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Abstract—Most studies on biological networks until now focus
only on pairwise interactions/relationships. However interac-
tions/relationships participated by more than two molecules are
popular in biology. In this paper, we introduce multivariate
mutual information measures to reconstruct multivariate inter-
actions/relationships in biological networks.

I. INTRODUCTION

Biological network models consist of nodes and edges
where nodes represents biological molecules and edges rep-
resent some kinds of relationships between them. Examples
include gene regulatory networks that consist of genes as
nodes and transcriptional regulations between them as edges;
signal transduction networks that consist of proteins as nodes
and activations/inactivations across a set of genes as edges; and
metabolic networks that consist of metabolites as nodes and
reactions as edges. Thanks to high-throughput technologies
that can produce simultaneous measurements of the concen-
tration/expression of thousands of molecular species in a bio-
logical system such as genes, proteins and metabolites, we can
understand a holistic view of complex interactions by systems
theory. Reconstruction of biological networks from the high-
throughput profiling data is one of the most challenges and the
first step on the road to the ultimate understanding of complex
biological systems.

Computational methods for reverse engineering biological
networks can be divided into three broad categories. The
first one includes information theoretic methods [1], [2],
[3] that find statistical dependences between two molecules
(dependence here refers to any situation in which random vari-
ables do not satisfy a mathematical condition of probabilistic
independence). These methods rely on two basic measures
of information theory: mutual information and correlation
coefficient. The former is more preferred since it takes account
any type of dependence while the later is responsive for
linear dependence only (see [4] for a comparison). The second
consists of Bayesian and graphical networks [5], [6] that
maximize a scoring function over some alternative network
models to find the best one fitting the data. Since the network
model space is often very huge, these graphical methods

use some searching heuristic strategies from specific initial
networks, in consequence they might get stuck in local optima.
The last reconstruction approach includes differential and
difference equations [7], [8] that explain the data by a system
of mathematical differential and difference equations. Due to
the computational complexity, only linear or simple functions
are considered in the mathematical equation models. Some
excellent reviews on different aspects of biological network
reconstructing methods can be found in [9], [10], [11].

Biological networks are often too large; they might con-
sist of thousands of nodes. Since the information theoretic
approach has advantages of simplicity and low computational
costs, it is superior to the two other approaches in reconstruct-
ing biological networks [3]. Graphical models or mathematical
equations often incorporate with some information theoretic
measures to reduce their search space so that they can work
on large biological networks [12], [13]. Therefore information
theoretic measures are the key to the success of most biological
network reconstruction approaches.

Information theoretic approach assumes that interac-
tions/relationships of molecules (for example, transcriptional
regulations, activations/inactivations, reactions) will exhibit
some dependencies among them, and therefore such statistical
dependencies among variables can be used to reconstruct
the original interactions/relationships. Most network recon-
struction methods until now mainly focused on pairwise
relationships between two variables. However, relationships
in real biological networks are often complicated and might
consist of more than two variables (molecules), for example,
proteins or genes often interact with others to carry out their
functions; substrates and products often mutually interact in
a reaction. These multi-variable dependencies could not be
reducible/represented by pairwise dependencies because the
reduction will loss information.

There have been efforts to reconstruct statistical multi-
variable interactions by using some extensions of mutual
information for multiple variables [14], [15]. However, the
extension of mutual information from two to multiple variables
is not trivial, even for the simplest case of three variables [16],



[17]. There has been little work on such higher-order mutual
information, partly due to the fact that the notion of multi-
variable dependence itself remains imprecisely defined. There
have been two multiple mutual information measures that
extend from the pairwise one: total mutual information and
interaction information [18], [19], [20], [21]. While the first
one is clearly understood and interpreted, there have been a lot
of controversy on the interpretation of the second [22], [17].
Forever and most importantly, there has been no research work
that systematically identifies different types of dependences
existing among multiple variables and provides appropriate
measures to capture these multi-variable dependencies. In
the previous work [23], we have propose a general mutual
information of multi variables that has many variants, each
quantifies a type of dependences.

In this work, we want to confirm that our previously pro-
posed mutual information quantities are suitable to reconstruct
multi variable relationships in biological networks.

II. METHODS

A. Mutual Information of Two Variables

Mutual information of two random variables is a quantity
that measures the mutual dependence between the two random
variables. The mutual information of two discrete random
variables X and Y can be defined as

MI(X,Y ) =
∑
x∈X

∑
y∈Y

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)
(1)

where pX,Y (x, y) is the joint probability distribution function
of X and Y , and pX(x) and pY (y) are the marginal probability
distribution functions of X and Y respectively. In the case
of continuous random variables, the above formula of mutual
information can be written as:

MI(X,Y ) =

∫ ∫
pX,Y (x, y) log

pX,Y (x, y)

pX(x)pY (y)
dxdy (2)

where pX,Y (x, y) is now the joint probability density function
of X and Y , pX(x) and pY (y) are the marginal probability
density functions of X and Y respectively.

