
Submitted to:
HOR 2012

c© Y. Chiba & T. Aoto
This work is licensed under the
Creative Commons Attribution License.

Transformation by Templates
for Simply-Typed Term Rewriting

Yuki Chiba
School of Information Science, Japan Advanced Institute of Science and Technology

1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
chiba@jaist.ac.jp

Takahito Aoto
RIEC, Tohoku University

2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
aoto@nue.riec.tohoku.ac.jp

We extend a framework of program transformation by templates based on first order term rewriting
(Chiba et al., 2005) to simply typed term rewriting (Yamada, 2001), which is a framework of higher
order term rewriting. A pattern matching algorithm to apply templates for transforming a simply
typed term rewriting system is given and the correctness of the algorithm is shown.

1 Program transformation by templates and simply typed term pattern

Huet and Lang [4] introduced a framework of program transformation by templates. In this framework,
the second-order matching algorithm plays an important role—how to apply the transformation template
to a given program is specified by the solution of the matching algorithm. Curien et al. [3] gave an
efficient matching algorithm. Yokoyama et al. [7] presented a sufficient condition of patterns to have
at most one solution. De Moor and Sittampalam [5] gave a matching algorithm containing third-order
matching. In all of these frameworks, programs and program schemas are represented by lambda terms
and higher-order substitutions are performed by β -reduction.

In Chiba et al. [1, 2], we introduced a framework of program transformation by templates based on
term rewriting. Contrast to the framework mentioned above, programs and program schemas are given
by term rewriting systems (TRSs for short) and TRS patterns, where TRS patterns is a TRS in which
pattern variables are used in the place of function symbols. For example, a program transformation tem-
plate 〈P,P ′,H 〉 is given like this:

P =


f(a) → b
f(c(u1,v1)) → g(u1, f(v1))
g(b,u2) → u2
g(d(u3,v3),w3)→ d(u3,g(v3,w3))

 ,P ′ =


f(u4) → f1(u4,b)
f1(a,u5) → u5
f1(c(u6,v6),w6)→ f1(v6,g(w6,u6))
g(b,u7) → u7
g(d(u8,v8),w8) → d(u8,g(v8,w8))

 ,

H = { g(b,u1)≈ g(u1,b), g(g(u2,v2),w2)≈ g(u2,g(v2,w2)) } .

The TRS pattern P is a schema of input programs to be transformed and P ′ is a schema whose instan-
tiations become the output programs. This template is used for a program transformation from recursive
programs to iterative programs. For example, to transform the following TRS

Rsum =

{
sum([]) → 0, sum(x1:y1) → +(x1,sum(y1))
+(0,x2) → x2, +(s(x3),y3) → s(+(x3,y3))

}

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Transformation by Templates for Simply-Typed Term Rewriting

we perform a pattern matching with P against Rsum. Then a term homomorphism ϕ satisfying Rsum =
ϕ(P) is obtained using a matching algorithm [1]. Now the iterative form of Rsum is obtained as

R ′sum = ϕ(P ′) =


sum(x4) → sum1(x4,0)
sum1([],x5) → x5, sum1(x6:y6,z6) → sum1(y6,+(z6,x6)),
+(0,x7) → x7, +(s(y8),z8) → s(+(y8,z8))

 .

The term homomorphism ϕ is also used to generate the following set Esum = ϕ(H) of equations.

Esum =
{

+(0,x1)≈+(x1,0), +(+(x2,v2),w2)≈+(x2,+(v2,w2))
}

These equations are used at the verification of the correctness of transformation not only in the framework
based on term rewriting but also the one based on lambda calculus. We showed that the correctness of
transformation may be (partly) verified by proving properties of term rewriting systems for suitable
templates [1, 2]. All recursive programs must be described as program schemes in the framework of
lambda calculus in order to use fixed point combinator. In contrast, they can be defined by using case
splitting in our framework. Because of universally quantified nature of variables in rewrite rules, second-
order matching algorithms on lambda term are not directly applicable in our setting [1].

Because this framework is based on the first order term rewriting, it is difficult to deal with higher
order programs. In this paper, we extend the framework of program transformation by templates on
first order term rewriting to simply typed term rewriting [6], which is one of the simplest frameworks
of higher order term rewriting. Our key idea is introducing two kinds of function application, one for
function application on STTRSs and one for applying second order matching solution.

