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Abstract. The proof scores method is an interactive verification method
in algebraic specification that combines manual proof planning and re-
duction (automatic inference by rewriting). The proof score approach
to software verification coordinates efficiently human intuition and ma-
chine automation. We are interested in applying these ideas to transi-
tion systems, more concretely, in developing the so-called OTS/CafeOBJ
method, a modelling, specification, and verification method of observa-
tional transition systems. In this paper we propose a methodology that
aims at developing automatically proof scores according to the rules of an
entailment system. The proposed deduction rules include a set of generic
rules, which can be found in other proof systems as well, together with a
set of rules specific to our working context. The methodology is exhibited
on the example of the alternating bit protocol, where the unreliability of
channels is faithfully specified.

1 Introduction

This paper is focused on developing the OTS/CafeOBJ method, a modeling,
specification and verification method of Observational Transition Systems (OTS),
which has been previously explored in many case studies [22,8,21,7]. The log-
ical framework used to develop the methodology is that of constructor-based
order-sorted preorder algebra. The signatures are enhanced with a set of con-
structor operators, the sorts of constructors are called constrained, and the sorts
that are not constrained are called loose. The models are those algebras that are
reachable w.r.t. given constructors [1]. For example, given an algebraic signature
(S, F ), where S is the set of sorts and F is the family of function symbols, an
(S, F )-algebra A is reachable w.r.t constructors F c ⊆ F if for any element a ∈ A
there exists a set Y of variables of loose sorts, an evaluation f : Y → A, and a
constructor term t ∈ T(S,F c)(Y ) such that f(t) = a, where f : T(S,F c)(Y )→ A is
the unique extension of f : Y → A to a (S, F c)-morphism. The formulas consist
of universally quantified conditional atoms, where the atomic sentences are of
three types: equations, membership and preorder axioms. 3

The advantages provided by the expressiveness of constructor-based logics
have been previously explored in [2,1], where a method for proving coinductive

3 In Maude literature preorder axioms are known as rewrite rules.



properties is presented. We propose a methodology for proving inductive prop-
erties of OTS specified with constructor-based logics. Only universally quanti-
fied conditional sentences are considered, a restriction that makes it possible
to use term rewriting to verify system properties. We are interested in reach-
ing a greater level of automation than in [21,8,7,22] by designing proof rules
meant to be used for developing more complex proof tactics, which are imple-
mented in Constructor-based Inductive Theorem Prover (CITP) [11]. In com-
parison with the previous approaches to verifying OTS, the proof scores consist
of simple CITP commands. This has the advantage of making the proofs shorter
and allowing automated reasoning. The present paper presents the verification
methodology supported by CITP.

In [17] a subset of authors give a set of proof rules for constructor-based
logics at the abstract level of institutions [13], and a quasi-completeness result is
proved. 4 In [9], the proof rules are lifted up at the level of specifications such that
quasi-completeness is preserved for the specifications with loose semantics de-
notation. 5 The entailment relation is constructed as follows: a basic entailment
relation between specifications and atomic sentences is assumed which, in appli-
cations, is given by the system that assists the proof, for example CafeOBJ [5] or
Maude [4]. This relation is then extended with proof rules for the quantification
over variables of both constrained and loose sorts, logical implication, and case
analysis.

In applications, the specifications are often declared with initial semantics
(see [10] for details about the initial semantics in logics with constructors).
Roughly speaking, less models means more properties to prove, which some-
times require new inference rules. In order to make the specification calculus
defined in [9] effective in practice, it must be enriched with specialized proof
rules for the initial data types that are often used in our methodology, and sup-
ported by proof tactics that can often be completed automatically. A first such
enrichment is proposed in this paper.

In our approach, a goal SP ` E consists of a specification SP and a set of
formulas E rather than a single formula. By applying a proof rule to a goal
SP ` E we obtain a set of goals SP1 ` E1, . . . , SPn ` En if some preconditions
are satisfied. If it is not the case, the proof rule leaves the goal unchanged. This
slightly general view captures a natural phenomenon related to verification: not
only the formula of the initial goal is changing in the proof process but also the
specification. It is crucial for automation to design proof tactics that preserve the
confluence and termination properties in the proof process. Below we describe
the contributions to the development of OTS/CafeOBJ method:

(1) The simplest tactics implement the proof rules of the specification calculus.
We revise the entailment system defined in [9] to increase its efficiency in

4 Some proof rules contain infinite premises which can only be checked with induction
schemes. As a consequence, the resulting entailment system is not compact.

5 Loose semantics is meant to capture all models that satisfy the axioms of a specifi-
cation while initial semantics describes the initial (or standard) model of the axioms
of a specification.
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applications: we propose a more general simultaneous induction scheme,
and we refine case analysis such that it can be applied automatically. The
entailment system obtained is then enriched with specialised proof rules for
the predefined data types declared with initial semantics.

(2) We define also derived inference rules which are built by combination of
other tactics. For example, each of the proof rules is coupled with the re-
duction of the ground terms occurring in the formulas to prove to their
normal forms. This has the advantage of preserving the confluence property
of the specifications. We define a simple but efficient tactic to avoid non-
termination processes during verification. The underlying assumption is the
existence of a BOOL specification of boolean values which are protected since
they are used to establish the truth. This tactic reduces a goal of the form
SP ` t = t′ if C∧ b = not b∧ C′ to the empty goal set, where b is a boolean
ground term.

(3) We propose a proof strategy to build automatically a complete proof of a
goal, which basically establishes an application order of the “basic” tactics.
This proof procedure is closely linked to term rewriting and it preserves the
confluence property of specifications during verification.

The strength of the proposed methodology is exhibited on a non-trivial case
study, the alternating bit protocol (ABP). The unreliability of the communi-
cation channels is faithfully modelled by specifying dropping of elements in ar-
bitrary positions of the communication channels. This technique of modelling
non-determinism with underspecified operators and then exploiting that in the-
orem proving is possible due to the expressivity of constructor-based logics.
Structure of the paper. In Section 2, we define the proof rules of the method
and the proof strategy. In Section 3.1, we specify the ABP with unreliable com-
munication channels; the verification methodology is explained by proving a
safety property for ABP. In Section 4, we summarise the conclusions and we
give some future directions for research.

2 Proving Methodology

In this section we revise the entailment system in [9], and we enrich it with spe-
cialised proof rules for the initial data types that are often used in our method-
ology. We also propose tactics to construct proof scores automatically.

2.1 The Underlying Logic

We describe the logical framework underlying the verification methodology. The
logic presented here is more expressive than the one in [9] as it includes mem-
bership and preorder axioms besides equations.

Order-Sorted Algebra (OSA) [20]. An order-sorted signature is a triple (S,≤, F )
with (S,≤) a preorder, i.e. reflexive and transitive, and (S, F ) a many-sorted
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signature. Let Ŝ = S/≡≤ be the set of connected components of S under the
equivalence relation ≡≤ generated by ≤. The equivalence ≡≤ can be extended to
sequences in the usual way. An order-sorted signature is called sensible if for any
two operators σ : w → s and σ : w′ → s′ such that w ≡≤ w′ we have s ≡≤ s′.
Hereafter, we assume that all signatures are sensible.

An order-sorted signature morphism ϕ : (S,≤, F ) → (S′,≤′, F ′) is a many-
sorted signature morphism ϕ : (S, F )→ (S′, F ′) which

(1) preserves subsort overloading (i.e. for all σ ∈ Fw→s ∩ Fw′→s′ with w ≡≤ w′
we have ϕop(w,s)(σ) = ϕop(w′,s′)(σ), where ϕop(w,s) : Fw→s → F ′ϕ(w)→ϕ(s)), and

such that
(2) ϕst : (S,≤)→ (S′,≤′) is monotonic.

An order-sorted Σ-algebra M , where Σ = (S,≤, F ), is a many-sorted (S, F )-
algebra such that s ≤ s′ implies Ms ⊆Ms′ , and for all σ ∈ Fw→s ∩ Fw′→s′ with
w ≡≤ w′ and m ∈ Mw ∩Mw′ we have Mσ:w→s(m) = Mσ:w′→s′(m). For each

connected component [s] ∈ Ŝ we let M[s] denote the set
⋃
s′∈[s]Ms′ . An order-

sorted Σ-homomorphism h : M → N is a many-sorted (S, F )-homomorphism
such that for all s ≡≤ s′ and m ∈ Ms ∩Ms′ we have hs(m) = hs′(m). This
defines a category ModOSA(Σ).

