on the training set. We discuss about
parameter C to regulate the false positives and false negatives
containing training label in SVM at the experiment section.

C. Normalized kernel

The normalization of the vectors of the input space can be
considered as basic type of preprocessing. But the normal-
ization in input space has loss of normalization or a scale
problem for significant vector algorithm. For the problem,
normalization in the feature space presents a solution. Assume
K(x,y) is the kernel function representing a dot product in
the feature space, then normalization in the feature space can
be defined a new kernel function Knor(x,y) as follows:

Knor(x,y) =
K(x,y)√

K(x,x)K(y,y)
∈ R

This normalization also means avoiding attributes in larger
numeric ranges dominating those in smaller ranges. In this
work, we also preprocess these normalization before combin-
ing several kernels generated from pairwise kernel function.

III. KERNEL COMBINATION

The kernel methods make it possible to convert heteroge-
neous data into a common format by representing it as a
similarity matrix in the feature space and combining kernel
matrices. What to focus on here is how to combine several
kernel matrices into a kernel. The kernel formalism also allows
several kernels to be generated from various types of data to
be combined.

A. Unweighed Multiple Kernel Method (UMK)

The basic combination method is the addition of operation.
This operation is based on positive semi-definiteness. For
example, given several kernel functions {K1, ...,Ki} and the
embedding φ1, ..., φi, we can represent that K = K1 + ... +
Kk = Σki=1Ki. This is expressed as linear combination or un-
weighted multiple kernels method (UMK), which satisfy semi-
definite condition. In the past previous works, this combination
method was employed in kernel integration, and shown to be
useful and effective in SVM.

Because it is a simple linear sum of kernels, the weight is
equally assigned for kernel matrix. We can regard this as a
simple method for not considering the weight as well as the
quality of each kernel. On the other hand, we can consider
convex combinations of K kernels as

K =
k∑
i=1

µiKi

with µi ≥ 0 and Σki=1µ = 1, where the sets of Ki are kernel
matrices, e.g., linear, RBF, polynomial, spectrum kernels, etc.,
each computed on a dataset. This combination also preserves
the kernel properties.

B. Multiple Kernel Learning (MKL)

In practice, it is desirable to build classifiers based on the
combinations of the above multiple kernels. Lanckriet et al.
[24] considered conic combinations of such kernel matrices in
the SVM and showed that the optimization of the coefficients
of the combination can be reduced to a convex optimization
problem known as quadratically-constrained quadratic pro-
gram (QCQP).

The key characteristic of MKL is to find a suitable set of
weights for combinations, i.e., to conduct a grid search over all
possible weightings and select the weights that minimize the
error. The MKL problem can explain that dual formulation of
1-norm soft margin optimization problem in SVM: converting
kernel of dual formulation into multiple kernel ΣkµkKk, in
short,

min
ΣjµjKj�0

(
max

α,α>y=0
α>e− 1

2
α> (ΣjµjKj)α

)
This problem is reformulated into semi-definite program-

ming. However, the MKL based on semi-definite programming
(SDP-MKL) is only used for problem with small number of
data points and kernels. For the problem, Bach et al. (2004)
suggested an algorithm based on sequential minimization
optimization (SMO-MKL).

In this framework, the problem of data representation is
transferred to the choice of µ. The coefficients α, b and µ
are obtained by solving the dual of the following optimization
problem,

min
1
2
( ∑
j=1m

µj‖wj‖2
)2 + C

n∑
i=1

ξi

w ∈ Rk = Rk1 × ...×Rkm , ξ ∈ Rn+, b ∈ R
subject to yi(Σjw>j xji + b) ≥ 1− ξi, ∀i ∈ 1, .., n

In addition, this problem is transformed as dual problem,

max γ

γ ∈ R,α ∈ Rn

subject to
1
2

n∑
i,j=1

αiαjyiyjKk(xi,xj)−
n∑
i=1

≤ γ

∀k = 1, ...,K

0 ≤ α ≤ C, α>i yi = 0



We can find the optimal weights µi by solving this dual
problem.