The first question to develop such a framework is which term language presenting program schemas
to chose. We first introduce a set of basic types B and a set type variables U . The idea is that in
program templates types are not fixed and type variables contained in templates are instantiated at the
time of concrete transformations. We call simple types over B∪U type pattern and refer types those
over B. Next we assume that each constant and local variable are associated with its type and type
pattern, respectively and each pattern variable is associated with its argument type patterns and result
type pattern. The set of pattern variables whose argument type patterns are τ1, . . . ,τn and result type
patterns are τ is denoted as X τ1×···×τn⇒τ .

Definition 1 (Term pattern) The set Tτ(Σ,X ,V) of term pattern of type pattern τ over constants Σ =⋃
τ∈ST(B) Στ , pattern variable X =

⋃
τ,τ1,...,τn∈ST(B,U)X

τ1×···τn⇒τ and local variables V =
⋃

τ∈ST(B,U)V
τ

is defined as: (1) Στ ∪V τ ⊆ Tτ(Σ,X ,V), (2) s ∈ Tτ1×···×τn→τ(Σ,X ,V) (n≥ 1) and ti ∈ Tτi(Σ,X ,V)
for all i ∈ {1, . . . ,n} imply (s t1 · · · tn) ∈ Tτ(Σ,X ,V), and (3) p ∈ X τ1×···×τn⇒τ (n ≥ 0) and ti ∈
Tτi(Σ,X ,V) for all i ∈ {1, . . . ,n} imply p〈t1, . . . , tn〉 ∈ Tτ(Σ,X ,V).

Here note that two kinds of function application are introduced—one is (s t1 · · · tn) for the function
application on object language (simply typed terms) and the other is p〈t1, . . . , tn〉 for the function applica-
tion to be used instantiating program templates to concrete programs. This is contrast to the second-order
matching frameworks on lambda terms where these two kinds of function application are identified.

Let B= {Nat,List}, U = {α,β ,γ,δ ,ε}, Σ = { []List, :Nat×List→List, @List×List→List, map(Nat→Nat)×List
→List, mapapp(Nat→Nat)×List×List →List }, and X = {a⇒α ,bγ⇒δ ,cε×α⇒α ,dε⇒ε ,eε×γ×δ⇒δ , fα×β×γ⇒δ ,

Y. Chiba & T. Aoto 3

Constant Var1
[A E A,σ] ` σ [α E τ ′,σ] ` σ if σ(α) = τ ′

Var2 [α E τ ′,σ] ` {α := τ ′}◦σ if α 6∈ dom(σ)

Function [τ1 E τ ′1,σ] ` σ ′ [τ2×·· ·× τn→ τ E τ ′2×·· ·× τ ′n→ τ ′,σ ′] ` σ ′′

[τ1× τ2×·· ·× τn→ τ E τ ′1× τ ′2×·· ·× τ ′n→ τ ′,σ] ` σ ′′

Figure 1: Type matching rules

gα×γ⇒δ ,hα×β⇒α , rβ⇒α}. An example of program transformation template is like this:

P =


f〈u,v,w〉 → g〈h〈u,v〉,w〉
g〈a〈〉,u〉 → b〈u〉
g〈c〈u,v〉,w〉 → e〈u,w,g〈v,w〉〉
h〈a〈〉,u〉 → r〈u〉
h〈c〈u,v〉,w〉 → c〈d〈u〉,h〈v,w〉〉

 ,P ′ =



f〈a〈〉,v,w〉 → g〈r〈v〉,w〉
f〈c〈u,v〉,w,z〉 → e〈d〈u〉,z, f〈v,w,z〉〉
g〈a〈〉,u〉 → b〈u〉
g〈c〈u,v〉,w〉 → e〈u,w,g〈v,w〉〉
h〈a〈〉,u〉 → r〈u〉
h〈c〈u,v〉,w〉 → c〈d〈u〉,h〈v,w〉〉


,H = /0

This transformation template can be used to transform simply typed term rewriting systems (STTRSs):


mapapp f xs ys → map f (@ xs ys)
map f [] → []
map f (: x xs) → : (f x) (map f xs)
@ [] ys → ys
@ (: x xs) ys → : x (@ xs ys)

 ⇒


mapapp f [] ys → map f ys
mapapp f (: x xs) ys → : (f x) (mapapp f xs ys)
map f [] → []
map f (: x xs) → : (f x) (map f xs)
@ [] ys → ys
@ (: x xs) ys → : x (@ xs ys)


.