Proposition 1. [20] The category ModOSA(Σ) has an initial term algebra TΣ
defined as follows:

– if (w, s) ∈ S∗ × S, σ ∈ Fw→s and t ∈ (TΣ)w then σ(t) ∈ (TΣ)s,
– if s0 ≤ s, t ∈ (TΣ)s0 then t ∈ (TΣ)s.

Order-Sorted Preorder Algebra (OSPA) [6]. An order-sorted preorder Σ-algebra
M , where Σ = (S,≤, F ), is an order-sorted algebra with an additional preorder

structure (M[s],≤[s]) for each connected component [s] ∈ Ŝ. An order-sorted
preorder Σ-homomorphism h : M → N is an order-sorted homomorphism which
preserves the preorder structure. This defines a category ModOSPA(Σ).

A signature morphism ϕ : (S,≤, F )→ (S′,≤′, F ′) induces a forgetful functor
ModOSPA(ϕ) : ModOSPA(S′,≤′, F ′)→ModOSPA(S,≤, F ) defined as follows:

– for each order-sorted preorder algebra M ′ ∈ |ModOSPA(S′,≤′, F ′)|,
• ModOSPA(ϕ)(M ′)s = M ′ϕ(s) for all s ∈ S,

• ModOSPA(ϕ)(M ′)σ = M ′ϕ(σ) for all (w, s) ∈ S∗ × S and σ ∈ Fw→s,
• m1 ≤[s] m2 whenever m1 ≤[ϕ(s)] m2 for all [s] ∈ Ŝ and m1,m2 ∈
ModOSPA(ϕ)(M)[s].

– for each order-sorted preorder homomorphism h′ ∈ModOSPA(Σ′),
• ModOSPA(ϕ)(h′)s = h′ϕ(s) for all s ∈ S.

We denote by �ϕ the functor ModOSPA(ϕ). If M ′�ϕ= M then we say that M ′

is a ϕ-expansion of M , and M is the ϕ-reduct of M . If ϕ is a signature inclusion
then we may write M ′�(S,≤,F ) instead of M�ϕ.

For each order-sorted signature Σ = (S,≤, F ) there are three kinds of atomic
sentences:
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(1) equational atoms t = t′, where t, t′ ∈ (TΣ)[s] and [s] ∈ Ŝ,

(2) membership atoms t : s, where t ∈ (TΣ)[s] and [s] ∈ Ŝ,

(3) preorder atoms t⇒ t′, where t, t′ ∈ (TΣ)[s] and [s] ∈ Ŝ.

The set SenOSPA(Σ) of sentences consists of universally quantified conditional
atoms of the form (∀X)atm if atm1∧. . .∧atmn, where X is a finite set of variables
for Σ, and atm, atmi are atoms. Each order-sorted signature morphism ϕ : Σ →
Σ′ determines a function SenOSPA(ϕ) : SenOSPA(Σ) → SenOSPA(Σ′) which
translates the sentences symbol-wise. When there is no danger of confusion we
denote SenOSPA(ϕ) simply by ϕ.

The satisfaction of a sentence by a model M ∈ ModOSPA(Σ), where Σ =
(S,≤, F ), is defined by induction on the structure of the sentences:

– M |=Σ t = t′ iff Mt = Mt′ ,
– M |=Σ t : s iff Mt ∈Ms,
– M |=Σ t⇒ t′ iff Mt ≤[s] Mt′ ,
– M |=Σ atm if atm1 ∧ . . . ∧ atmn iff M |=Σ atmi for all i ∈ {1, . . . , n} implies
M |=Σ atm,

– M |=Σ (∀X)ρ iff for all ιX -expansions M ′ of M we have M ′ |=Σ[X] ρ.

where t, t′ ∈ (TΣ)[s] are terms, s ∈ S is a sort, atm if atm1 ∧ . . . ∧ atmn ∈
SenOSPA(Σ) is a quantifier-free sentence, (∀X)ρ ∈ SenOSPA(Σ) is any sentence,
ιX : Σ ↪→ Σ[X] is the extension of Σ with constants from X.

Proposition 2 (The satisfaction condition). For all signature morphisms
ϕ : Σ → Σ′, models M ′ ∈ ModOSPA(Σ′) and sentences ρ ∈ SenOSPA(Σ) we
have M ′�ϕ|=Σ ρ iff M ′ |=Σ′ ϕ(ρ).

Proof. Straightforward, by induction on the structure of the sentences. ut

Constructor-based Order-Sorted Preorder Algebra (COSPA). We apply the ideas
from [17] to define the constructor-based version of OSPA. A constructor-
based order-sorted signature (S,≤, F, F c) consists of an order-sorted signature
(S,≤, F ) and a subfamily of sets of operation symbols F c ⊆ F . A sort s ∈ S is
constrained if there exists w ∈ S∗ such that F cw→s 6= ∅. Let Sc be the set of con-
strained sorts and Sl = S−Sc the set of loose sorts. M ∈ModOSPA(Σ) is reach-
able w.r.t. the constructors in F c if there exists a function f : Y →M , where Y is
a set of variables of loose sorts, such that f#s : (T(S,≤,F c)(Y ))s →Ms is surjective

for all s ∈ Sc, where f# : T(S,≤,F c)(Y )→M�(S,≤,F c) is the unique extension of f
to a (S,≤, F c)-homomorphism. The notion of reachability generalises the one in
[1] to the order-sorted case. Let ModCOSPA(S,≤, F, F c) ⊆ ModOSPA(S,≤, F )
be the full subcategory of reachable order-sorted preorder algebras.

A constructor-based order-sorted signature morphism ϕ : (S,≤, F, F c) →
(S′,≤′, F ′, F ′c) consists of an order-sorted signature morphism ϕ : (S,≤, F ) →
(S′,≤′, F ′) such that

(1) constructors are preserved along the signature morphisms, i.e. if σ ∈ F c then
ϕ(σ) ∈ F ′c,
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(2) no “new” constructors are introduced for “old” constrained sorts, i.e. if s ∈
Sc and σ′ ∈ (F ′c)w′→ϕ(s) then there exists σ ∈ F cw→s such that ϕ(σ) = σ′,
and

(3) if s′0 ∈ S′ and s ∈ Sc such that s′0 ≤′ ϕ(s) then there exists s0 ∈ S such that
s0 ≤ s and ϕ(s0) = s′0.

Proposition 3. For all constructor-based order-sorted signature morphisms ϕ :
(S,≤, F, F c)→ (S′,≤′, F ′, F ′c), M ′ ∈ |ModCOSPA(S′,≤, F ′, F ′c)| implies M ′�ϕ∈
|ModCOSPA(S,≤, F, F c)|.

Proof. Let ϕc : (S,≤, F c)→ (S′,≤, F ′c) be the restriction of ϕ to constructors.
It suffices to prove that for all sets Y ′ of variables for (S′,≤′, F ′c, F ′) of loose sorts
there exists a set Y of variables for (S,≤, F, F c) of loose sorts and an assignment
f : Y → T(S′,≤′,F ′c)(Y

′)�ϕc such that the unique extension f# : T(S,≤,F c)(Y )→
T(S′,≤′,F ′c)(Y

′)�ϕc of f to a (S,≤, F c)-homomorphism is a surjection.
Let Y ′ be a set of loose variables for (S′,≤′, F ′, F ′c). We define f : Y →

T(S′,≤′,F ′c)(Y
′)�ϕc as follows:

– for all s ∈ Sc let Ys = ∅.
– for all s ∈ Sl let Ys be a set of fresh variables such that
• if ϕ(s) ∈ S′l then there exists a bijection fs : Ys → Y ′ϕ(s), and

• if ϕ(s) ∈ S′c then there exists a bijection fs : Ys → T(S′,≤′,F ′c)(Y
′)ϕ(s).

We prove by induction on the structure of the terms t′ ∈ (T(S′,≤′,F ′c)(Y
′))s′ that

if s′ ∈ ϕ(S) then for all s ∈ ϕ−1(s′) there exists t ∈ (T(S,≤,F )(Y ))s such that

f#s (t) = t′.

(1) For y′ ∈ Y ′s′ : Assume that s′ ∈ ϕ(S), and fix s ∈ ϕ−1(s′). Then take
t = f−1(y′).