IV. THE PROPOSED METHODS

A. FSM-based Multiple Kernel Learning (FSM-MKL)

The difficulty of learning weights for kernels mainly comes
from the fact that one needs an optimization procedure to
optimize the margin of the weighted combination of kernels.
The optimization procedure is expensive as it involves a large
number of variables (kernel evaluations and weights). One
of the ways to avoid this difficulty is to use some surrogate
measures. The measures should reflect how good a kernel is
compared to others in terms of generalization error. It also
should be calculated efficiently, in O(n2) time complexity.

We use FSM [20] to score different kernel combinations to
select optimal weights. FSM measures the quality of a kernel
matrix for a given classification task. FSM is defined to be
the ratio of the total within-class standard deviation in the
direction between the class means to the distance between the
class means. Concretely,

FSM(K) =
std+ + std−
‖φ+ − φ−‖

where std+ and std− are standard derivation of the positive
and negative class, φ+ and φ− are class centers in the feature
space, respectively. These quantities are efficiently computable
from kernel matrices, which are readily available in a multiple
kernel learning problem. This measure is selected over other
siblings for the following reasons. First, it is optimally efficient
in time. Second, it overcomes drawbacks of previously pro-
posed measures as it is robust to data manipulation in feature
space. It also implies some error bounds on training data. It
has shown a high performance for kernel selection problems
in various data sets.

The method using FSM is called FSM based Multiple
Kernel Learning (FSM-MKL). It is formulated as follows:

min FSM(
k∑
i=1

µiKi)

subject to µi ∈ R, µi ≥ 0
k∑
i=1

µi = 1.

The methods to solve this problem is very simple. We use a
grid search over the simplex of µi in Rk. The fact that there
is a small number of kernels to combine makes this method
very efficient. This method scales quadratically (as opposed to
cubic for other MKL methods) in the number of data, hence
efficient enough for large kernels.

B. Proportionally Weighted Multiple Kernels (PWMK)

As mentioned above, MKL-based approach is difficult to
understand and apply in several fields, in particular combining
biological data. Our first interest is to develop a weighted

method for kernel combination that is easy to understand
and use but effective. Additionally, our second interest is to
answer the question if combining all available datasets always
gives higher performance than combining some of them. When
combining weaker learners in ensemble learning, Zhou et al.
[23] shown that when there is a number of available learners,
ensembling many of them can be better than ensembling all
of them. In the dual task of combining data by kernels, our
assumption is also combining data from a subset of available
datasets can be better than combining of the datasets.

In the following, we propose a method for data combination
with kernels in considering together the two above issues.

The quality of a kernel (or of the corresponding dataset)
in a given computation task is the performance estimated
by a 10 × 10 cross validation when using that single kernel
to perform the task. Particularly, for the prediction task the
performance is usually measured by accuracy.

Firstly, the key idea of our weighted combination is to
assign a weight to each kernel that is proportional to its
quality. It ensures that the higher quality of the kernel the
higher weight assigned to it in the combination, i.e. the higher
contribution of the corresponding data to the combination.
Secondly, each available kernel is individually compared its
quality with a given threshold δ. And the kernel is included
in the combination if and only if its quality is higher than
the threshold. This allows us to combine only kernels that
are considered good enough in term of quality. In fact, we
distinguish threshold δ for two cases: one is choosing it
equally to the minimum accuracy of kernels, the other is
choosing it as 10 × the tens digit of minimum accuracy in
kernels. The former can directly exclude the low accuracy
from combination by setting threshold into minimum accuracy.
The later can decrease the effect of low accuracy kernel.
The weight assigned to each kernel in the combination is
determined as follows:

µm =
accuracyKm − δ

Σki=1accuracyKi − δ · k

and our general formulas of proportionally weighted multiple
kernels (PWMK) is

K =
k∑

m=1

(
accuracyKm

− δ∑k
i=1 accuracyKi

− δ · k

)
×Km

where k is a number of kernel matrices, Km is m-th kernel
matrix, accuracyKi

is the interactions prediction accuracy of
kernel Ki when using SVM. The weights are standardized
and we have Σkm=1µm = 1. In case that δ is the minimum
accuracy, we have k ≥ 3.

