
An implementation of Japanese Grammar
based on HPSG

Yoshiko FUJINAMI

MSc Information Technology: Natural Language Processing
Department of Arti�cial Intelligence

University of Edinburgh
1996

1 Abstract

In this thesis, I shall show how Japanese Phrase Structure Grammar [Gun87]

can be implemented in LexGram [KB95], an amalgam of Categorial gram-

mar [Lam61] and Head Driven Phrase Structure Grammar [PS94]. The thesis

presents a parser which covers three characteristic phenomena in Japanese:

(1)word order variation, (2) gaps in a sentence, and (3)relativization. To

cover word order variation, the argument list for a verb, which speci�es its

subcategorization requirements, is de�ned as a set of arguments rather than

as a list. The gaps in a sentence are dealt with by giving verbs categories

additional to the basic ones. As for relativization, verb adnominal forms

are de�ned in a similar way to adjectives without using traces. The parser

was tested against data collected from Japanese Map Task Corpus [AIK+94].

We have shown that the parser can parse sentences in reasonable speed, an

average of 271.77 msec. per sentence with an average of 6 words per sentence.

i

2 Acknowledgements

I wish to thank Dr. Chris Mellish for his helpful comments and guidance

on my project, and Dr. Esther K�onig for her advice and support on the

grammar and thesis. I also thank Dr. Carl Vogel who gave me lectures on

CUF and HPSG, and Kei Yoshimoto for his comments on JPSG.

The Map Task corpora were valuable sources to test the parser on, and I

thank people who have worked on them. As for the Japanese version, I am

specially grateful to Syun Tutiya and Hanae Koiso, who provided me with

the corpus and related documents.

ii

Contents

1 Abstract i

2 Acknowledgements ii

3 Introduction 1

3.1 Overview . 2

4 LexGram 3

4.1 Pure Categorial Grammar . 4

4.2 Feature Structures . 7

4.3 A Grammar in LexGram . 8

4.4 The Fundamental Phrase Structure Schemata 9

4.5 Grammars in LexGram . 10

5 Japanese Phrase Structure Grammar 15

5.1 Categories in JPSG . 15

5.2 HEAD features and the HEAD Feature Principle 17

5.3 The SUBCAT feature and the SUBCAT Feature Principle . . 17

5.4 The Phrase Structure Rule . 19

6 JPSG in LexGram 20

6.1 Head Features . 21

6.2 De�nition in LexGram . 22

6.3 Semantic Representation . 24

6.4 Summary . 29

7 Phenomena in the Data 30

7.1 The Japanese Map Task Corpus 30

iii

7.2 Data Studied . 31

7.3 The Phenomena . 34

7.4 Conclusion . 40

8 Grammar 41

8.1 Noun Phrases . 41

8.2 Agreement . 44

8.3 Relative clauses . 46

8.4 Flexibility in Word Order and Arguments 48

8.5 The Implemented Grammar 54

9 Evaluation 57

9.1 Problematic Cases . 57

9.2 Run Time Test . 60

10 Conclusion 65

10.1 Comparison With Related Work 65

10.2 Future Work . 66

A Map 70

B Lexicon 71

C Particles 73

C.1 Post Positional Particle . 73

C.2 Adnominal Particle . 73

D Verbs 73

D.1 Verb Types . 73

D.2 Verbs . 74

iv

E Evaluation 75

F Histogram 76

G Test Program 77

H The Code for the Parser 78

I Data 93

List of Figures

1 A derivation . 6

2 A parse tree . 6

3 Fundamental Phrase Structure Schema(1) 9

4 Fundamental Phrase Structure Schema(2) 10

5 \Ken loves Naomi" . 10

6 \loves Naomi" . 11

7 A derivation of adjective . 13

8 \Ken whom Naomi loves" . 14

9 \Ken ga" . 17

10 \Ken ga Naomi wo aisiteru" 19

11 A derivation of \Ken ga Naomi wo aisiteru" 23

12 The Adjunct Approach . 46

13 The Trace Approach . 47

14 A derivation of `sogen ga yama no sita ni aru' 50

15 A derivation `yama no sita ni sogen ga aru' 50

16 A derivation of `sogen ga yama no sita ni aru' 52

17 A derivation of `yama no sita ni sogen ga aru' 52

v

18 A derivation of `migigawa ni magaru' 53

19 A derivation of `atoti no kado wo migigawa ni magaru' 53

20 `atoti to iu tokoro no hidarigawa' 58

21 `atoti to iu tokoro no hidarigawa'* 59

22 `haka no e ga owatta atari'2 . 59

23 `haka no e ga owatta atari'* . 59

24 `Naomi to iu Ken no tomodati' 61

25 `Ken no futi ga kaketa sara' . 61

List of Tables

1 Table of �les . 56

vi

3 Introduction

It is assumed in Arti�cial Intelligence (AI) that understanding language

should be computable. Linguistics, on the other hand, aims to �nd theories

which adequately describe phenomena in natural language without unnec-

essarily being concerned with computability. Head Driven Phrase Structure

Grammar (HPSG) [PS94] is one proposal which attempts to satisfy the re-

quirements from both sides.

