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Abstract. Nonnegative matrix factorization (NMF) is a linear powerful
dimension reduction and has various important applications. However,
existing models remain the limitations in the terms of interpretability,
guaranteed convergence, computational complexity, and sparse represen-
tation. In this paper, we propose to add simplicial constraints to the clas-
sical NMF model and to reformulate it into a new model called simplicial
nonnegative matrix tri-factorization to have more concise interpretability
via these values of factor matrices. Then, we propose an effective algo-
rithm based on a combination of three-block alternating direction and
Frank-Wolfe’s scheme to attain linear convergence, low iteration com-
plexity, and easily controlled sparsity. The experiments indicate that the
proposed model and algorithm outperform the NMF model and its state-
of-the-art algorithms.
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simplicial nonnegative matrix tri-factorization, Frank-Wolfe algorithm

1 Introduction

Nonnegative matrix factorization (NMF) has been recognized as a linear pow-
erful dimension reduction, and has a wide range of applications including text
mining, image processing, bioinformatics [9]. In this problem, a given nonneg-
ative observed matrix V ∈ Rn×m+ consists of m vectors having n dimensions,
which is factorized into a product of two nonnegative factor matrices, namely
latent components WT ∈ Rn×r+ and new coefficients F ∈ Rr×m+ . In the clas-
sical setting, due to noise and nonnegative constraints, NMF is approximately
conducted by minimizing the objective function D(V ‖WTF ) = ‖V −WTF‖22.

Despite having more than a decade of rapid developments, NMF still has
the limitations of interpretability and computation. First, the values of factor
matrices in NMF do not concisely represent the roles of latent components over
instances and the contributions of attributes over latent components. Simply,
they express the appearances of latent components over instances and attributes
over latent components rather than their roles. In other words, it is not reason-
able to determine how may percentages each latent component contributes to
instances via the values in F . Second, concerning the computation, Wang et al,
2012 [4] proposed one of the most state-of-the algorithms which has sub-linear
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convergence O(1/k2), high complexity O(r2) at each iteration, and considerable
difficulties of parallelability and controlling sparsity because it works on the
whole of matrices and all the variable gradients.

To overcome the above mentioned limitations, we introduce a new formu-
lation of NMF as simplicial nonengative matrix tri-factorization (SNMTF) by
adding simplicial constraints over factor matrices, and propose a fast guaranteed
algorithm which can be conveniently and massively parallelized. In this model,
the roles of latent components over instances and the contributions of attributes
over latent components are represented via the factor matrices F and W . To the
end, this work has the major contributions as follows:
(a) We introduce a new model of NMF which is named by SNMTF using L2

regularizations on both the latent components W and the new coefficients F .
The new model has not only more concise interpretability, but also retains
the generalization of NMF.

(b) We propose a fast parallel algorithm based on a combination of three-block
alternating direction and Frank-Wolfe algorithm [7] to attain linear conver-
gence, low iteration complexity, and easily controlled sparsity.

2 Problem Formulation

Concerning the interpretability, NMF is a non-convex problem having numerous
solutions as stationary points, which has rotational ambiguities [1]. Particularly,
if V ≈ WTF is a solution, V ≈ WT [DFF

′] = [WTDF ]F ′ are also equivalent
solutions; where DF is a positive diagonal matrix satisfying F = DFF

′. Hence,
it does not consistently explain the roles of latent components over instances
and the contributions of attributes over latent components.

To resolve the limitation, we propose a new formulation as SNMTF, in which
the data matrix is factorized into a product of three matrices V ≈WTDF , where

D is a positive diagonal matrix,
r∑

k=1

Wki = 1∀i, and
r∑

k=1

Fkj = 1∀j.