Here, we must consider that kernel matrices are positive
semi-definite, i.e, eigenvalues of matrix are non-negative. In
this formulation, the parameters µm correspond to eigen-
values and are constrained to be nonnegative. We confirm
that the weights µm satisfy the condition accuracyKm

≥ δ,
Σki=1accuracyKi ≥ δ · k.



Fig. 1. (a) This figure is single kernel matrix generated from mRNA
translation profile data. Color intensity of each dot represents similarity value:
the darker the color, the higher the similarity value.

Thus, by assigning weight to each kernel and setting
threshold, our method makes it possible to avoid the low
performance kernel in kernel combination process and obtain
higher performance. Moreover, it allows many people to use
in several applications.

In experiments, we denote that PWMK(a) is the case when
δ value is assigned as 10 × the tens digit of minimum
accuracy, and PWMK(b) is the case when δ value is assigned
as minimum accuracy.

This method is inherently different from multiple kernel
learning ones. It assigns weight a priori, making the weight
learning part trivial. Therefore, it scales linearly in the number
of kernels (as opposed to higher order of all other learning
methods).

V. EXPERIMENTAL COMPARATIVE VALUATION

In this evaluation, we regard kernel matrices generated from
heterogeneous datasets as that of decision function within
SVM, and verify the performance obtained by solving the
discriminant problem. Basically, the sum of kernels is very
effective in SVM, especially, MKL is better than other com-
bination methods [24]. But MKL is hard to understand and
be adapted for applications in several fields. By contrast, our
methods is an easy and applicable method.

The objective is to evaluate the performance of the four
methods: UMK, MKL, FSM-MKL and PWMK by comparing
their performance in interaction prediction accuracy in differ-
ent situations, and to verify the effectiveness of PWMK.

Interacting proteins often function in the same biological
process. By considering this characteristic, we assume that two
proteins acting in the same biological process are more likely
to interact than two proteins involved in different processes.
In short, we assume that if one protein involves a function

Fig. 2. (b) Pairwise kernel matrix are computed from pairwise kernel function
in physical interactions. This matrix is generated from single kernel.

together with the other, they interact with each other. Such
similarity of protein function can be expressed on kernel
similarity matrix which represents relations among all proteins
as inner products.

Hence, we chose several datasets that have the feature of
protein function in experimental results under several environ-
ments.

A. Experimental design

The experiment is designed in the following steps.

1) Preprocess each type of data to deal with missing values
and extract feature elements from the raw data.

2) Select common open reading frames (ORFs) in all
datasets.

3) Construct the kernel matrices using kernel function from
the datasets as shown Fig. 1.

4) Compute kernel matrices from pairwise kernel functions
using the single kernel as shown Fig. 2.

5) Construct the normalized kernel from pairwise kernel
matrices.

6) Combine kernels for each of UMK, MKL, FSM-MKL
and PWMK.

7) Classify yeast interactions using SVM to evaluate the
performance of the combination methods by 10 × 10-
folds cross validation.

In addition, we performed two types of experiments:

• An experiment to evaluate the difference between data
types and four methods of data combination. This ex-
periment is used for investigating physical interactions
between proteins.

• An experiment to evaluate the difference of training
labels, such as genetic interactions.



B. Data for experiments

The experiments were carried out using two types of
training data: physical interactions and genetic interactions in
yeast. Additionally, as a training data, we selected four types
of datasets on gene expression, protein localization, mRNA
translation profile, and genetic sequence. In this section, we
present a dataset and the interactions data in more details.

1) Biological interactions data: We selected physical inter-
actions and genetic interactions in Saccharomyses cerevisiae
as explained above, and 2000 interactions abstracted positive
data records from Munich Information Center for Protein
Sequences (MIPS) (2007/12/19). Direct physical interactions
among yeast proteins are mapped by systematic two-hybrid
and mass spectrometric characterization of protein complexes.
Genetic interactions are also mapped by crossing mutations in
different query genes into a set of viable gene yeast deletion
mutants and scoring the double mutant progeny for fitness
defects. These interactions data were used as training labels
in SVM. We also randomly selected interactions 2000 negative
data records from all interaction datasets in BioGRID (about
30000 data) except interaction datasets in MIPS.