(2) For σ′(t′) ∈ T(S′,≤′,F ′c)(Y ′)s′ : Assume that s′ ∈ ϕ(S), and fix s ∈ ϕ−1(s′).
There exists w ∈ S∗ and σ ∈ Fw→s such that ϕ(σ) = σ′. By the induction
hypothesis, there exists t ∈ (T(S,≤,F )(Y ))w such that f#(t) = t′. It follows

that f#(σ(t)) = σ′(t′).
(3) For s′0 ≤′ s′ and t′ ∈ T(S′,≤′,F ′c)(Y

′)s′0 : Assume that s′ ∈ ϕ(S), and fix

s ∈ ϕ−1(s′). There are two cases.
(a) For s ∈ Sc: There exists s0 ∈ S such that s0 ≤ s and ϕ(s0) = s′0.

By the induction hypothesis, there exists t ∈ T(S,≤,F c)(Y )s0 such that

f#(t) = t′. It follows that t ∈ T(S,≤,F c)(Y )s and we have f#(t) = t′.

(b) For s ∈ Sl: it follows easily by the definition of f .
ut

Hereafter, we work within the context of COSPA, which is the underlying
logic of the methodology presented in this paper. For the sake of simplicity, we
will make the following notations.

Notation 1 For all constructor-based order-sorted signatures (S,≤, F, F c),

1. Sen(S,≤, F, F c) = SenOSPA(S,≤, F ) and

6



2. Mod(S,≤, F, F c) = ModCOSPA(S,≤, F, F c).

For all constructor-based order-sorted signature morphisms ϕ : (S,≤, F, F c) →
(S′,≤′, F ′, F ′c),
1. Sen(ϕ) = SenOSPA(ϕ), and
2. Mod(ϕ) is the restriction of the functor

ModOSPA(ϕ) : ModOSPA(S′,≤′, F ′)→ModOSPA(S,≤, F )

to the subcategory ModCOSPA(S′,≤′, F ′, F ′c).

For all M ∈ |Mod(S,≤, F, F c)| and ρ ∈ Sen(S,≤, F, F c) we write M |=(S,≤,F,F c)

ρ instead of M |=(S,≤,F ) ρ. When there is no danger of confusion we drop the
subscript (S,≤, F, F c) from |=(S,≤,F,F c), and we write simply M |= ρ.

The following corollary of Propositions 2 and 3 says that COSPA defined
above is an institution [13].

Corollary 1. For all signature morphisms ϕ : (S,≤, F, F c) → (S′,≤′, F ′, F ′c),
models M ′ ∈ Mod(S′,≤′, F ′, F ′c) and sentences ρ ∈ Sen(S,≤, F, F c) we have
M ′�ϕ|=(S,≤,F,F c) ρ iff M ′ |=(S′,≤′,F ′,F ′c) ϕ(ρ).

A substitution of Σ-terms with variables in Y for variables in X, where
Σ = (S,≤, F, F c), is a S-sorted function θ : X → TΣ(Y ). Note that θ can
be canonically extended to θterm : TΣ(X) → TΣ(Y ) and θsen : Sen(Σ[X]) →
Sen(Σ[Y ]), where Σ[X] and Σ[Y ] are the extensions of Σ with (non-constructor)
constants from X and Y , respectively. When there is no danger of confusion we
may drop the superscripts term and sen from notations. On the semantic side
θ, determines a forgetful functor �θ: Mod(Σ[Y ])→Mod(Σ[X]) such that for all
M ∈ Mod(Σ[Y ]), M�θ interprets all symbols in Σ as M , and (M�θ)x = Mθ(x)

for all x ∈ X.

Proposition 4 (The satisfaction condition for substitutions). For all
substitutions θ : X → TΣ(Y ), sentences ρ ∈ Sen(Σ[X]) and models M ∈
|Mod(Σ[Y ])| we have M�θ|=Σ[X] ρ iff M |=Σ[Y ] θ(ρ).

Proof. Straightforward, by induction on the structure of the sentences. ut

Notation 2 Given t ∈ TΣ(X) and θ : X → TΣ(Y ) such that X = {x1, . . . , xn}
and θ(xi) = ti for all i ∈ {1, . . . , n} then we may write the term θ(t) in the form
t[x1 ← t1, . . . , xn ← tn].

2.2 General Proof Rules

The entailment system in [9] is generalised to COSPA. In addition, we propose
a simultaneous induction scheme which is more general than the structural in-
duction [9], and case analysis is refined such that it can be applied automatically.

A specification SP consists of a signature Sig(SP) , a set of sentences Ax(SP) ⊆
Sen(Sig(SP)), and a class of models Mod(SP) ⊆ Mod(Sig(SP)) such that M |=
Ax(SP) for all M ∈ |Mod(SP)|. A specification morphism ϕ : SP1 → SP2 consists
of a signature morphism ϕ : Sig(SP1)→ Sig(SP2) such that
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(a) Ax(SP2) |= ϕ(Ax(SP1)), and
(b) for all M2 ∈ |Mod(SP2)| we have M2�ϕ∈ |Mod(SP1)|.

This defines a category of specifications SPEC. Below we recall some of the
specification-building operators introduced in [23].

Basic Specification. Any pair (Σ,E) of signature Σ and set of sentences
E is a basic specification with the signature Sig(Σ,E) = Σ, set of sentences
Ax(Σ,E) = E, and class of models Mod(Σ,E) consisting of all Σ-models which
satisfy E.

Sum. For any specifications SP1 and SP2 such that Sig(SP1) = Sig(SP2),
SP1∪SP2 is a specification such that Sig(SP1∪SP2) = Sig(SP1), Ax(SP1∪SP2) =
Ax(SP1) ∪ Ax(SP2), and Mod(SP1 ∪ SP2) = Mod(SP1) ∩Mod(SP2).

Translation. Let SP be a specification and ϕ : Sig(SP) ↪→ Σ a signature
morphism. SP ∗ ϕ is a specification such that Sig(SP ∗ ϕ) = Σ, Ax(SP ∗ ϕ) =
ϕ(Ax(SP)), and Mod(SP ∗ϕ) consisting of all Σ-models M ′ such that the reduct
of M ′ along ϕ is a SP-model, in symbols, M ′�ϕ∈Mod(SP).

Initiality. Given a class H of model morphisms, for any two specifications
SP0 and SP and any signature morphism ϕ : Sig(SP0) → Sig(SP), the free re-
striction of SP to SP0 through ϕ, denoted SP!H(ϕ, SP0), is a specification such
that Sig(SP!H(ϕ, SP0)) = Sig(SP), Ax(SP!H(ϕ, SP0)) = Ax(SP), and
Mod(SP!H(ϕ, SP0)) = {M ∈Mod(SP) | there exists M0 ∈Mod(SP0) and

η : M0 →M�ϕ∈ H such that for all
h0 : M0 → N�ϕ with N ∈Mod(SP)
there exists a unique arrow
h : M → N that satisfies η;h�ϕ= h0}

If H consists of identity morphisms then no “junk” and no “confusion” is
added to the models of SP0. In this case we say that SP0 is imported by SP in
protecting mode. Importations in protecting mode can be realized also by the
operator Translation.

Definition 3. [3] An entailment system for deducing the logical consequences

of specifications is a family of predicates ` def
= {SP ` }SP∈|SPEC| on the sets of

sentences with the following properties:

[lemma]
SP ∪ (Sig(SP), E0) ` E SP ` E0

SP ` E

[union]
SP ` E0 SP ` E
SP ` E0 ∪ E

[trans]
SP ` E and ϕ : Sig(SP)→ Σ

SP ∗ ϕ ` ϕ(E)

[sum1]
SP1 ` Γ

SP1 ∪ SP2 ` Γ
[sum2]

SP2 ` Γ
SP1 ∪ SP2 ` Γ

where SP, SP1, SP2 ∈ |SPEC|, Γ ⊆ Sen(Sig(SP1)), and E0, E ⊆ Sen(Sig(SP)).

Definition 4. [3] An entailment system ` = {SP ` }SP∈|SPEC| is sound if SP ` E
implies SP |= E for all specifications SP and sets of sentences E.