However, the scaling of factors via the diagonal matrix D can lead to the
inconsistency of interpreting the factor matrices W and F , and the existence of
bad stationary points such as λk = 0⇒Wki = 0, Fkj = 0. Hence, we restrict the
formulation by adding the condition λ1 = ... = λr = λ. This model can be con-
sidered as an extension of the probabilistic latent semantic indexing (PLSI) [5]
for scaling data with an additional assumption that the weights of latent factors
are the same. Remarkably, their roles of latent components over instances and
of attributes over latent components are represented via the values of the factor
matrices W and F . As a result, it is more easier to recognize these roles than
in the case that the weights of latent factors can be different. Therefore, the
objective function of SNMTF with L2 regularizations is written as follows:


min
W,D,F

{
Φ(W,D,F ) := 1

2‖V −W
TDF‖2F + α1

2 ‖W‖
2
F + α2

2 ‖F‖
2
F

}
s.t.

r∑
k=1

Wki = 1 (i = 1, · · · , n),
r∑

k=1

Fkj = 1 (j = 1, · · · ,m),

W ∈ Rr×n+ , F ∈ Rr×m+ , D = diag(λ, · · · , λ).

(1)
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There are three significant remarks in this formulation. Firstly, adding sim-
plicial constraints leads to more concise interpretability of the factor matrices
and convenience for post processes such as neural network and support vector
machine because the sum of attributes is normalized to 1. Secondly, L1 regu-
larization is ignored because ‖W‖1 and ‖F‖1 equal to a constant. Finally, the
diagonal of D = diag(λ, ..., λ) has the same value because of two main reasons:
First, it is assumed that Vij is generated by Wi, Fj and a scale as Vij ≈ λWT

i Fj ;
Second, it still retains the generalization of SNMTF which every solution of NMF
can be equivalently represented by SNMTF, which will be proved in Section 4.

3 Proposed algorithm

We note that problem (1) is nonconvex due to the product WTDF . We first
propose to use three-block alternating direction method to decouple there three
blocks. Then, we decompose the computation onto column of the matrix vari-
ables, which can be conducted in parallel. Finally, we apply Frank-Wolfe’s algo-
rithm [6] to solve the underlying subproblems.

3.1 Iterative multiplicative update for Frobenius norm
We decouple the tri-productWTDF by the following alternating direction scheme,
which is also called iterative multiplicative update:

F t+1 := arg min
F∈Rr×m

{
Φ(W t, Dt, F ) : F ∈ ∆n

r

}
,

W t+1 := arg min
W∈Rr×n

{
Φ(W,Dt, F t+1) : W ∈ ∆m

r

}
,

Dt+1 := argmin
λ∈R

{
Φ(W t+1, D, F t+1) : D = diag(λ, · · · , λ)

}
.

(2)

Clearly, both F -problem and W -problem in (2) are convex but are still con-
strained by simplex, while the D-problem is unconstrained. We now can solve
the D-problem in the third line of (2). Due to the constraint D = diag(λ, · · · , λ),
this problem turns out to be an univariate convex program, which can be solved
in a closed form as follows:

λt+1 = argmin
λ∈R

‖V −W t+1TDF t+1‖22 =
〈V,W t+1TF t+1〉

〈W t+1W t+1T , F t+1F t+1T 〉
. (3)

Then, we form the matrix Dt+1 as Dt+1 = diag(λt+1, · · · , λt+1).
If we look at the F -problem, then fortunately, it can be separated into n

independent subproblems (j = 1, · · · ,m) of the form:

F t+1j = arg min
Fj

{
1

2
‖Vj − (W t)TDtFj‖22 +

α2

2
‖Fj‖22 : Fj ∈ ∆r

}
. (4)

The same trick is applied to the W -problem in the second line of (2). Now, we
assume that we apply the well-known Frank-Wolfe algorithm to solve (4), then
we can describe the full algorithm for solving (1) into Algorithm 1.