2) Expression data: We employed the genomic expression
dataset detected from DNA microarrays, which have been used
to efficiently and quantitatively measure all genetic dynamic
behaviors [25]. The data obtained from microarrays make it
possible to know how expression affects a life cycle. It corre-
sponds to 173 experiments for 6140 ORFs. We preprocessed
missing values using mean in each column and selected RBF
kernel which parameter σ set 10 by cross validation.

3) Protein localization: Protein cellular localizations are
known to determine the environments in which proteins
operate. As such, subcellular localization influences protein
function by controlling access to and availability of all types of
molecular interaction partners. The comprehensive knowledge
of the location of proteins within cellular environments plays
a significant role in characterizing the cellular function of
hypothetical and newly discovered proteins.

Therefore, the analysis of protein subcellular localization is
important to elucidate protein functions. So, we selected local-
ization information obtained from budding yeast localization
which has 23 intracellular locations [26] for each 6234 ORFs.
We also did preprocessed for this because this also contains
some missing values. In addition, the kernel function chosen
is linear kernel.

4) mRNA translation profile: While gene expression in-
volves many steps, including the transcription and translation,
the analysis of mRNA levels leads to more detailed informa-
tion, such as the changes in mRNA levels and transit times
at each step in response to mutation and changes in growth
conditions in these steps. Accordingly, we selected mRNA
translation profile datasets, which represent 14×3 fractions
that were analyzed by quantitative microarray analysis across
sucrose gradient as vector in feature elements for 6180 ORFs
[27]. The kernel function chosen is RBF kernel and parameter
σ set 25 by cross validation.

5) Sequence: We focused on sequences that have more
information about many biological functions. The genetic
and amino acid sequences of proteins can be now available.
This information is already known to prompt the resourceful
bioinformaticians to find ways to predict interactions based
on sequence information of the proteins. Additionally, it
offers valuable clues to understanding the workings of more-
advanced organisms. So, we selected genetic acid sequence
and abstracted 5598 gene from Kyoto Encyclopedia of Genes
and Genomes (KEGG). The kernel function chosen is spec-
trum kernel and the k-mers is 5.

C. Reliability of interactions

In Deng et al. [28], the reliability of interaction data in
MIPS e evaluated with three measures: the distribution of
gene expression correlation coefficients, the reliability based
on gene expression correlation coefficients, and the accuracy
of protein function predictions. In addition, they carried out
different experiments for PPIs with added noises including
both false positive and false negative cases which cause errors
in PPI classification. In the dataset contains anomalous data,
hard margin SVM cannot perform well. The reason is that
hard-margin SVM does not allow their data to fall on the
wrong side of the separating hyperplane. As the solution
of the problem, SVM algorithm can be modified by using
the soft margin version, which is what we use here using a
hyperparameter C to trade off a margin and margin errors. The
parameter C in our experiments is determined by 5 times cross
validation. The best parameters are as follows: for physical
interactions: C = 12 and for genetic interactions: C = 9.

D. Experimental setup

We did preprocessing of data, extraction of feature elements
of k-mers from sequences collected from KEGG, construction
of single kernels, pairwise kernels and normalized kernels, data
combination using those methods. For MKL, we employed
MKL toolbox (SMO-MKL) described by Bach et al. [18].
This tool is too memory consuming that we can only run
with very small datasets. Hence, we randomly extracted 500
× 500 (SMO-MKL500) and 1000 × 1000 matrices (SMO-
MKL1000) from each kernel matrix generated from combina-
tion methods. We used LIBSVM for SVM implementation.

VI. RESULTS AND DISCUSSION

This section shows the performance of different kernel com-
bination methods by means of accuracies of SVM classifiers
trained on the combined kernels.