HPSG is a uni�cation based grammar that makes use of sort-resolved, fully

well-typed feature structures [Car92]. To implement HPSG on computers, we

need a formalism which can support typed feature structures and uni�cation

on them. The comprehensive Uni�cation Formalism (CUF) [DD93] is one

such tool which can be used to formalise HPSG, but CUF needs a huge

search space even to parse simple sentences since it is a general constraint-

based logic programming language and uses no domain speci�c knowledge

for resolution.

LexGram [KB95] is developed in the CUF system, intended to be a useful tool

for actual grammar writing. By amalgamating Categorial Grammar [Lam61]

and HPSG, LexGram constrains the search space; it restricts trees to be

binary and allows only two hard coded rules. With the LexGram system,

grammar writing becomes just lexicon writing.

Japanese Phrase Structure Grammar(JPSG) [Gun87] is a uni�cation based

grammar and is loosely based on advances from Generalised Phrase Struc-

ture Grammar(GPSG) [GKPS85] and Head Driven Phrase Structure Gram-

mar(HPSG). A parser [HTH+86] was developed based on JPSG at the Insti-

tute for New-Generation Computer Technology(ICOT) in Tokyo.

The aim of this project is to implement a parser based on JPSG using Lex-

Gram and to test whether the restrictions provided by LexGram becomes a

1

barrier for the implementation. The parser is evaluated against data collected

from Japanese Map Task Corpus [AIK+94].

3.1 Overview

In this thesis, I will explain LexGram (Section 4) and JPSG (Section 5)

brie
y with examples. Then, I will explain how a parser based on JPSG can

be implemented in LexGram (Section 6).

I will analyse collected data from Japanese Map Task Corpus (Section 7)

and discuss possible grammars for the phenomena (Section 8). Then, the

grammar will be evaluated (Section 9). Finally, I will conclude this thesis

(Section 10)

2

4 LexGram

LexGram [KB95] is a feature-based version of Lambek Categorial Grammars,

which can be considered as a lexicalized version of Head Driven Phrase Struc-

ture Grammar(HPSG) [PS94]. LexGram has been build on top of the Com-

prehensive Uni�cation Formalism(CUF) system [DD93], a constraint-based

logic programming language. Feature structures in LexGram are deal with

by the CUF system.

LexGram is not the only uni�cation-based categorial grammar, and there are

others such as Uni�cation Categorial Grammar(UCG) [Zee88] and Categorial

Uni�cation Grammar(CUG) [Usz86]. Compared to those that are developed

based on PATR-II and Prolog, LexGram bene�ts from the following CUF

properties:

� Typed feature terms and untyped �rst-order terms are supported.

� CUF sorts allow recursive data structures.

� Goals in sorts can be suspended.

In addition to these, LexGram supports HPSG's principled way of treating

nonlocal dependencies.

In the following sections, I explain

� how a grammar for English transitive verbs can be de�ned in Categorial

Grammar,

� what are the built-in feature structures in LexGram,

� how a grammar can be encoded in LexGram with the features,

� what the Fundamental Phrase Structure Schemata are and how they

are used in LexGram.

3

� how the phenomena of subject-verb agreement and nonlocal dependen-

cies in English can be described in LexGram using CUF feature terms.

4.1 Pure Categorial Grammar

Pure Categorial Grammar is weakly equivalent to context-free grammar. I

show how a categorial grammar can capture the same syntactic facts, in this

case those involving English transitive verbs, as the following context-free

rules in (1) do, where s means sentence, np noun phrase, vp verb phrase,

and tv transitive verb.

(1) r1. s ! np vp

r2. vp ! tv np

l1. tv ! `loves'

l2. np ! `Ken'

l3. np ! `Naomi'

In Categorical Grammar, each category is either a basic category or a com-

plex category, which is also called a functor category. A complex category

is expressed by concatenating basic categories with slashes (n, =), with a

notation de�ned as follows:

De�nition 1 Notation for categories (Steedman Notation)

Basic categories are categories.

If X and Y are categories, then X/Y and XnY, too, are categories.