One may wonder why there exist common rules in input and output which seem unnecessary for speci-
fying the transformation. They, however, are prepared to guarantee the correctness of the transformation.
We note that transformations can be applied even if additional rules (other than target rules) are involved.

In the rest of the paper, we show how such a transformation by templates on STTRSs can be done.

2 Pattern matching algorithm

In this section, we present our pattern matching algorithm. Since term patterns possibly contains type
variables, type matching is performed during the pattern matching algorithm on the fly to obtain type
consistent term homomorphisms. Type matching can be done as in the first order matching except that it
has to be checked incrementally. A type substitution is a mapping from type variables to type patterns.

Definition 2 (Type matching) Let τ be a type pattern, τ ′ a type and σ and σ ′ type substitutions. We
write [τ E τ ′,σ] ` σ ′ if there is an inference by applying the rules listed in Figure 1.

A context is a term containing holes�i. Cn(Σ) is the set of contexts containing only holes�1, . . . ,�n.
C〈s1, . . . ,sn〉 is the result of a context C ∈ Cn(Σ) replacing �i by si. We write C ∈ Cτ1×···×τn⇒τ(Σ) if �τi

i
for all�i ∈C and Cτ . A term homomorphism is a mapping ϕ from V ∪X to V ∪C(Σ) satisfying: (1) the
restriction of ϕ on V is an injective mapping from domV (ϕ) = {x ∈ V | ϕ(x) 6= x} to V and (2) ϕ(p) ∈
Cn(Σ) for any p ∈X , where n = arity(p). We put domX (ϕ) = {p ∈X | ϕ(p) 6= p〈�1, . . . ,�arity(p)〉}.

4 Transformation by Templates for Simply-Typed Term Rewriting

Bound 〈S∪{xτ E yτ ′},σ ,ϕ〉
〈S,σ ′,ϕ ∪{x 7→ y}〉

if
ϕ(x) = y∧σ ′ = σ , or
x 6∈ dom(ϕ)∧ y 6∈ range(ϕ)∧ [τ E τ ′,σ] ` σ ′

Remove 〈S∪{ f τ E f τ},σ ,ϕ〉
〈S,σ ,ϕ〉

Split 〈S∪{(s1 · · · sn)
τ E (t1 · · · tn)τ ′},σ ,ϕ〉

〈S∪{si E ti | 1≤ i≤ n},σ ′,ϕ〉
if [τ E τ ′,σ] ` σ ′

Extend 〈S∪{p〈s1, . . . ,sn〉τ EC〈t1, . . . , tn〉τ
′},σ ,ϕ〉

〈{p 7→C}(S∪{si E ti | �i ∈C}),σ ′,ϕ ∪{p 7→C}〉
if [τ E τ ′,σ] ` σ ′

Figure 2: Rules of pattern matching algorithm

〈{g〈c〈u,v〉,w〉 Emap f (: x xs), e〈u,w,g〈v,w〉〉 E : (f x) (map f xs)}, /0, /0〉
=⇒〈{w E f ,c〈u,v〉 E : x xs, e〈u,w,(map w v)〉 E : (f x) (map f xs)},{δ := List} ,{g 7→map �2 �1}〉