A. Physical interaction classification

The experimental results using physical interactions are
represented in Table 1. Good performances are not seen with
some types of data. Especially, protein localization kernel
yields a low accuracy of 54.83%. Combining several kernels
using SMO-MKL, FSM-MKL and PWMK provides a better



TABLE I
PHYSICAL INTERACTION

Kernel matrix µexp µloc µseq µpro Accuracy(%)
Expression 1 - - - 63.99±0.24
Localization - 1 - - 54.83±0.19
Sequence - - 1 - 64.91±0.42
Profile - - - 1 61.46±0.37
UMK - - 1 1 66.00±0.29
SMO/MKL(500) - - 0.737 0.263 66.43±0.25
SMO/MKL(1000) - - 0.654 0.346 66.85±0.24
FSM-MKL - - 0.731 0.269 66.19±0.24
PWMK(a) - - 0.770 0.230 66.77±0.48
UMK 1 - - 1 65.31±0.40
SMO/MKL(500) 0.658 - - 0.342 65.68±0.35
SMO/MKL(1000) 0.550 - - 0.450 65.53±0.35
FSM-MKL 0.788 - - 0.212 65.44±0.29
PWMK(a) 0.732 - - 0.268 65.90±0.27
UMK 1 1 - - 60.95±0.49
SMO/MKL(500) 0.930 0.070 - - 64.74±0.31
SMO/MKL(1000) 0.930 0.064 - - 64.43±0.41
FSM-MKL 0.753 0.247 - - 63.59±0.30
PWMK(a) 0.743 0.257 - - 63.63±0.24
UMK 1 - 1 - 66.95±0.36
SMO/MKL(500) 0.454 - 0.546 - 67.70±0.28
SMO/MKL(1000) 0.410 - 0.590 - 67.70±0.31
FSM-MKL 0.521 - 0.479 - 66.89±0.22
PWMK(a) 0.449 - 0.551 - 67.28±0.38
UMK - 1 1 - 62.57±0.31
SMO/MKL(500) - 0.052 0.948 - 65.85±0.37
SMO/MKL(1000) - 0.051 0.949 - 65.87±0.30
FSM-MKL - 0.241 0.759 - 64.56±0.24
PWMK(a) - 0.250 0.750 - 65.11±0.27
UMK - 1 - 1 59.28±0.32
SMO/MKL(500) - 0.100 - 0.900 61.95±0.30
SMO/MKL(1000) - 0.073 - 0.927 61.95±0.25
FSM-MKL - 0.486 - 0.514 59.46±0.33
PWMK(a) - 0.302 - 0.698 60.85±0.32
UMK - 1 1 1 63.93±0.31
SMO/MKL(500) - 0.049 0.677 0.274 66.80±0.28
SMO/MKL(1000) - 0.049 0.620 0.331 66.77±0.23
FSM-MKL - 0.168 0.457 0.375 65.13±0.34
PWMK(a) - 0.155 0.478 0.367 66.17±0.32
PWMK(b) - 0 0.603 0.397 66.89±0.26
UMK 1 - 1 1 66.63±0.41
SMO/MKL(500) 0.380 - 0.439 0.181 67.89±0.24
SMO/MKL(1000) 0.331 - 0.423 0.246 67.87±0.30
FSM-MKL 0.402 - 0.333 0.265 66.52±0.32
PWMK(a) 0.385 - 0.474 0.141 67.65±0.32
PWMK(b) 0.423 - 0.577 0 67.75±0.39
UMK 1 1 - 1 62.95±0.36
SMO/MKL(500) 0.621 0.063 - 0.316 65.15±0.28
SMO/MKL(1000) 0.537 0.047 - 0.416 65.06±0.15
FSM-MKL 0.491 0.162 - 0.347 64.49±0.24
PWMK(a) 0.462 0.160 - 0.378 64.67±0.36
PWMK(b) 0.580 0 - 0.420 65.50±0.35
UMK 1 1 1 - 64.39±0.29
SMO/MKL(500) 0.443 0.053 0.504 - 67.19±0.18
SMO/MKL(1000) 0.398 0.042 0.560 - 67.30±0.17
FSM-MKL 0.325 0.107 0.568 - 66.91±0.24
PWMK(a) 0.415 0.143 0.442 - 66.81±0.35
PWMK(b) 0.476 0 0.344 - 66.97±0.28
UMK 1 1 1 1 66.03±0.22
SMO/MKL(500) 0.373 0.051 0.407 0.169 67.58±0.20
SMO/MKL(1000) 0.351 0.042 0.411 0.196 67.46±0.27
FSM-MKL 0.241 0.083 0.424 0.252 66.45±0.25
PWMK(a) 0.310 0.107 0.330 0.253 67.20±0.34
PWMK(b) 0.354 0 0.390 0.256 67.64±0.36