Below we define the proof rules that support our verification methodology.
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Simultaneous Induction [SI]. This proof rule is a generalization of the structural
induction, and it can be applied to a goal of the form SP ` {(∀X)ρi | i = 1,m},
where X is a set of constrained variables for Σ , where Σ = Sig(SP), and for
all i ∈ {1, . . . ,m}, ρi is a Σ[X]-sentence 6. Let F c be the constructors of the
signature Σ. We let CON range over all sort-preserving mappings X → F c, i.e.
for every x ∈ X, the sort of CON(x) is less or equal than the sort of x. For each
mapping CON : X → F c and variable x ∈ X let Zx,CON = z1x,CON . . . z

n
x,CON be a

string of arguments for the constructor CON(x). By an abuse of notation, we let
Zx,CON denote both the string z1x,CON . . . z

n
x,CON and the set {z1x,CON, . . . , znx,CON}. We

define the set of variables ZCON =
⋃
x∈X Zx,CON and the substitution VARCON

# :

X → TΣ(ZCON) by VARCON
#(x) = CON(x)(Zx,CON). Let VARCON range over all sub-

stitutions X → TΣ(ZCON) with the following properties:

(a) VARCON(x) ∈ Zx,CON or VARCON(x) = CON(x)(Zx,CON) for all x ∈ X, and
(b) VARCON(x) ∈ Zx,CON for some x ∈ X.

Since any substitution is sort-decreasing, the sort of VARCON(x) is less or equal
than the sort of x. The function CON gives the induction cases, while the function
VARCON is used to define the induction hypothesis for each case. For all sort-
preserving mappings CON : X → F c we define the following specification:

SPCON = SP ∗ ιZCON
∪ (Σ[ZCON], {VARCON(ρi) | VARCON : X → TΣ(ZCON) and i = 1,m})

where ιZCON
: Σ ↪→ Σ[ZCON]. Simultaneous Induction is defined as follows:

[SI]
SPCON ` VARCON#(ρi) for all CON : X → F c and i = 1,m

SP ` {(∀X)ρi | i = 1,m}

Note that SPCON consists of the specification SP refined by the induction hy-
pothesis {VARCON(ρi) | VARCON : X → TΣ(ZCON) and i = 1,m}.

Lemma 1. [9] Consider a specification SP and a sentence (∀X)ρ ∈ Sen(Sig(SP)).
Let Σ = Sig(SP) and Σc be the sub-signature of constructors of Σ. We have

(1) SP |= (∀X)ρ iff SP ∗ ιX |= ρ, where ιX : Σ ↪→ Σ[X], and
(2) if X is a set of variables of constrained sorts then SP |= (∀X)ρ iff SP |=

(∀Y )θ(ρ) for all substitutions θ : X → TΣ(Y ) such that
(a) Y is a finite set of variables of loose sorts, and
(b) θ(x) ∈ TΣc(Y ) for all x ∈ X.

The above lemma is used to prove the soundness of [SI].

Proposition 5. Simultaneous Induction is sound.

Proof. Assume that SPCON |= VARCON
#(ρi) for all CON : X → F c and i = 1,m. Let

Σc = (S,≤, F c) be the sub-signature of constructors, where Σ = (S,≤, F, F c).
By Lemma 1(2) it suffices to show that SP |= (∀Y )θ(ρi) for all i = 1,m and
θ : X → TΣ(Y ) such that

6 Note that (∀X)(∀Y )ρ = (∀X ∪ Y )ρ.
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(1) Y is a finite set of variables of loose sorts, and

(2) θ(x) ∈ TΣc(Y ) for all x ∈ X.

Let θ : X → TΣ(Y ) be such a substitution. We proceed by induction on the
sum of depths of terms in {θ(x) | x ∈ X}, which exists as a consequence of X
being finite. Let CON : X → F c be the sort-preserving mapping such that for all
x ∈ X the topmost constructor of θ(x) is CON(x). For all x ∈ X let Tx = t1x . . . t

n
x

be the string of the intermediate subterms of θ(x). We define the substitution
ψ : ZCON → TΣc(Y ) by ψ(zjx,CON) = tjx.

CON(x) CON(x)

z1x,CON

ψ

66. . . znx,CON

ψ

66t1x . . . tnx

By our assumptions we have

SP∗ιZCON
∪(Σ[ZCON], {VARCON(ρj) | VARCON : X → TΣ(ZCON), j = 1,m}) |= VAR

#
CON(ρi)

for all i = 1,m. Since substitutions preserve satisfaction, we obtain

SP∗ιY ∪(Σ[Y ], {ψ(VARCON(ρj))|VARCON : X → TΣ(ZCON), j = 1,m}) |= ψ(VAR#CON(ρi))

for all i = 1,m. Since VAR
#
CON;ψ = θ we have

SP ∗ ιY ∪ (Σ[Y ], {ψ(VARCON(ρj)) | VARCON : X → TΣ(ZCON), j = 1,m}) |= θ(ρi)

for all i = 1,m.

For all substitutions VARCON : X → TΣ(ZCON), the sum of depths of terms
in {ψ(VARCON(x)) | x ∈ X} is strictly less than the sum of depths of terms in
{θ(x) | x ∈ X}. By the induction hypothesis, SP |= (∀Y )ψ(VARCON(ρj)) for all
VARCON : X → TΣ(ZCON) and j = 1,m. By Lemma 1(1), SP ∗ ιY |= ψ(VARCON(ρj))
for all VARCON : X → TΣ(ZCON) and j = 1,m. Since

SP ∗ ιY |= {ψ(VARCON(ρj)) | VARCON : X → TΣ(ZCON), j = 1,m}

and

SP ∗ ιY ∪ (Σ[Y ], {ψ(VARCON(ρj)) | VARCON : X → TΣ(ZCON), j = 1,m}) |= θ(ρi)

where i = 1,m. We obtain SP ∗ ιY |= θ(ρi), where i = 1,m. By Lemma 1(1),
SP |= (∀Y )θ(ρi), where i = 1,m. ut
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Case Analysis [CA]. This proof rule divides a goal into a sufficient number of
separate cases. Analysing each such case individually may be enough to prove the
initial goal. We say that E = {(∀X)(∀Y i)u = vi if Condi | i = 1, n} ⊆ Ax(SP )
is a [CA]-set of sentences, where SP is a specification, if

– X is the set of all variables occurring in u, and

– SP |=
i≤n∨
i=1

(∃Y i)ψ(Condi) for all substitutions ψ : X → TΣ .

Consider a goal SP ` ρ, and a [CA]-set of sentences E ⊆ Ax(SP) as above. Let t
be a ground term occurring in ρ, and t1 a subterm of t which is matched by u,
i.e. there exists a substitution θ : X → TSig(SP) such that θ(u) = t1. We define
Case Analysis as follows:

[CA]
SP ∗ ιY i ∪ (Σ[Y i], θ(Condi)) ` ρ for all i = 1, n

SP ` ρ

where ιY j : Σ ↪→ Σ[Y j ] is the signature inclusion.

In our case study, X consists of a single variable of the sort representing the
state space of the transitional system, and Y j consists of variables added by
the matching equations. The specification SP obviously satisfies the disjunction
i≤n∨
i=1

(∃Y i)ψ(Condi) as the conditions Condi describe all possible patterns of a

sequence.

Proposition 6. Case Analysis is sound.

Proof. Assume that SP ∗ ιY i ∪ (Σ[Y i], θ(Condi)) |= ρ for all i ∈ {1, . . . , n} and
let M ∈ Mod(SP). We prove that M |=Σ ρ. By our assumptions, there exists
j ∈ {1, . . . , n} and a ιY j -expansion M ′ of M , where ιY j : Σ ↪→ Σ[Y j ], such that
M ′ |=Σ[Y j ] θ(Cond

j). Notice that M ′ ∈ Mod(SP ∗ ιY j ∪ (Σ[Y j ], θ(Condj))), and
since SP∗ιY j ∪(Σ[Y j ], θ(Condj)) |= ρ, we have M ′ |=Σ[Y j ] ρ. Hence M |=Σ ρ. ut

Substitutivity [ST]. We can infer new sentences by substituting terms for vari-
ables. This proof rule is used during the verification process to instantiate sen-
tences that are not executable by rewriting.

[ST ]
(∀Y )ρ ∈ Ax(SP) θ : Y → TSig(SP)(Z)

SP ` (∀Z)θ(ρ)

Proposition 7. Substitutivity is sound.