The stopping criterion of Algorithm 1 remains unspecified. Theoretically, we
can terminate Algorithm 1 using the optimality condition of (1). However, com-
puting this condition requires a high computational effort. We instead terminate
Algorithm 1 if it does not significantly improve the objective value of (1) or the
differences Wt+1 −Wt and Ft+1 − Ft and the maximum number of iterations.
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Algorithm 1: Iterative multiplicative update for Frobenius norm

Input: Data matrix V = {Vj}mj=1 ∈ Rn×m+ , and r, α1, α2 ≥ 0, β ≥ 0.
Output: Coefficients F ∈ Rr×m+ and latent components W ∈ Rr×n+

1 begin
2 Pick an arbitrary initial point W ∈ Rr×n+ (e.g., random);
3 repeat
4 q = −λWV ; Q = λ2WWT + α1I;
5 /*Inference step: Fix W and D to find new F ;
6 for j = 1 to m do
7 Fj ≈ argmin

x∈∆r

{
1
2
xTQx+ qTj x

}
/*Call Algorithm 2 in parallel */;

8 q = −λFV T ; Q = λ2FFT + α2I;
9 /*Learning step: Fix F and D to find new W ;

10 for i = 1 to n do
11 Wi ≈ argmin

x∈∆r

{
1
2
xTQx+ qTi x

}
/*Call Algorithm 2 in parallel */;

12 λ = argmin
λ∈R

‖V −WTDF‖22 = 〈V,WTF 〉
〈WWT ,FFT 〉 ;

13 until convergence condition is satisfied ;

3.2 Frank-Wolfe’s algorithm for QP over simplex constraint
Principally, we can apply any convex optimization method such as interior-point,
active-set, projected gradient and fast gradient method to solve QP problems of
the form (4). However, this QP problem (4) has special structure and is often
sparse. In order to exploit its sparsity, we propose to use a Frank-Wolfe algorithm
studied in [7] to solve this QP problem. Clearly, we can write (4) as follows:

x ≈ argmin
x∈∆r

1

2
‖v −ATx‖22 +

α

2
‖x‖22 = argmin

x∈∆r

1

2
xTQx+ qTx (5)

where v = Vj , A = DW , Q = AAT + α, and q = −Av. By applying the Frank-
Wolfe algorithm form [7] to solve this problem, we obtain Algorithm 2 below.

In Algorithm 2, the first derivative of f(x) = 1
2x

TQx+ qTx is computed by
∇f = Qx + q. In addition, the steepest direction in the simplex is selected by
this formula: k = argmin

k∈{1..r}
{〈ek − x,∇f〉} or {〈x− ek,∇f〉|xk > 0}.

For seeking the best variable α to minimize f(αx + (1 − α)ek) where ek is
the kth unit vector. Let consider f(αx+ (1− α)ek), we have:

∂f

∂α
(α = 0) = (x− ek)T (Qx+ q) = xT (Qx+ q)− [Qx]k − qk

∂2f

∂α2
(α = 0) = (x− ek)TQ(x− ek) = xTQx− 2[Qx]k +Qkk.

(6)

Since f is a quadratic function of α, its optimal solution is α = argmin
α∈[− xk

1−xk
,1]

f((1 − α)x + αek) = [− ∇fα=0

∇2fα=0
][− xk

1−xk
,1]. The projection of solution over the
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Algorithm 2: Fast Algorithm for NQP with Simplicial Constraint

Input: Q ∈ Rr×r, q ∈ Rr.
Output: New coefficient x ≈ argmin

x∈∆r
f(x) = 1

2
xTQx+ qTx.

1 begin

2 Choose k = argmin
k

1
2
eTkQek + qT ek, where ek is the kth basis vector;

3 Set x = 0k; xk = 1; Qx = Qek; qx = qTx and ∇f = Qx+ qT ;
4 repeat
5 Select k = argmin

k∈{1..r}
{〈ek − x,∇f〉} or {〈x− ek,∇f〉|xk > 0};

6 Select α = argmin
α

f(αek + (1− α)x);

7 α = min(1,max(α,− xk
1−xk

));

8 Qx = (1− α)Qx+ αQek; ∇f = Qx+ q;
9 qx = (1− α)qx+ αqek;

10 x = (1− α)x; xk = xk + α;

11 until converged conditions are staisfied ;

interval [− xk
1−xk , 1] is to guarantee xk ≥ 0 ∀k. The updates x = (1 − α)x and

xk = xk + α are to retain the simplicial constraint x ∈ ∆r.
In Algorithm 2, duplicated computation is removed to reduce the itera-

tion complexity into O(r) by maintaining Qx and qTx. This result is highly
competitive with the state-of-the-art algorithm having a sub-linear convergence
rate O(1/k2) and complexity of O(r2) [4].

