
Have we Learned from the Vasa Disaster?

Jean-Raymond Abrial

ETH Zurich

September 19th 2006

The Vasa Disaster 1

1

The Story 2

- August 10, 1628: The Swedish warship Vasa sank.

- This was her maiden voyage.

- She sailed about 1,300 meters only in Stockholm harbour.

- 53 lives were lost in the disaster.

2

Problems with the Vasa Construction 3

1. Changing requirements (by King Gustav II Adolf).

2. Lack of specifications (by Ship Builder Henrik Hybertsson).

3. Lack of explicit design (by Subcontractor Johan Isbrandsson)

(No scientific calculation of the ship stability)

4. Test outcome was not followed (by Admiral Fleming)

3

References 4

- The Vasa: A Disaster Story with Software Analogies.

By Linda Rising.

The Software Practitioner, January-February 2001.

- Why the Vasa Sank: 10 Problems and Some Antidotes

for Software Projects.

By Richard E. Fairley and Mary Jane Willshire.

IEEE Software, March-April 2003.

- The Vasa Museum

http://www.vasamuseet.se

4

1. Requirements

5

The Classical Development Cycle 5

1. Feasibility Study 4. Coding

2. Requirement Analysis 5. Test

3. Technical Specification 6. Documentation

4. Design 7. Maintenance

6

An Analogy: a Mathematical Text Book 6

2.8 The Cantor-Bernstein Theorem.

If a � b and b � a then a and b are equinumerous.

This theorem was first conjectured by Cantor in 1895 and
proved by Bernstein in 1898.

Proof: Since b � a, then a has a subset c such that b ≈ c.
. . .
2

- In red: the reference text

- In blue: the explanatory text
7

Some Structuring Rules for the Requirement Document 7

- Two separate texts in the same document:

- explanatory text: the why

- reference text: the what

- Embedding the reference text within the explanatory text

- The reference text eventually becomes the official document

- Must be signed by concerned parties

8

The Reference Text 8

- Contains the definition and properties of the future system

- Made of short labeled English fragments (traceability)

- Should be easy to read (different font) and easy to extract

- About the abstraction levels (don’t care too much)

- The problem of over-specification (don’t care too much)

9

2. Specifications and Design

10

What Engineers Should Do for Specifying and Designing? 9

- Engineers should construct models of the intended system

- Thus, execution is not possible (at least initially)

- But engineers will still make mistakes

- How can such mistakes be discovered (if no execution)?

- Answer: by doing proofs

- The goal: to have systems being CORRECT BY CONSTRUCTION

11

Three Distinct Phases in Formal Development 10

Abstract Model

Concrete Model

Executable Code

Phase 1

Phase 3

(HEAVY

(

(NO

LIGHT

human intervention)

human intervention)

human intervention)

Phase 2

Requirement Document

12

Phase 1: Constructing the Abstract Model 11

Abstract Model 1 Abstract Model 2

refinementrefinement
decomposition decomposition

Requirement Document

Final Abstract Model

- Superposition Refinement

13

Phase 2: Constructing the Concrete Model 12

final Concrete Model

refinement

Concrete Model 1 Concrete Model 2

refinement

final Abstract Model

decomposition decomposition

refinement
decomposition

- Data and algorithmic refinement

- Can be partially done by a refining tool

14

Phase 3: Getting the Executable Code 13

Executable Codefinal Concrete Model Program

CompilationTranslation

WEAK POINTS

15

The Modelling Process 14

composes composes

Proofs

ProofsProofs

refines refines

Model

Model Model

ProofsModel

refines

refines

16

Modelling Elements (Constituents of a Model) 15

- Axioms, invariants , guards, and actions are written using

the notation of first order logic and that of set theory

Constants

Variables

Static Part

Invariants

Axioms Events

Dynamic Part

Guards
Actions

- Reference: R. Back and R. Kurki-Suonio, Distributed Co-operation

with Action Systems. ACM Transactions on Programming Languages

and Systems. October 1988

17

Verification Conditions 16

Some formal verification conditions can be used to prove:

- correct invariant preservation

- correct refinement

- correct new event additions in a refinement

- correct decomposition

- possible deadlock freedom

18

Summary of Tools 17

Prover

Proofs

Static Checker

Translator Program

Model

Condition
Generator

Verification

Refiner

19

3. Is it at all possible?

20

Difficulties 18

- Difficulties with the requirement document

- Difficulties in constructing models

- Difficulties with proving

- Other difficulties

21

Difficulties with the Requirement Document 19

- Important because it is the point of departure of the development

- Errors or omissions in this doc. might remain in the development

- A formal approach does not guarantee to discover these problems

- Although proofs help discovering inconsistencies

- UML is not the solution

- Suggestion: Systematic re-writing of this document

22

Difficulties in Constructing Models 20

- Modeling is a difficult task

- The order in which to extract requirements is not obvious

- Software engineers are usually not well educated in modeling

- [Nor are they for requirement document writing]

- The gradual construction of models is not mastered

- People tend to make too few refinement steps

23

Instructing Software Engineers 21

- Engineers have no problem to learn the mathematical notations

- They have more difficulties to master the construction of models

- The following disciplines have to be developed in CS curriculum:

- Requirement document writing

- Model construction

- This is what I am trying to do at ETH in Zurich

24

About Proving 22

- Proving is not a difficulty

- Properties to be proved are determined a priori

- They are part of the model

- They are not chosen a posteriori as in testing

- Modeling versus programming: an important distinction

- Modeling allows us to reason about our intended system

25

Analyzing the Results of Proving: Debugging the Model 23

- Proof succeeds: our ultimate goal

- Proof provides a counter-example: model has to be modified

- Proof fails but is probably feasible: model has to be reorganized

- Proof fails and is probably not feasible: model has to be enriched

- Proving is not a goal per se

- It is an excellent basis for asking questions

26

Another Difficulty 24

- Integration of approach within the development process

- This is probably the most serious obstacle

- Such processes are difficult to define and then to put in place

- Thus managers are reluctant to modify them

- Early phases are more costly than in more classical development

- Final phases (coding, integration, testing) are far less costly

27

Managers don’t Trust the Second Curve 25

cost

time

time

cost

28

4. Preferred candidates for this approach: embedded systems

29

Embedded Systems (1) 26

- It is to be opposed to a general purpose computer system

like a PC Operating System

- The computer is encapsulated within the device it controls

- It is doing for ever a number of specific tasks

- Examples: Systems controlling

- a portable telephone

- an aircraft or a space ship

- a driverless train

- a nuclear reactor

- ...
30

Embedded Systems (2) 27

- Such systems are working in close connection with an external

often unpredictable environment (physical and human)

- Reliability is usually very important

- Error detection and recovery must be performed (degraded mode)

- Real-time constraints have to be taken into account

- Consequently, the software has to be developed with great care

31

5. Some Conclusion

32

Less Usage of Programming Languages 28

- I am convinced that Programming Languages (and OO) will be

less used in the future for constructing embedded systems

- The classical notion of source file will disappear

- It will be replaced by a specification and design database

- Code will be generated automatically

- This tendency is already there: Eclipse

- This is what we do in the Rodin EU Project: http://rodin.cs.ncl.ac.uk
33

The "Compiler" of Tomorrow 29

D E S I G N

D A T A B A S E

I N T E R F A C E

Provers
Checker

Static

Translator

Model

Checker Animator

Verification

Generator

D E S I G N A N D V E R I F I C A T I O N P L U G − I N S

Refinement
Tool

Automatic

34

Thanks for Listening 30

35