Proof. The proof is a direct consequence of the satisfaction condition for substi-
tutions (see Proposition 4). ut
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Subterm Replacement [SR]. A specialized rule of inference using subterm re-
placement is the basis for term rewriting. Let SP be a specification and (∀X)ρ a
Σ-sentence, where Σ = Sig(SP). Suppose that X = Y ∪ {z}, where z 6∈ Y , and
θ, ψ : X → TΣ(Y ) are two substitutions such that θ(y) = ψ(y) = y for all y ∈ Y .

SP ` (∀Y )ψ(ρ) SP ` (∀Y )θ(z) = ψ(z)

SP ` (∀Y )θ(ρ)

The following result is a generalisation of soundness of Subterm Replacement
for many-sorted algebra [12].

Proposition 8. Subterm Replacement is sound.

Theorem of Constants [TC]. We define the following proof rule for the quantifi-
cation over variables of loose sorts:

[TC]
SP ∗ ιY ` ρ
SP ` (∀Y )ρ

where SP is a specification, (∀Y )ρ is a sentence, and ιY : Sig(SP) ↪→ Sig(SP)[Y ].
Note that even if not all of the variables in Y are of loose sorts if we have proved
SP ∗ ιY ` ρ then we conclude SP ` (∀Y )ρ. This means that there are cases in
practice when we apply [TC] to goals with sentences quantified over variables of
constrained sorts. The following proposition is a corollary of Lemma 1(1).

Proposition 9. Theorem of Constants is sound.

Remark 1. In the verification process we separate variables that are handled
with [SI] from the variables that are dealt with [TC], rather than distinguishing
variables of constrained sorts from variables of loose sorts. In general, this choice
cannot be automated and is entirely up to the user to make.

Implication. The following proof rule is defined for the logical implication:

[IP ]
SP ∪ (Sig(SP), Cond) ` atm

SP ` atm if Cond

where SP is a specification, atm is an atom, and Cond is a conjunction of atoms.

Proposition 10. [9] Implication is sound.

The following theorem is a corollary of Propositions 5-10.

Theorem 1. Consider a sound entailment relation `b = {SP `b }SP∈|SPEC| for
proving quantifier-free unconditional atoms. The least entailment relation ` =
{SP ` }SP∈|SPEC| over `b closed to [SI], [CA], [ST ], [SR], [TC] and [IP ] is sound.

Proof. By Proposition 5-10, the semantic entailment relation {SP |= }SP∈|SPEC|
is closed to [SI], [CA], [ST ], [SR], [TC] and [IP ]. Then the least entailment
relation {SP ` }SP∈|SPEC| closed to [SI], [CA], [ST ], [SR], [TC] and [IP ] is
included in {SP |= }SP∈|SPEC|. ut
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2.3 Specialised Proof Rules

When initial semantics is used the above rules are not enough to prove the
desired properties of the specifications. Specialised proof rules (that cannot be
derived from the general inference rules defined in Section 2.2) are needed to
complete the verification process. Since algebraic specification languages have
libraries defining the initial data types often used in applications, it is natural
for the theorem prover supporting the verification to be equipped with deduction
rules for the predefined data types declared with initial semantics.

Contradiction [CT]. In algebraic specification the boolean data type is often
used to establish the truth. The boolean specification BOOL is defined with initial
semantics and it is imported by any other specification in protecting mode. The
following proof rule is valid for any specification that protects the boolean values.
For any specification morphisms ι : BOOL ↪→ SP such that ι : Sig(BOOL) ↪→
Sig(SP) is an inclusion, we define the following proof rule:

[CT ]
SP ` true => false

SP ` ρ
Proposition 11. Contradiction is sound.

Proof. For any specification morphisms ι : BOOL ↪→ SP and M ∈ |Mod(SP)| we
have M 6|= true => false. If SP |= true => false then SP has no models, which
implies SP |= ρ for any sentence ρ ∈ Sen(Sig(SP)). ut

It follows that negation has been somehow introduced, in a weaker form. For
example, the following sentence (∀Y)true = false if t1 = t2 says that the term
t1 is different from t2.

Less-Equal [LE]. Let NAT denote the specification defined with initial semantics
which includes a sort Nat with two constructors 0 :→ Nat and s : Nat → Nat,
and an ordinary operators <= : Nat Nat → Bool defined by the following sets
of equations:

(∀M) M <= M = true,
(∀M) 0 <= s M = true,
(∀M) s M <= 0 = false,
(∀M, N) s M <= s N = M <= N.

For any specification morphism NAT ↪→ SP such that we have {(sm0 <= t =
true), (t <= sn0 = true)} ⊆ Ax(SP) and n < m, where t ∈ TSig(SP) and n,m ∈
N, we define the following proof rule

[LE]
SP ` ρ

where ρ is any sentence.7

7 Note that for all natural numbers n,m ∈ N we have n ≤ m iff sn0 <= sm0, where
sn0 = s . . . s︸ ︷︷ ︸

n times

0 and sn0 <= sm0 stands for sn0 <= sm0 = true.

13



Proposition 12. Less-Equal rule is sound.

Proof. For any specification morphism NAT ↪→ SP such that {sm0 <= t, t <= sn0}
⊆ Ax(SP), we have SP |= sm0 <= sn0. For any M ∈Mod(SP) if n < m then M |=
sn0 <= sm0 and M 6|= sn0 = sm0, which is a contradiction with SP |= sm0 <= sn0.
It follows that SP has no models. Hence, for any sentence ρ we have SP |= ρ. ut

Sequence Case Analisys [SC]. Our approach to support the automation of case
analysis is to consider specialized proof rules for various patterns over the data
types. Here we consider the example of sequences. Let SEQUENCE denote the
specification defined with initial semantics which includes a sort Sequence to-
gether with the following constructors: empty denoting the empty sequence, and
an associative operation , denoting the concatenation. The elements of the
sequences are of sort Elt. Let ι : SEQUENCE ↪→ SP be a specification morphism,
where ι : Sig(SEQUENCE) ↪→ Sig(SP) is an inclusion of signatures. Suppose we
want

SP ` (∀Y)atm if Cond ∧ L1, E1, L2, E2, L3 = t1, t2 ∧ Cond′

where Li are variables of sort Sequence, Ei are variables of sort Elt, Y ⊇
{L1, L2, L3, E1, E2} is a set of variables, atm is an atom, Cond and Cond′ are
conjunctions of atoms, and t1, t2 ∈ TSig(SP)(Y − {L1, E1, L2, E2, L3})Sequence are
terms that do not contain the variables L1, E1, L2, E2, L3. [SC] divides the above
goal into the following cases:

(1) SP ` (∀Y)atm[L3 ← L3, t2] if Cond[L3 ← L3, t2] ∧ L1, E1, L2, E2, L3 = t1 ∧
Cond′[L3← L3, t2],

(2) SP ` (∀Y′)atm[L2 ← L2, L2′] if Cond[L2 ← L2, L2′] ∧ L1, E1, L2 = t1 ∧
L2′, E2, L3 = t2 ∧ Cond′[L2← L2, L2′], where Y′ = Y ∪ {L2′},

(3) SP ` (∀Y)atm[L1 ← t1, L1] if Cond[L1 ← t1, L1] ∧ L1, E1, L2, E2, L3 = t2 ∧
Cond′[L1← t1, L1]

The above three subgoals describe the following three possibilities: either both
E1 and E2 are in t1, or E1 is in t1 and E2 is in t2, or E1 and E2 are in t2. The
rule [SC] is specific to SEQUENCE, which is declared with initial semantics, and
it cannot be derived from the general proof rules.

Proposition 13. Sequence Case Analysis is sound.

Proof. Assume that

(1) SP |= (∀Y)atm[L3 ← L3, t2] if Cond[L3 ← L3, t2] ∧ L1, E1, L2, E2, L3 = t1 ∧
Cond′[L3← L3, t2],

(2) SP |= (∀Y′)atm[L2 ← L2, L2′] if Cond[L2 ← L2, L2′] ∧ L1, E1, L2 = t1 ∧
L2′, E2, L3 = t2 ∧ Cond′[L2← L2, L2′], where Y′ = Y ∪ {L2′},

(3) SP |= (∀Y)atm[L1 ← t1, L1] if Cond[L1 ← t1, L1] ∧ L1, E1, L2, E2, L3 = t2 ∧
Cond′[L1← t1, L1].
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We show SP |= (∀Y)t = t′ if Cond ∧ L1, E1, L2, E2, L3 = t1, t2 ∧ Cond′. Let
M ∈Mod(SP).