4 Theoretical Analysis

This section discusses three important aspects of the proposed algorithm as
convergence, complexity, and generalization. Concerning the convergence, setting
α1, α2 > 0, based on Theorem 3 in Lacoste-Julien, S., & Jaggi, M. (2013) [7],
since f(x) = 1

2x
TQx+ qTx is smoothness and strongly convex, we have:

Theorem 1. Algorithm 2 linearly converges as f(xk+1)− f(x∗) ≤ (1− ρFWf )k

(f(x0) − f(x∗)), where ρFWf = { 12 ,
µFWf
Cf
}, Cf is the curvature constant of the

convex and differentiable function f , and µFWf is an affine invariant of strong
convex parameter.

Since Algorithm 2 always linearly converges and the objective function re-
strictedly decreases, Algorithm 1 always converges stationary points. Regarding
the complexity of the proposed algorithm, we have:

Theorem 2. The complexity of Algorithm 2 is O(r2 + t̄r), and the complexity
of each iteration in Algorithm 1 is O(mnr + (m+ n)r2 + t̄(m+ n)r).

Proof. The complexity of the initial computation Qx + q is O(r2), and each
iteration in Algorithm 2 is O(r). Hence, the complexity of Algorithm 2 is O(r2 +
t̄r). The complexity of main operators in Algorithm 1 as WV , FV T , FFT ,
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and WWT is O(mnr + (m+ n)r2). Overall, the complexity of each iteration in
Algorithm 1 is O(mnr + (m+ n)r2 + t̄(m+ n)r).

This is highly competitive with the guaranteed algorithm [4] having the com-
plexity of O(mnr+ (m+n)r2 + t̄(m+n)r2). Furthermore, adding the simplicial
constants into NMF does not reduce the generalization and flexibility of NMF:

Theorem 3. Each solution of NMF can be equivalently transfered into SNMTF.

Proof. Assume that V ≈ WTF , which leads to the existence of λ large enough

to satisfy WTF = W ′TD′F ′, where D′ = diag(λ, .., λ),
r∑

k=1

Wki < 1 ∀i, and

r∑
k=1

Wkj < 1 ∀j. Therefore, ∃W ′′, D′′, and F ′′: W ′′TD′′F ′′ = W ′TD′F ′ = WTF ,

where W ′′ij = W ′ij , F
′′
ij = F ′ij , W

′′
r+1,i = 0,W ′′r+2,i = 1 −

r+1∑
k=1

W ′′ki ∀i, F ′′r+1,j =

1−
r∑

k=1

F ′′kj , F
′′
r+2,j = 0 ∀j ,D′′ = diag(λ, .., λ). W ′′TD′′F ′′ is SNMTF of V .

The generalization is crucial to indicate the robustness and high flexibility of
the proposed model in comparison with NMF models, although many constraints
have been added to enhance the quality and interpretability of the NMF model.

5 Experimental Evaluation
This section investigates the effectiveness of the proposed algorithm via three
significant aspects of convergence, classification performance, and sparsity. The
proposed algorithm SNMTF is compared with the following methods:
– NeNMF [4]: It is a guaranteed method, each alternative step of which sub-

linearly converges at O(1/k2) that is highly competitive with the proposed
algorithm.

– LeeNMF [8]: It is the original gradient algorithm for NMF.
– PCA: It is considered as a based-line method in dimensionality reduction,

which is compared in classification and sparsity.
Datasets: We compared the selected methods in three typical datasets with

different size, namely Faces5, Digits6 and Tiny Images 7.