(X is called the value category and Y is the argument category.)

In the above notation, the value category appears always to the left of the

argument category, and the slashes (n, =) show the direction of arguments.

4

For example, the category S/NP means that it takes the argument category

NP on the right and results in the value category S. On the other hand, the

category SnNP means that it takes the argument category NP on the left

and results in the value category S. Thus, a functor category can been seen

as a function which takes as its argument categories in the direction speci�ed

by slashes, and results in a value category.

With the following Function Application Rules (De�nition 2), functor cate-

gories play the rule of functions described above.

De�nition 2 The Function Application Rules:

forward application X/Y Y ! X

backward application Y XnY ! X

forward application means that if an expression with a category Y fol-

lows an expression with a category X/Y, then those two expressions form an

expression of a category X.

backward application means that if an expression with a category Y

precedes an expression with a category X/Y, then those two expressions

form an expression of a category X.

Let us go back to the phrase structure rules in (1) and rewrite them in

Categorial Grammar. In the functional view, the �rst rule, s ! np vp, can

be read as \vp takes np on the left and becomes s". Thus, a category vp

can be expressed as SnNP in Categorial Grammar.

Reading the second rule in the same way, tv can be expressed as (SnNP)/NP.

Thus, the rules are translated to the following de�nitions in Categorial Gram-

mar:

5

(2) l1. loves := (SnNP)/NP

l2. Ken := NP

l3. Naomi := NP

The point is that the rules in (1) are all encoded here in the lexicon. Then,

the grammar regards a sentence \Ken loves Naomi" as the result of the

following derivation (Figure 1) with the Function Application Rules. The

symbol > in Figure 1 shows the forward application and < the back-

ward application. The derivation corresponds to the parse tree (Figure

2) which the phrase structure rules (1) produce.

`Ken'
NP

`loves'
(SnNP)=NP

`Naomi'
NP

SnNP
>

S
<

Figure 1: A derivation

S

VP

loves NaomiKen
TV NPNP

Figure 2: A parse tree

6

4.2 Feature Structures

In LexGram, a grammar is a mapping from words to syntactic categories. A

grammar is de�ned by the following one place CUF sort:

l(afs) -> cat.

where cat is the CUF type for syntactic categories, and afs is a prede�ned

CUF type. The de�nition for cat is shown in (3).

Feature structures in CUF, as the de�nition(3) shows, have feature and value

pairs, with the notation feature:value where values are also feature struc-

tures. Types in CUF also denote set of feature structures, and are de�ned as

shown in (3). The type cat has two features, root and leaves, and feature

root also has values which are feature structures denoted by type root. list

is a prede�ned CUF type.

(3) cat::
root: root,
leaves: list. %list of goal category

root::
syn: nonterminal,
sem: sem.

The root type is prede�ned as being a pair of a nonterminal and a partial

semantic structure sem. The de�nitions for nonterminal and sem are left

for grammar writers. The leaves value is a list of goal categories, which has

the following features in addition to the above cat structures.

(4) goal::
dir: direction,
slash: list,
constraints: constraints.

direction = {left, right}.

7

The feature dir shows the direction in which the argument category exists,

and slash shows the traces for nonlocal dependencies. How these features

are used is shown in the later sections. 1

4.3 A Grammar in LexGram

As is mentioned above, a complex category such as (SnNP)/NP is a function

that takes the �rst argument NP on the right and the second argument NP

on the left, to result in a category S. On the other hand, a basic category

such as NP can also be regarded as a function which takes no argument and

becomes the same category.

In LexGram, arguments are expressed as a feature leaves and the resulting

category as a feature root:syn. The order of the feature leaves speci�es the

order of applying arguments to a function. The direction of each argument is

speci�ed by the feature dir. Thus, the simplest de�nitions for `loves', `Ken',

and `Naomi' in LexGram are as follows, where & means conjunction:

(5) a. l(Ken) := (root:syn:np & leaves:[]).

b. l(Naomi) := (root:syn:np & leaves:[]).

c. l(loves) := (root:syn:s & leaves: [(root:syn:np & dir:right & leaves:[]),
(root:syn:np & dir:left & leaves:[])])

Notice here that the verb `loves' is de�ned as a function which takes two

noun phrases, its object and subject, to result in a category s. The value of

feature root:syn has to be a basic category.

With the Fundamental Phrase Structure Schemata, explained in the next

section x4.4, \Ken loves Naomi" can be recognized as a sentence.

1Although there are built-in constructor sorts to denote the above built-in fea-

ture structures, the examples are explained without using the sorts. For example, to de-

note the feature structure root:syn, LexGram users have to use the constructor sort

cons root/2 and so on.