We denote by Σ the signature Sig(SP). Let N be a ιy-expansion of M , where
ιy : Σ ↪→ Σ[Y ], such that N |=Σ[Y ] Cond, N |=Σ[Y ] L1, E1, L2, E2, L3 = t1, t2
and N |=Σ[Y ] Cond

′. Since the sequences are protected, there are three possibil-
ities:

(a) NE1 and NE2 are in Nt1,
(b) NE1 is in Nt1, and NE2 is in Nt2, and
(c) NE1 and NE2 are in Nt2.

We will focus on the first case as the rest of the cases are similar. Without danger
of confusion the interpretation of , into the model N will be denoted also by
, . Since NL1, NE1, NL2, NE2, NL3 = Nt1, Nt2 and both NE1 and NE2 are in Nt1,

there exists n ∈ NSequence such that NL3 = n,Nt2. Let θ : Y → TΣ(Y) be the
substitution which is the identity on Y − {L3} and θ(L3) = L3, t2. Let N ′ be
a ιY-expansion of M such that N ′L3 = n and N ′y = Ny for all y ∈ Y − {L3}.
Since t2 does not contain L3 we have N ′t2 = Nt2. Note that (N ′�θ)L3 = N ′θ(L3) =

N ′L3,t2 = n,N ′t2 = n,Nt2 = NL3. We obtain N ′�θ= N , and since N |=Σ[Y] Cond

and N |=Σ[Y] Cond
′, by the satisfaction condition for substitutions, N ′ |=Σ[Y]

Cond[L3← L3, t2] and N ′ |=Σ[Y] Cond
′[L3← L3, t2]. We have

N ′L1, N
′
E1, N

′
L2, N

′
E2, N

′
L3, N

′
t2 = NL1, NE1, NL2, NE2, n,Nt2 =

NL1, NE1, NL2, NE2, NL3 = Nt1, Nt2 = N ′t1, N
′
t2

Since the sequences are protected, N ′L1, N
′
E1, N

′
L2, N

′
E2, N

′
L3 = N ′t1. We obtain

N ′ |=Σ[Y] L1, E1, L2, E2, L3 = t1. By assumption (1), N ′ |=Σ[Y] atm[L3← L3, t2],
and by the satisfaction condition for substitutions, N |=Σ[Y] atm. ut

[SC] simplifies the formula to prove while [CA] refines the specification of the
goal by adding new equations. The following theorem is a corollary of Theorem 1
and Propositions 11, 12 and 13.

Theorem 2. Consider a sound entailment relation `b = {SP `b }SP∈|SPEC| for
proving quantifier-free unconditional atoms. Then the least entailment relation
` = {SP ` }SP∈|SPEC| over `b closed to [SI], [CA], [ST ], [SR], [TC], [IP ], [CT ],
[LE] and [SC] is sound.

2.4 Tactics

This methodology is designed for algebraic specification languages which are
executable by rewriting. Given a goal SP ` E, the underlying assumption is
that Ax(SP) forms a term rewriting system which is terminating and possibly
confluent. By applying a tactic to a goal it is desirable to preserve termination
and confluence. Note that the proof rules of the specification calculus can be
regarded, upside down, as tactics for decomposing problems.
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Reduction [RD]. The basic entailment relation `b from Theorem 2 is provided by
the system which supports the description of constructor-based specifications.
The present methodology is implemented in CITP [11] which is built on top
of Maude. Given a specification SP, any goal of the form (1) SP ` t = t′, (2)
SP ` t : s and (3) SP ` t ⇒ t′, where t, t′ are ground terms and s is a sort, is
reduced to the empty goal set if (1) t and t′ can be rewritten to the same normal
form by the system using the equations and membership axioms of Ax(SP), (2)
the sort of t is a subsort of s, (3) t can be rewritten to t′ by applying the preorder
axioms of Ax(SP), respectively. Maude search engine is invoked in the third case.

Inconsistency [IC]. Let BOOL ↪→ SP be a specification morphism. One can easily
prove by induction that SP ` (∀B)t = t′ if Cond ∧ B = not B ∧ Cond′, where B
is a variable of sort Bool. By [ST ], SP ` t = t′ if Cond∧ b = not b∧ Cond′ for all
ground terms b of sort Bool. It follows that the entailment system defined above
is closed to the following rule of inference

[IC]
SP ` t = t′ if Cond ∧ b = not b ∧ Cond′

where BOOL ↪→ SP is a specification morphism and (t = t′ if Cond ∧ b = not b ∧
Cond′) is a quantifier-free sentence such that b is a ground term of sort Bool.
[IC] is crucial for the automation since the equation b = not b might cause a
non-terminating process when added to SP by the [IP ] rule.

Normal Forms [NF ]. Algebraic specification languages executable by rewriting
are equipped with a partial function nf SP : TSig(SP) → TSig(SP) for all specifications
SP such that for all t ∈ TSig(SP), nf SP(t) is a normal form of t w.r.t. Ax(SP) if one

exists, and nf SP(t) is undefined, otherwise. Note that SP `b t = t′ iff nf SP(t) and
nf SP(t

′) are defined and equal.
Let nf SP : Sen(SP) → Sen(SP) be the canonical extension of nf : TSig(SP) →

TSig(SP). The following rule of inference can be obtained by a successive applica-
tion of [SR]:

[NF ]
SP ` nf SP(ρ)

SP ` ρ
where ρ is any sentence.

Proposition 14. The entailment system defined in Theorem 1 is closed to [NF ].

Proof. Let t1 be a ground term occurring in ρ. Since SP `b t1 = nf (t1), by [SR]
the entailment system of Theorem 1 is closed to the following rule of inference:
SP ` ρ[t1 ← nf (t1)]

SP ` ρ
. Let {t1, . . . , tn} be all ground terms occurring in ρ. Note

that nf (ρ) = ρ[t1 ← nf (t1), . . . , tn ← nf (tn)]. By applying n times the rule [SR]
we get that the entailment system defined in Theorem 1 is closed to [NF ]. ut

In order to preserve the confluence property of specifications in the proof
process, each application of any of the proof rules above is preceded by a re-
duction of the ground terms occurring in the formulas to prove to their normal
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forms. In practice, the proof of a goal SP ` ρ stops if nf SP(ρ) is undefined. The
following simple example illustrates the benefit of this tactic.

Example 1. Consider a specification SP with three constant symbols a b c :→ s

and one equation a = b. If we apply [IP ] to SP ` b = c if a = c we get SP ∪
(Sig(SP), {a = c}) ` b = c, and SP ∪ (Sig(SP), {a = c}) is not confluent because
the critical pair c← a→ b is not joinable. On the other hand, if a reduction to
the normal forms is performed then the new goal is SP ` b = c if b = c, which
is reduced to SP ∪ (Sig(SP), {b = c}) ` b = c by [IP ]. By applying [NF ] we
get SP ∪ (Sig(SP), {b = c}) ` c = c; finally SP ∪ (Sig(SP), {b = c}) ` c = c is
discharged by [RD].

Since [NF ] is coupled with any other proof rule, it will be omitted from the
discussions.

Case Analysis (revisited). In practice, we give labels to conditional equations
used for case analysis. It follows that the [CA]-sets of sentences are part of
the specification. Given a specification SP let CA(SP) = ({(∀Xj)(∀Y ij )uj =

vij if Condi | i = 1, nj})j∈J ⊆ P(Ax(SP)) be the family of all [CA]-sets of sen-
tences of SP. Consider a ground term t ∈ TSig(SP). We say that t1 is a [CA]-
subterm of t if there exists jt1 ∈ J such that

(1) ujt1 matches t1, i.e. there exists a substitution θt1 : X → TSig(SP) such that
θ(ujt1 ) = t1, and

(2) there is no j ∈ J such that uj matches a proper subterm of t1.

Assume a goal SP ` ρ and a ground term t occurring in ρ. Consider the tactic
which consists of successive applications of [CA], one for each [CA]-subterm
of t. This tactic will replace [CA] defined above. In applications, t is selected
automatically from the list of all ground terms which occur in ρ.

Example 2. Consider the specification morphism NAT ↪→ FUN, where FUN is a
specification with two functions over the natural numbers:

(1) F is defined by the following [CA]-set:

{
F(X) = 5 if X <= 7,
F(X) = 1 if 8 <= X.