=⇒〈{c〈u,v〉 E : x xs, e〈u,w,(map w v)〉 E : (f x) (map f xs)},
{

δ :=List,
γ :=Nat→Nat

}
,

{
w 7→ f ,
g 7→map �2 �1

}
〉

=⇒〈{u E x,v E xs,e〈u,w,(map w v)〉 E : (f x) (map f xs)},

δ :=List,
γ :=Nat→Nat
α :=List

 ,

w 7→ f ,
g 7→map �2 �1
c 7→ : �1 �2

〉
=⇒〈{v E xs,e〈u,w,(map w v)〉 E : (f x) (map f xs)},

{
δ :=List, γ :=Nat→Nat
α :=List, ε :=Nat

}
,

{
w 7→ f , g 7→map �2 �1
c 7→ : �1 �2, u 7→x

}
〉

=⇒〈{e〈u,w,(map w v)〉 E : (f x) (map f xs)},
{

δ :=List, γ :=Nat→Nat
α :=List, ε :=Nat

}
,

w 7→ f , g 7→map �2 �1
c 7→ : �1 �2, u 7→x
v 7→xs

〉
=⇒〈{u E x,w E f ,map w v Emap f xs},

{
δ :=List, γ :=Nat→Nat
α :=List, ε :=Nat

}
,

w 7→ f , g 7→map �2 �1
c 7→ : �1 �2, u 7→x
v 7→xs, e 7→ : (�2 �1) �3

〉
∗

=⇒〈 /0,
{

δ :=List, γ :=Nat→Nat
α :=List, ε :=Nat

}
,

{
w 7→ f , g 7→map �2 �1, c 7→ : �1 �2
u 7→x, v 7→xs, e 7→ : (�2 �1) �3

}
〉

Figure 3: Derivation of ST-Match

ϕ is consistent with a type substitution σ if (1) ϕ(x) ∈ V σ(τ) for any x ∈ V τ ∩domV (ϕ) and (2) ϕ(p) ∈
Cσ(τ1)×···×σ(τn)⇒σ(τ)(Σ) for any p ∈X τ1×···×τn⇒τ ∩domX (ϕ).

A matching pair s E t is a pair of a term pattern s and a term t, and a matching problem is a finite
set of matching pairs. Given a matching problem S, our pattern matching algorithm solves whether there
exist term homomorphism ϕ and type substitution σ such that ϕ is consistent with σ , and ϕ(s) = t holds
for any s E t ∈ S. Our algorithm is given by inference rules acting on a configuration 〈S,σ ,ϕ〉.

Definition 3 (ST-Match) Let =⇒ be a relation on configurations defined by: 〈S,σ ,ϕ〉 =⇒ 〈S′,σ ′,ϕ ′〉
if 〈S,σ ,ϕ〉 is rewritten to 〈S′,σ ′,ϕ ′〉 by applying the rules listed in Figure 2. The reflexive transitive
closure of =⇒ is denoted by ∗

=⇒. The procedure ST-Match is given as follows

Input: a matching problem S

Output: a pair 〈ϕ,σ〉 of a term homomorphism ϕ and a type substitution σ if 〈S, /0, /0〉 ∗
=⇒ 〈 /0,σ ,ϕ〉.

Note that Extend rule select an appropriate context non-deterministically—our algorithm intends con-
ciseness but not to describe how it can be implemented efficiently. In Figure 3, we present a derivation
of ST-Match for a pattern matching problem involved in the program transformation in Section 1.

Theorem 4 (Termination of ST-Match) ST-Match terminates for any input.

Y. Chiba & T. Aoto 5

〈ϕ,σ〉 ` xτ E yτ ′ if ϕ(x) = y∧σ(τ) = τ ′
〈ϕ,σ〉 ` s1 E t1 · · · 〈ϕ,σ〉 ` sn E tn

〈ϕ,σ〉 ` (s1 · · · sn)
τ E (t1 · · · tn)τ ′

if σ(τ) = τ ′

〈ϕ,σ〉 ` cτ E cτ
〈ϕ,σ〉 ` si1 E ti1 · · · 〈ϕ,σ〉 ` sim E tim
〈ϕ,σ〉 ` p〈s1, . . . ,sn〉τ EC〈t1, . . . , tn〉τ

′ if
{
{i1, . . . , im}= {i | �i ∈C},
σ(τ) = τ ′, and ϕ(p) =C

Figure 4: Inference rules for checking solutions of configurations

3 Correctness of pattern matching algorithm

In this section, we show soundness and completeness of ST-Match in order to ensure the correctness of
the algorithm. We say a pair 〈ϕ,σ〉 of a term homomorphism ϕ and a type substitution σ is a solution
of a matching problem S if (1) ϕ is consistent with σ and (2) ϕ(s) = t for all s E t ∈ S.

Definition 5 (Solution of configuration) (a) We write 〈ϕ,σ〉 ` s E t if there is an inference tree by
applying the rules in Figure 4.

(b) A pair 〈ϕ̃, σ̃〉 of a term homomorphism ϕ̃ and a type substitution σ̃ is a solution of a configuration
〈S,σ ,ϕ〉 if (1) 〈ϕ,σ〉 ` s E t for all s E t ∈ S, (2) σ ⊆ σ̃ , and (3) ϕ ⊆ ϕ̃ .