If X and Y are independent, the mutual information
MI(X,Y ) = 0; if they are perfectly dependent, MI(X,Y )
approaches infinity.

The mutual information MI(X,Y ) can also be interpreted
in terms of information entropy [24] as

MI(X,Y ) = H(X) +H(Y )−H(X,Y ) (3)

In [23] we have provided a novel interpretation of the
mutual information that bases on the physical view of en-
tropy. That is, mutual information of two variables is the
difference between entropy of the joint probability distribution
(or density) pX,Y (x, y) of X and Y and that of the fictitious
distribution (or density) with the same marginal distributions
(or densities) pX(x) and pY (y) but no dependence introduced;
i.e.

MI(X,Y ) = H(pX ∗ pY )−H(pX,Y ) (4)

Fig. 1. Mutual information of two variables

Since H(pX ∗ pY ) = H(pX) +H(pY ) = H(X) +H(Y ), the
Eq. 4 is equivalent to the Eq. 3.

With this new interpretation, we can visualize the mutual
information as the difference of the rectangle that represents
pX ∗ pY and the shape that represents the joint distribution
(Fig. 1).

B. Mutual Information Measures for Multiple Variables

Generalization of the mutual information for multiple vari-
ables is not trivial [22], [14]. In the previous work [23], we
have analysed that there are many types of mutual information
existing in more than two variables {X1, . . . , Xn}. Each type
of mutual information corresponds to a marginal probability
distribution or corresponds to a partition {D1, . . . , Dk} of
{X1, . . . , Xn}.

{X1, . . . , Xn} = D1 ⊕ . . .⊕Dk (5)

The mutual information of {X1, X2, . . . , Xn} respective to
an interested schedule {D1, D2, . . . , Dk} can be defined as
follows:

MI{D1,...,Dk}(X1, . . . , Xn) = H(pD1
∗ . . . ∗ pDk

) − H(X1, . . . , Xn) (6)

or equivalent to
MI{D1,...,Dk}(X1, . . . , Xn) = H(D1) + . . . + H(Dk) − H(X1 , . . . , Xn) (7)

where pDi is a marginal probability distribution of the joint
probability distribution p(X1, . . . , Xn) on a subset Di of
variables

For example, with three variables, the general mutual infor-
mation (Eq. 7 has following variants:

MI{X,Y,Z}(X,Y, Z) = H(X)+H(Y )+H(Z)−H(X,Y, Z) (8)

MI{X,<Y,Z>}(X,Y, Z) = H(X) +H(Y,Z)−H(X,Y, Z) (9)

MI{Y,<Z,X>}(X,Y, Z) = H(Y ) +H(Z,X)−H(X,Y, Z) (10)

MI{Z,<X,Y>}(X,Y, Z) = H(Z) +H(X,Y )−H(X,Y, Z) (11)

The Eq. 8 is the total mutual information that has been
previously defined in [19] as an extension of mutual infor-
mation. The total mutual information can be visualized as the
divergence between dashed shape and the parallelepiped in
Fig. 2.

The Equations 9, 10, 11 are mutual information between
a single variable and the two others. The mutual information
respective to the schedule (Z,< X, Y >) can be visualized as



Fig. 2. Total mutual information of three variables

Fig. 3. Mutual information of three variables respective to the schedule
(Z,< X, Y >)

the divergence between the cylinder (representing pZ ∗ pX,Y )
and the dashed shape (representing pX,Y,Z) in Fig. 3. We
refer these mutual information quantities to cylinder mutual
information measures.

Each mutual information quantity provides a depen-
dent/independent aspect of a multivariate relationship. We
should estimate all mutual information quantities to understand
full multivariate interactions/relationships [23].

III. RESULTS AND DISCUSSION

A. Reconstructing Pairwise and Triple Interactions from Syn-
thetic Data

In this section, we will illustrated the performance of
mutual information (MI) measures, particularly cylinder MI
and total MI (see Section II-B, to reconstruct pairwise and
triple interactions from some synthetic datasets.

The first dataset consists of 4 binary data points
{(0, 0, 0); (0, 1, 1); (1, 0, 1); (1, 1, 0)} (see Fig. 4). We can see
that there is a triple relationship X xor Y xor Z =0, but there
isn’t any pairwise relationship in three binary variables X , Y
and Z .