(2) G is defined by the following [CA]-set:

{
G(Y) = 2 if Y <= 4,
G(Y) = 7 if 5 <= Y.

Suppose we want to prove FUN ` (∀X)9 <= G(F(X)) + G(X) = true. By [TC] the
new goal is FUN ∗ ιX1 ` 9 <= G(F(X1)) + G(X1) = true, where ιX1 : Sig(FUN) ↪→
Sig(FUN)[X1] is the inclusion of signatures. Case analysis is performed with re-
spect to the [CA]-subterms F(X1) and G(X1) of the term 9 <= G(F(X1)) + G(X1).
There are four cases:

(a) X1 <= 4, (c) 8 <= X1 <= 4,
(b) 5 <= X1 <= 7, (d) 8 <= X1.

Note that the cases (a), (b) and (d) are discharged by [RD] while the case (c) is
discharged by [LE]. The corresponding proof tree is depicted in the figure below,
where the circles represent the empty goal set.

17



X1 <= 4

X1 <= 7

RD

5 <= X1

X1 <= 7

RD

5 <= X1

8 <= X1

RD

X1 <= 4

8 <= X1

LE

TC

CA

Remark 2. The proof of FUN ` (∀X)9 <= G(F(X))+G(X) = true can be performed
automatically by CITP by giving the command (apply TC CA RD .).

Note that [LE] is applied automatically by CITP without giving an explicit
command. The idea is that the interaction with the user is not needed to dis-
charge goals with inconsistent specifications. Hence, [IC] and [CT ] are applied
also automatically by CITP.

Proof Strategy. Except [SI], all basic tactics are designed for goals consisting
of a specification and a single formula. We make the following convention: if a
tactic different from [SI] is applied to a goal of the form SP ` {ρ1, . . . , ρn}, the
goal is decomposed into a set of subgoals {SP ` ρ1, . . . , SP ` ρn}, and then the
tactic is applied to each SP ` ρi.

The application order of the basic tactics is crucial for automating the proof
process. [SI] is applied first. [TC] is performed before [IC] as [IC] can be applied
only to goals with quantifier-free formulas. [IC] discharges any goal of the form
SP ` atm if Cond∧ b = not b∧ Cond′, otherwise [IC] leaves the goal unchanged.
An application of [IP ] is preceded by an application of [IC]. [RD] attempts to
discharge any goal with an atomic formula. If [RD] fails to complete the proof
then [CT ] and [LE] tactics are used.

The order of tactic applications described above is well-established for all
goals. However, the application of case analysis depends on the problem to solve.
Based on the case studies, we have two proof strategies:

(1) [SI], [CA], [SC], [TC], [IC], [IP ], [RD], [CT ], [LE], and
(2) [SI], [TC], [CA], [IC], [IP ], [RD], [CT ], [LE].

A tactic can be applied to a goal if it has a certain pattern, otherwise the tactic
leaves the goal unchanged. Note that not all OTS are modelled using sequences.
In such a case the application of [SC] leaves the goal unchanged. The advantages
of these proof strategies can be noticed clearly in concrete examples which can
be found at http://www.jaist.ac.jp/~danielmg/citp.html.

The present methodology does not include automatic lemma discovery. It is
for the user to find the appropriate induction scheme for the problem to solve,
and the constrained variables for induction.
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3 Methodology at Work: ABP Case Study

Alternating Bit Protocol is a communication protocol that enables to send re-
liable messages on unreliable channels. It is often used as a case study, either
for some algebraic formalisms or for tools dedicated to analysis or verification
of concurrent systems. Even if the protocol seems to be simple, its complete
algebraic specification is quite complex and its formal correctness proof is very
large. We show that using our methodology, most of the proving process can be
automated.

Since this section involves the operational semantics of the system that assists
the proofs, we write the formulas in Maude-like notation, meaning that we omit
the universal quantifier and we distinguish ordinary equations from matching
equations.

3.1 The ABP Protocol

We describe briefly the protocol. Two processes, Sender and Receiver, that do
not share any common memory use two channels to communicate with each
other. Sender sends repeatedly a pair < bit1,pac > of a bit and a packet to the
receiver over one of the channels, let’s say channel1. When Sender gets bit1

from Receiver over the other channel, let’s say channel2, it is a confirmation
from Receiver that the packet sent was received. In this case Sender alternates
bit1 and selects the next packet for sending. Receiver puts bit2 into channel2

repeatedly. When Receiver gets a pair < b,p > such that b is different from
bit2 it stores p into a list and alternates bit2. Initially both channels are
empty and the Sender’s bit is different from the Receiver’s bit. We assume that
the channels are unreliable, meaning that the data in the channels may be lost,
but not exchanged or damaged.

The packets sent by Sender to Receiver through channel1 are indexed by
the natural numbers and are of the form pac(0), pac(s0), . . . , pac(sn0), where
op pac : Nat -> Packet is the constructor for packets. The bits sent by both
Sender and Receiver into the communication channels are modelled by the
boolean values true and false. The communication channels and the packets
received by the Receiver are modelled by sequences.

(a) channel1 consists of sequences of pairs of bits and packets of the form
< b1, p1 >, . . . , < bn, pn >.

(b) channel2 consists of sequences of bits of the form b1, . . . , bn.

(c) The list of packets received by Receiver consists of sequences of packets of
the form p1, . . . , pn.

In the OTS/CafeOBJ method the transitions between the states of the system
are modelled with constructor operators. For the ABP specification, the con-
structors are the following ones:
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Constructor Meaning

init : -> Sys Initial state
rec1 : Sys -> Sys Sender receives bits
rec2 : Sys -> Sys Receiver receives pairs of bits & packets
send1 : Sys -> Sys Sender sends pairs of bits & packets
send2 : Sys -> Sys Receiver sends bits
drop1 : Sys -> Sys Dropping one element of channel1
drop2 : Sys -> Sys Dropping one element of channel2

The structure of a state is abstracted by the following observers, each one re-
turning an observable information about the state:

Observer Meaning

channel1 : Sys -> Channel1 Sender-to-Receiver channel
channel2 : Sys -> Channel2 Receiver-to-Sender channel
bit1 : Sys -> Bit Sender’s bit
bit2 : Sys -> Bit Receiver’s bit
next : Sys -> Nat Number of packet sent by Sender
list : Sys -> List Lists of packets received by Receiver

The meaning of an observer is formally described by means of (conditional) equa-
tions. For instance, the value of bit1 after the application of rec1 is described
by the following [CA]-set of conditional equations:

bit1(rec1(S))= bit1(S) if channel2(S)= empty

bit1(rec1(S))= bit1(S) if B,C2 := channel2(S)
∧

B = not bit1(S)

bit1(rec1(S))= not bit1(S) if B,C2 := channel2(S)
∧

B = bit1(S)

More tricky is the specification of loosing data from the channels, because
the dropped elements are arbitrarily chosen. We use “underspecified” operations
to model the dropping actions. For instance, the value of channel1 after the
application of drop1 is specified by two operations p1 r1 : Sys -> Channel1

and the following [CA]-set of conditional equations:

channel1(drop1(S))= p1(S),r1(S) if p1(S),< B,P >,r1(S) := channel1(S)

channel1(drop1(S))= channel1(S) if match(channel1(S),p1(S),r1(S))= false

Roughly speaking, the arguments of p1 and r1 are constructor terms of the
form σn(. . . σ1(init)), where σi ∈ {rec1, . . . , drop2}, and the values returned
are sequences because the communication channels are protected. There are no
equations to define p1 and r1, meaning that each model has its own interpre-
tation of p1 and r1. If channel1(S) is matched by p1(S),< B,P >,r1(S) then
the element < B,P > is dropped, otherwise, drop1 does not affect the system
state. Each model of the specification is deterministic but the non-deterministic
behaviour consists of the different interpretations of the functions p1 and r1 into
the models. An application of drop1 to a given state does not change the values
of bit1, bit2, next and list.
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3.2 The Correctness Proof

We will explain our methodology by proving a safety property for ABP. The
protocol is specified using only conditional equations. In order to avoid non-
termination in the proof process, we use preorder axioms with the semantic of
equality. The proof begins with the following four lemmas:

(1) If channel1 contains bit1 then all bits before bit1 are equal to bit1.

inv1
def
= B’ => bit1(S) if

C1,< B,P >,C2,< B’,P’ >,C3 := channel1(S)
∧

B = bit1(S)