For ensuring type consistency of outputs of ST-Match, we consider the followings.

Lemma 6 (1) Suppose 〈S,σ ,ϕ〉=⇒ 〈S′,σ ′,ϕ ′〉. If x ∈ V τ implies ϕ(x) ∈ V σ(τ) for any x ∈ domV (ϕ),
then x ∈ V τ implies ϕ ′(x) ∈ V σ(τ) for any x ∈ domV (ϕ ′). (2) Suppose 〈ϕ̃, σ̃〉 ` s E t. p ∈X τ1×···×τn⇒τ

implies ϕ̃(p) ∈ Cσ̃(τ1)×···×σ̃(τn)⇒σ̃(τ)(Σ) for any p ∈X (s)∩domX (ϕ̃).

Next lemma can be shown by using straightforward case splitting of applied rules.

Lemma 7 Suppose 〈S,σ ,ϕ〉=⇒ 〈S′,σ ′,ϕ ′〉 and x ∈ V τ implies ϕ(x) ∈ V σ(τ) for any x ∈ domV (ϕ). If
〈ϕ̃, σ̃〉 is a solution of 〈S′,σ ′,ϕ ′〉, then 〈ϕ̃, σ̃〉 is also a solution of 〈S,σ ,ϕ〉.

From lemmas above, we obtain the following result of soundness.

Theorem 8 (Soundness of ST-Match) If ST-Match produces 〈ϕ̃, σ̃〉 for an input S, then 〈ϕ̃, σ̃〉 is a
solution of S.

In order to show completeness of ST-Match, we show the following lemmas.

Lemma 9 Let 〈S,σ ,ϕ〉 be a configuration with S 6= /0. If 〈ϕ̃, σ̃〉 is a solution of 〈S,σ ,ϕ〉, then there exists
a solution 〈S′,σ ′,ϕ ′〉 such that (1) 〈S,σ ,ϕ〉=⇒ 〈S′,σ ′,ϕ ′〉 and (2) 〈ϕ̃, σ̃〉 is a solution of 〈S′,σ ′,ϕ ′〉.

Lemma 10 Let 〈ϕ̃, σ̃〉 be a solution of a configuration 〈S,σ ,ϕ〉. If there exist a term homomorphism ϕ ′

and a type substitution σ ′ such that 〈S,σ ,ϕ〉=⇒ 〈 /0,σ ′,ϕ ′〉, then (1) σ ′ ⊆ σ̃ , and (2) ϕ ′ ⊆ ϕ̃ .

We now obtain the following theorem from lemmas above.

Theorem 11 (Completeness of ST-Match) Let Φ be the set of outputs of ST-Match for input matching
problem S. If 〈ϕ,σ〉 is a solution of S, then there exists 〈ϕ̃, σ̃〉 ∈Φ such that ϕ̃ ⊆ ϕ and σ̃ ⊆ σ .

6 Transformation by Templates for Simply-Typed Term Rewriting

References
[1] Y. Chiba, T. Aoto & Y. Toyama (2005): Program transformation by templates based on term rewriting. In:

Proc. of PPDP 2005, ACM Press, pp. 59–69.
[2] Y. Chiba, T. Aoto & Y. Toyama (2010): Program transformation templates for tupling based on term rewriting.

IEICE Transactions 93-D(5), pp. 963–973.
[3] R. Curien, Z. Qian & H. Shi (1996): Efficient second-order matching. In: Proc. of RTA 1996, LNCS 1103,

Springer-Verlag, pp. 317–331.
[4] G. Huet & B. Lang (1978): Proving and applying program transformations expressed with second order

patterns. Acta Informatica 11, pp. 31–55.
[5] O. de Moor & G. Sittampalam (2001): Higher-order matching for program transformation. TCS 269(1–2),

pp. 135–162.
[6] T. Yamada (2001): Confluence and termination of simply typed term rewriting systems. In: Proc. of RTA 2001,

LNCS 2051, Springer-Verlag, pp. 338–352.
[7] T. Yokoyama, Z. Hu & M. Takeichi (2004): Deterministic second-order patterns. IPL 89(6), pp. 309–314.

	Program transformation by templates and simply typed term pattern
	Pattern matching algorithm
	Correctness of pattern matching algorithm