As expectation, the pairwise mutual informations of any two
of three variables are all zero (see Table I). This demonstrates
that there isn’t pairwise dependence in any pair of these three
variables. However, cylinder mutual informations as well as
total mutual information are all 1. This proves that there is a
relationship concerning simultaneously all three variables. In
this example, multivariate mutual information quantities have

Fig. 4. A synthetic dataset where there is a three-variate interaction
XxorY xorZ = 0, but it does not show any pairwise relationship between
two of three binary variables

TABLE I
RELATIONSHIPS RECONSTRUCTED FROM THE DATASET IN FIG. 4 BY

MUTUAL INFORMATION MEASURES

Mutual information quantity Reconstructed relationships
Pairwise MI

MI(X, Y ) = 0
MI(Y,Z) = 0
MI(Z,X) = 0

Cylinder MI
MI(X,< Y,Z >) = 1 X and < Y,Z >
MI(Y,< Z,X >) = 1 Y and < Z,X >
MI(Z,< X, Y >) = 1 Z and < X,Y >

Total MI
MI(X, Y,Z) = 1 (X, Y,Z)

Fig. 5. Another synthetic dataset of three binary variables

TABLE II
RECONSTRUCTION OF RELATIONSHIPS FROM THE DATASET IN FIG. 5 BY

MUTUAL INFORMATION MEASURES

Mutual information quantity Reconstructed relationships
Pairwise MI

MI(X, Y ) = 0
MI(Y,Z) = 0.36 Y and Z
MI(Z,X) = 0.36 Z and X

Cylinder MI
MI(X,< Y,Z >) = 0.45 X and < Y,Z >
MI(Y,< Z,X >) = 0.45 Y and < Z,X >
MI(Z,< X, Y >) = 0.81 Z and < X,Y >

Total MI
MI(X, Y,Z) = 0.81 (X, Y,Z)

been useful to detect multivariate relationships that might be
missed if we use only pairwise mutual information measures.

The absolute value of cylinder mutual informations and total
mutual information also provide us a complete understanding
of relationships among three variables. Another example is
the dataset on Fig. 5 where the role of X , Y and Z are
different. Table II shows mutual information measures that



indicate the strength of reconstructed relationships. Among
relationships found, we can see the relationship between Z
and < X, Y > is the strongest. That agrees with the dataset in
Fig. 5. Clearly, different mutual information measures provide
us different aspects of the relationships.

B. Reconstructing Metabolic Networks

In this section, we aim to experimentally verify the per-
formance of the mutual information quantities on reconstruc-
tion of metabolic reactions, which are interactions of multi
substrates/products, from metabolome data. Due to the time
complexity of mutual information estimation, in this study, we
only use the three variate mutual information measures (MIs):
cylinder MIs and total three variate MI as in the previous
section III-A.

In the first experiment, we use in silico metabolome
data of red blood cell metabolism (RBC) published
by [25]. The dataset is a 1000 × 39-matrix that are
concentrates of 39 metabolites in the RBC model
at 1000 time series points. The datasets can be
downloaded at http://menem.com/∼ilya/wiki/index.php/RBC
Metabolic Network. The RBC model consisting of 39

metabolites and 44 reactions will be used to validate
relationships reconstructed by the mutual information
measures. In this work, we use the numerical estimation
method of mutual information quantities using B-spline
functions as described in [26].

Table III shows 50 top three-variate relationships with
the highest total MI. These three-variate relationships are
often substrates or products of the same reaction or ad-
jacent reactions in the RBC models. For example, {PG3,
PG2, PEP} concern with two adjacent reactions pgm (PG3,
PG2) and en (PG2, PEP); {G6P, F6P, GO6P} are three
substrates/products concerning glucose synthesis; {G6P, F6P,
X5P} concern with two adjacent reactionns pgi (G6P F6P)
and tkii (X5P, E4P, GAP, F6P); etc. Note that. the nota-
tion ru5pi (RU5P, R5P) describes that the reaction ru5pi
consists of two metabolites RU5P and R5P. We can look at
different mutual information quantities to understand the full
dependent/independent pictures among found three-variable
relationships.

The second experiment we aim to evaluate the performance
of the total three-variable mutual information (Eq. 8) on the re-
construction ability of three-variable interactions/relationships
based on the receiver operating characteristic (ROC) criterion.
We first use a small metabolic model (consisting of 10 metabo-
lites and 5 reactions) and generate a time series dataset using
Matlab. We use the total three-variable mutual information on
this dataset to reconstruct three-variable interactions and then
use the original model to validate reconstructed interactions.
We use different thresholds of the total three-variable mutual
information to generate ROC. Figure 6 shows the ROC curve
of the total three-variable mutual information-based classifier
on this three-variable interaction reconstruction. The area
under the curve is quite high (0.85).

Fig. 6. ROC curve of the total mutual information-based classifier on the
reconstruction of three-variable interactions

IV. CONCLUSION

We have introduced a general mutual information to
capture multivariate interactions/relationships. The general
formulate has many variants that provide different de-
pendent/independent aspects of the multivariate interac-
tions/relations. We have experimentally confirmed that three-
variate mutual information quantities are appropriate measures
to reconstruct multivariate interactions/relationships in both
synthetic networks as well as metabolic networks.

In this work, we just considered the three-variable mu-
tual information and found that many three-variable inter-
actions/relationships cannot be detected if we use pairwise
mutual information quantities only. More generally, many n-
variable interactions/relationships could be reconstructed only
if we use n-variable mutual information. Therefore, multivari-
ate mutual information measures are important to reconstruct
complicated interactions/relationships in systems biology.
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