(2) All bits of channel1 are equal to bit1 when bit2 is equal to bit1.

inv2
def
= B => bit1(S) if

C1,< B,P >,C2 := channel1(S)
∧

bit2(S) = bit1(S)

(3) bit2 is equal to bit1 when channel2 contains bit1.

inv3
def
= bit2(S) = bit1(S) if

D1,B,D2 := channel2(S)
∧

B = bit1(S)

(4) If channel2 contains bit1 then all the bits before bit1 are equal to bit1.

inv4
def
= B’ => bit1(S) if

D1,B,D2,B’,D3 := channel2(S)
∧

B = bit1(S)

Remark 3. The invariants inv1, inv2 and inv4 are specified as preorder axioms.
As equations the above invariants would cause non-termination: when [SI] is
applied to the goal ABP ` {inv1, inv2, inv3, inv4}, invi are added as hypothe-
ses to the specification ABP; then an application of inv1, for example, to reduce
a term implies the evaluation of the condition C1,< B,P >,C2,< B’,P’ >,C3

:= channel1(S) that requires another application of inv1, which produces a
non-termination process. Since these hypotheses are needed in the verification
process, i.e., they must be executable, we choose to formalise them as preorder
axioms. In this way, the termination property is preserved and the new (equa-
tional and preorder) axioms are executable.

The invariants cannot be proved independently (without a simultaneous induc-
tion scheme) since the proof of each invariant depends on the rest.

Secondly, we prove the following invariant by (ordinary) structural induction
using the invariants above.

inv5
def
= P => pac(next(S)) if C1,< B,P >,C2 := channel1(S)

∧
B = bit1(S)

The invariant inv5 says that if channel1 contains a pair < B,P > and B is equal
to bit1 then P is equal to pac(next).

When Receiver gets the nth packet it has received pac(0), . . . , pac(n), in this
order. Each pac(i) for i = 0, . . . , n has been received only once, and no other
packet have been received. This property is formalised below.
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goal1
def
= mk(next)(S) = pac(next(S)),list(S) if bit1(S) = not bit2(S)

goal2
def
= mk(next)(S) = list(S) if bit1(S) = bit2(S)

where mk : Nat -> List is defined by

{
mk(0) = pac(0),
mk(s n) = pac(s n)mk(n).

The formu-

las goal1 and goal2 are proved by simultaneous induction using inv2, inv3
and inv5. We present the proof of the four invariants as the rest of the proof is
similar.

Let INV = ABP ∪ (Sig(ABP), {lemma-inc}), where

lemma-inc
def
= true => false if not bit1(S) => bit1(S)

The above axiom says that not bit1(S) and bit1(S) are different for all
system states S. Note that lemma-inc is not executable since the left-hand
side term is ground and the condition contains the variable S. The proof of
INV ` {inv1, inv2, inv3, inv4} is performed with CITP using the proof strategy
[SI], [CA], [SC], [TC], [IC], [IP ], [RD], [CT ]. The goal is generated by the
following command:

(goal INV |-
crl [inv1]: B1:Bit => bit1(S:Sys) if
C1:Channel1,< B:Bit,P:Packet >,C2:Channel1,< B1:Bit,P1:Packet >,C3:Channel1
:= channel1(S:Sys) ∧ B:Bit = bit1(S:Sys) ;
crl [inv2]: B:Bit => bit1(S:Sys) if
C1:Channel1,< B:Bit,P:Packet >,C2:Channel1 := channel1(S:Sys) ∧
bit2(S:Sys) = bit1(S:Sys) ;
ceq [inv3]: bit2(S:Sys) = bit1(S:Sys) if
C2:Channel2,B:Bit,C3:Channel2 := channel2(S:Sys) ∧ B:Bit = bit1(S:Sys)
[metadata "enhanced"];
crl [inv4]: B’:Bit => bit1(S:Sys) if
D1:Channel2,B:Bit,D2:Channel2,B’:Bit,D3:Channel2 := channel2(S:Sys) ∧
B:Bit = bit1(S:Sys) ; )

CITP discharges an equation t1 = t2 with the attribute "enhanced" by proving
t1 => t2. The proof consists of the sequence of commands described below.

(set ind on S:Sys .) --- rec1 ---

(apply SI .) (init lemma-inc by S:Sys <- X1 .) (auto .)

--- init --- --- rec2 ---

(auto .) (init lemma-inc by S:Sys <- X1 .) (auto .)

--- drop1 --- --- send1 ---

(auto .) (auto .)

--- drop2 --- --- send2 ---

(auto .) (auto .)

The variable S is selected for induction. By applying [SI] we obtain seven sub-
goals corresponding to each of the seven constructors:

INV ∗ ιX1 ∪ (Sig(INV)[X1], Γ [S ← X1]) ` Γ [S ← σ(X1)]
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where ιX1 : Sig(INV) ↪→ Sig(INV)[X1], X1 is a constant representing an arbitrary
state of the system, σ ∈ {init, rec1, rec2, send1, send2, drop1, drop2}, and
Γ = {inv1, inv2, inv3, inv4}. For the cases σ = rec1 and σ = rec2, lemma-inc
is instantiated by substituting X1 for S. Then each of the remaining goals is split
into four subgoals corresponding to each invariant. We obtain 28 subgoals that
are discharged automatically by the command (auto .) which uses the proof
strategy [SI], [CA], [SC], [TC], [IC], [IP ], [RD], [CT ]. Note that the application
of [SI] at this point leaves the goal unchanged. The proof tree corresponding to
INV ∗ ιX1 ∪ (Sig(INV)[X1], Γ [S ← X1], lemma-inc[S ← X1]) ` inv2[S ← rec1(X1)]
is depicted in the figure below:

channel1(X1) = empty

RD

IP

TC

B, C2 := channel2(X1)
B = not bit1(X1)

RD

IP

TC

B, C2 := channel2(X1)
B = bit1(X1)

IC

TC

CA

Note that [CA] is performed w.r.t. the [CA]-subterm bit1(rec1(X1)). There
are three cases given by the conditions of the [CA]-set of sentences which defines
the value of bit1 after the execution of rec1 at a given state. The proof tree
corresponding to INV ∗ ιX1 ∪ (Sig(INV)[X1], Γ [S ← X1]) ` inv2[S ← drop1(X1)] is
depicted in the following figure.

p1(X1),<B,P>,r1(X1)

:= channel1(X1)

RD

IP

TC

RD

IP

TC

RD

IP

TC

match(channel1(X1),p1(X1),r1(X1))

= false

RD

IP

TC

CA

SC

In this case, CA is performed w.r.t. the [CA]-subterm channel1(drop1(X1)).
The interested reader can look into http://www.ldl.jaist.ac.jp/citp/ for
tool demonstration.
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4 Conclusions

We presented a methodology for proving inductive properties of OTS. The pro-
posed method aims at automating the proof score approach to verification. We
revise the entailment system in [9] to increase its efficiency in applications and
we enrich it with a set of specific proof rules for initial data types that are often
used in our methodology. We define proof tactics that preserve confluence and
termination of the specifications in the proof process, and we propose a proof
strategy to apply the tactics automatically. The viability of the methodology
is demonstrated by CITP, a prototype tool implementing the methodology. We
used the ABP example in order to exhibit the main strong points of the proposed
methodology. Algebraic specification languages have standard libraries with pre-
defined modules. In order to perform verification of complex software systems it
is crucial to have tactics for the initial data types that are often used in practice
such as booleans, sequences or natural numbers. The challenge is how to inte-
grate these tactics with the ones for loose semantics and to push the boundaries
of automation.

The logical frameworks underlying tools like Circ [19,16] or Maude ITP [18]
do not include preorder axioms, and are not based on constructors. Circ imple-
ments a similar tactic with the Case Analysis proposed here. Case analysis is
interactive in Maude ITP. Another paper that uses the ABP as a benchmark
example is [14]. The proof in [14] is coinductive and it is based on the circular
coinductive rewriting algorithm [15] implemented in the BOBJ system. In [14],
the unreliability of the communication channels is modelled by “fair streams”,
while here it is modelled by a special dropping operation that is closer to a real
description. With the OTS approach, the ABP specification is closer to a faithful
representation, and since all data types are specified in detail, the proof becomes
more complex.

Future work includes testing of the methodology on other case studies, and
increasing the automation level.
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