8

4.4 The Fundamental Phrase Structure Schemata

There are two rules in LexGram: the Fundamental Phrase Structure Schema(1)

(Figure 3) which plays the same role in LexGram as the Function Application

Rules in Categorial Grammar; the Fundamental Phrase Structure Schema(2)

(Figure 4) which corresponds to the Nonlocal Feature Principle in HPSG.

Both schemata apply to a pair of phrases at the same time.2 Let us see the

schemata in more detail.

If a string is a functor category, such as (root:R & leaves: [A&dir:D j Leaves]

in (Figure 3), and there is a string which can unify with the �rst element of

the feature leaves, A' in this case, in the direction speci�ed by the feature

dir, they result in a category (root:R & leaves: [Leaves]).

root:R
leaves: Leaves

root:R
leaves:[A&dir:D | Leaves]A’

Figure 3: Fundamental Phrase Structure Schema(1)

When traces are speci�ed using the feature slash, the Fundamental Phrase

Structure Schema(2) (Figure 4) propagates that value to the daughters. Slash

values relate to the phenomena such as relativization. In Figure 4, Si indi-

cates slash values, and Si [Sj means the union of the slash values Si and

Sj. A and A' are uni�able with the respect to the treatment of the slash

value.

With the Fundamental Phrase Structure Schemata and the grammar in ex-

ample (5), a string \Ken loves Naomi" can be recognized as a sentence in

2The terminology, schema, is borrowed from HPSG.

9

S U1 S2

leaves:[A&slash:
S3

S1 | _]

S U2 S3

A’

Figure 4: Fundamental Phrase Structure Schema(2)

the following way (Figure5 and Figure6).

root:syn:S &
leaves:

root:syn:np &
dir:left

Ken

root:syn:np loves Naomi

root:syn:s &
leaves:[]

Figure 5: \Ken loves Naomi"

4.5 Grammars in LexGram

In this section, I show how subject verb agreement can be encoded using the

feature structures explained in x4.2. Then, I rewrite the grammar using CUF

sorts and show how CUF feature terms can be utilised to keep modularity in

grammars. Finally, I show an example of nonlocal dependencies.

10

root:syn:S &
leaves:

root:syn:np &
dir:left

Naomi

root:syn:np

loves

root:syn:S &
leaves:

root:syn:np &
dir:left

root:syn:np &
dir:right,

Figure 6: \loves Naomi"

4.5.1 Agreement phenomena

In LexGram, agreement can be expressed using features. For example, `Ken'

can have a feature root:syn:agr and third sing as its value. Then, the

second argument of `loves', which is the subject for `loves', must also be

constrained to have that feature value. Thus, the revised version for `Ken',

`Naomi' and `loves' is as follows:

(6) a. l('Ken'):= root:syn:(np& agr:third_sing)& leaves:[].

b. l('Naomi'):= root:syn:(np& agr:third_sing) & leaves:[].

c. l(loves) := root:syn:s &
leaves:[root:syn:np& dir:right& leaves:[],

root:syn:(np& agr:third_sing)& dir:left& leaves:[]].

11

4.5.2 Using CUF Sorts

CUF sorts denote sets of feature structures, and can express equations and

inequations over values of paths in feature structures. Sorts can have vari-

ables which denote substructures of feature structures. Sorts are de�ned with

the := operator, and can be used in a similar way to the predicates in Prolog.

The following example(8) de�nes the same grammar as example(6) using the

CUF sorts noun, singular, and vt. For example, l('Ken') in (8) denotes

the following feature structure using the CUF sorts noun and singular.

(7)
2
664root:syn

"
np
agr:third sing

#

leaves hi

3
775

The feature structure(7) is the same as the one denoted by (6a). With

CUF sorts, we can denote feature structures without writing all paths in the

structures.

(8) a. l('Ken'):= noun_p& singular.

b. l('Naomi'):= noun_p& singular.

c. l(loves):= vt& leaves: [noun_p, noun_p&singular].

noun_p:= root:syn:np & leaves:[].
singular:= root:syn:agr: third_sing.
vt := root:syn:s& leaves:[noun_p&dir:right, noun_p&dir:left].

4.5.3 Adjunction

Traditionally, adjuncts are treated as functor categories in CG. For example,

an English adjective `pretty' can be de�ned as a functor category NP/NP

which takes a noun phrase on the right and results in a noun phrase as shown

in Figure 7.

12

`pretty'

NP=NP
`Naomi'
NP

NP
>

Figure 7: A derivation of adjective

In LexGram`pretty' can be de�ned in the following way. It takes a noun

phrase on the right as its argument, to become a noun phrase keeping that

noun phrase's feature leaves, L, as the remainder of its own feature leaves.