TABLE II
GENETIC INTERACTION

Kernel matrix µexp µloc µseq µpro Accuracy(%)
Expression 1 - - - 79.47±0.25
Localization - 1 - - 54.60±0.28
Sequence - - 1 - 80.27±0.22
Profile - - - 1 74.93±0.33
UMK 1 1 1 1 81.97±0.17
SMO/MKL(500) 0.349 0.039 0.479 0.133 84.12±0.17
SMO/MKL(1000) 0.328 0.036 0.504 0.132 84.06±0.22
FSM-MKL 0.231 0.070 0.266 0.433 82.99±0.27
PWMK (a) 0.330 0.052 0.339 0.279 83.65±0.14
PWMK (b) 0.351 0 0.362 0.287 83.80±0.12

performance than individual ones. This shows the merit of
MKL methods.

Here, it shows a weakness for UMK for the decline of
performance in some kernel combinations. As shown in Table
1, localization kernel makes the kernels combination perfor-
mance worse in UMK. In contrast, SMO-MKL, FSM-MKL
and PWMK avoid the effect by assigning a small weight
to the localization kernel, and provides higher performance
than using each kernel. We regard the decline of performance
as the effect of localization kernel, and from the accuracy
of localization kernel, we consider that localization kernel is
irrelevant. Lewis et al. [21] investigated performance of UMK
and SDP-MKL in various situations, such as missing and
noisy data, and suggested that for many applications UMK
is sufficient but MKL is effective under condition including
missing and noisy data. Indeed, in our experiments, once again
confirm their hypothesis. When combining kernels, having
more kernels does not necessarily increase performance.

Experimental results show that the sequence-based spec-
trum kernel is more informative than the other kernels. The
spectrum kernel yields that the FSM-MKL, SMO-MKL and
PWMK assign a larger weight to the spectrum kernel than to
other kernels. Accordingly, excluding the spectrum kernel in
kernel combination causes a decline in performance.

The results also show that specific combinations of (expres-
sion + profile + sequence) and (expression + sequence) per-
formed better than all data combinations. These are combined
kernels of high accuracy. It is shown that the performance
depends on which kernels are selected. A conclusion can be
drawn is that a high performance requires combinations of
high quality kernels, excluding the low quality ones.

B. Genetic interaction classification

In the results shown in Table 2, the MKL also gains the
highest accuracy and our proposed methods achieved almost
the same performance for MKL. The accuracy achieved high
values compared to physical interactions. Deng et al. [28]
showed that genetic interactions in MIPS also provide high
reliability. Here, we confirm that genetic data for genetic
interactions is also more reliable to predict.

In these two experiments, finally, we obtained that SMO-
MKL has the highest performance in the combination methods,
closely followed by PWMK and FSM-MKL. These methods



clearly give higher performances than UMK does. This also
shows that our methods, despite the fact that they are simple
and efficient, still give a comparable performance to other
expensive methods. It is noteworthy that FSM-MKL and
PWMK are very efficient in terms of computational time and
memory usage.

VII. CONCLUSION

In this paper, we proposed FSM-MKL and PWMK methods
for kernel combination and applied MKL, FSM-MKL and
PWMK to SVM binary classification for predicting physical
genetic PPIs. Our methods have advantages of simplicity
and computational efficiency in comparison with previously
developed methods. Our methods improve performance of the
classification accuracy in comparison with the others using a
single kernel at a time. Especially, PWMK provides a similar
performance with MKL, followed by FSM-MKL. We also
demonstrated a superiority of models constructed by MKL,
FSM-MKL and PWMK in the PPI prediction problem. We
also experimentally shown that combining all does not always
give the best performance. Instead, only high quality kernels
should be used for combination to achieve the highest result.
The proposed approaches still need improvements at the point
of finding better ways to avoid the effects of low quality
kernels. Nevertheless, compared with competing methods to
weight-based kernel combination, we see that our methods can
achieve effective prediction performance for kernel combina-
tion problem in an economical budget of time and memory.
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