Table 1. Dataset Information

Datasets n m testing size r #class
Faces 361 6, 977 24,045 30 2
Digits 784 6.104 104 60 10
Cifar-10 3,072 5.104 104 90 10

Environment settings: We de-
velop the proposed algorithm SNMTF
in Matlab with embedded code C++
to compare them with other algo-
rithms. We set system parameters to
use only six threads in the machine
Mac Pro 6-Core Intel Xeon E5 3 GHz
32GB. The initial matrices W 0 and F 0 are set to the same values, the maximum
number of iterations is 500. The source code is published on our homepage 8.

5 http://cbcl.mit.edu/cbcl/software-datasets/FaceData.html
6 http://yann.lecun.com/exdb/mnist/
7 http://horatio.cs.nyu.edu/mit/tiny/data/index.html
8 http://khuongnd.appspot.com/
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5.1 Convergence

We investigate the convergence of the compared algorithms by f1
fk

because they
have the different formulations and objective functions. Fig. 1 clearly shows that
the proposed algorithm converges much faster than the other algorithms. The
most steepest line of the proposed algorithm represents its fast convergence. This
result is reasonable because the proposed algorithm has a faster convergence rate
and lower complexity than the state-of-the-art algorithm NeNMF.
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f 1
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k
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SNMTF NeNMF LeeNMF

100 101 102 103
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1

Fig. 1. Convergence of loss information f1/fk versus time

5.2 Classification

Concerning the classification performance, the training datasets with labels are
used to learn gradient boosting classifiers [3, 2], one of the robust ensemble meth-
ods, to classify the testing datasets. The proposed algorithm outperforms the
other algorithms and PCA over all the datasets. For the small and easy dataset
Face, the result of the proposed algorithm is close to the results of NeNMF. How-
ever, for larger and more complex datasets Digit and Tiny Images, the proposed
algorithm has much better accuracy than the other algorithms. Noticeably, the
result of Tiny Images is much worse than the result of the other datasets because
it is highly complicated and contains backgrounds. This classification result ob-
viously represents the effectiveness of the proposed model and algorithm.

5.3 Sparsity

Table 2. Classification inaccuracy

Dataset PCA LeeNMF NeNMF SNMTF

Faces 6.7 3.3 2.7 2.6
Digits 30.15 12.16 3.9 3.6
Tiny Images 59.3 71.4 51.4 50.1

We investigate the sparsity of fac-
tor matrices F , W , and the spar-
sity average in both F and W . For
the dataset Digit, the proposed al-
gorithm outperforms in all these
measures. For the other datasets
Faces and Tiny Images, it has bet-
ter representation F and more balance between sparsity of F and W . Frankly
speaking, in these datasets, achieving more sparse representation F is more
meaningful than achieving more sparse model W because F is quite dense but
W is highly sparse, which is a reason to explain why SNMTF has the best
classification result.
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Table 3. Sparsity of factor matrices (%) of F , W , and (both F and W )

Dataset PCA LeeNMF NeNMF SNMTF

Faces (0, 0.26, 0.24) (0.58, 0, 0.55) (7.64, 60.33, 10.23) (9.78, 59.98, 12.24)

Digits (1.37, 0, 0.02) (31.24, 50.47, 31.49) (41.20, 92.49, 41.86) (50.49, 93.47, 51.04)
Tiny Images (0, 0, 0) (0.02, 0, 0.02) (9.97, 86.58, 14.40) (11.71, 85.29, 15.97)

6 Conclusion
This paper proposes a new model of NMF as SNMTF with L2 regularizations,
which has more concise interpretability of the role of latent components over in-
stances and attributes over latent components while keeping the generalization
in comparison with NMF. We design a fast parallel algorithm with guaranteed
convergence, low iteration complexity, and easily controlled sparsity to learn SN-
MTF, which is derived from Frank-Wolfe algorithm [7]. Furthermore, the pro-
posed algorithm is convenient to parallelize and distribute, and control sparsity
of both new representation F and model W . Based on the experiments, the new
model and the proposed algorithm outperform the NMF model and its state-
of-the-art algorithms in three significant aspects of convergence, classification,
and sparsity. Therefore, we strongly believe that SNMTF is highly potential for
many applications and extensible for nonnegative tensor factorization.
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