The de�nition for `pretty' is shown below.

(9) a. l(pretty) := adj.

b. adj:= (root:syn:np &

leaves: [noun p& dir:right &leaves:L j L]).

4.5.4 Traces

In LexGram, traces are described as the feature values of slash of a com-

plement. For example, the English relative pronoun `whom' can be de�ned

as a category (NPnNP)/�S where �S is a category S which includes a trace, �,

as shown in Figure 8. `whom' takes a complement which has a slash value,

[noun p], as shown in example(10).

(10) a. l(whom) := (root:syn:np &

leaves: [s slash &dir:right, noun p&dir:left]).

b. s slash := (root:syn:s &

leaves: [] &

slash: [noun p]).

13

`Ken'
NP

`whom'
NPnNP=�S

`Naomi loves �'
�S

NPnNP
>

NP
<

Figure 8: \Ken whom Naomi loves"

14

5 Japanese Phrase Structure Grammar

Japanese Phrase Structure Grammar(JPSG) [Gun87] is a Japanese grammar

which is loosely based on GPSG and HPSG. It is a revision and extension

of Gunji's 1981 thesis: A Phrase Structural Analysis of the Japanese. A

comprehensive grammar and its parser was developed based on the thesis at

the Institute for New-Generation Computer Technology (ICOT) in Tokyo.

Since in JPSG many items of information about syntactic structures are

moved from rules to the lexicon, it has just one phrase structure rule, M !

D H (M for mother, D for daughter, and H for head). This means that

a head comes at the last position in the binary branch. With its feature

principles, such as the Head Feature Principle(HFP) and the Subcat Feature

Principle (SFP), given a lexical item to �ll in the H, the values of the HEAD

features(x5.2) and the SUBCAT features(x5.3) of M and H are determined

by HFP and SFP respectively, and the category D is determined by the

SUBCAT value of H.

In the following sections, I will outline the basic idea of JPSG, its Phrase

Structure Rule, HFP, and SFP, comparing it with traditional context-free

grammars. Other principles will be explained in later chapters when they

are necessary for explanations.

5.1 Categories in JPSG

Consider the following context-free rules for a fragment of Japanese involving

transitive verbs. The word `aisiteru' in the example, means `love', `Ken' and

`Naomi' are peoples' names, and `ga' and `wo' are post positions.

(11) r1. s ! pp vp

r2. vp ! pp tv

r3. pp ! np p

15

l1. tv ! `aisiteru'
l2. np ! `Ken'
l3. np ! `Naomi'

l4. p ! `ga'
l5. p ! `wo'

In the above context-free rules, categories are expressed by mnemonics such

as s, vp, and so on. In JPSG, the categories are expressed by a set of syntactic

features, the POS(Part Of Speech) feature (one of the Head features) and the

SUBCAT (SUBCATegorization) feature. The categories are distinguished by

the values of these features. For example, the category S has a value V for

POS and an empty set for SUBCAT. The example (12) shows the di�erence

between the traditional and JPSG expressions for categories.

(12) Categories:

S: fPOS V; SUBCAT fgg
PP: fPOS P; SUBCAT fgg
VP: fPOS V; SUBCAT fPP[SBJ]gg
TVP:fPOS V; SUBCAT fPP[SBJ], PP[OBJ]gg
NP: fPOS N; SUBCAT fgg

As the result, the lexicon is de�ned in JPSG as follows:

(13) Lexicon:
aisiteru : fPOS V; SUBCAT fPP[SBJ], PP[OBJ]gg
ken : fPOS N; SUBCAT fgg
Naomi : fPOS N; SUBCAT fgg
ga : fPOS P; GR SBJ; SUBCAT fNPgg
wo : fPOS P; GR OBJ; SUBCAT fNPgg

In the above, PP[SBJ] is an abbreviation for

fPOS P; SUBCAT fg; GR SBJg

and PP[OBJ] is an abbreviation for

fPOS P; SUBCAT fg; GR OBJg.

The feature, GR(GRammatical function), is another HEAD feature.

16

5.2 HEAD features and the HEAD Feature Principle

As a matter of fact, many features are passed on from the mother M to

the head H in the Phrase Structure Rule, M ! D H. These features are

called HEAD features, and the relating principle is called the Head feature

Principle (Def. 1).

Principle 1 HEAD Feature Principle (HFP):

The HEAD feature values of the head are identical to the values of the respective

HEAD features of the mother.

For example, the feature POS and GR in example (13) are HEAD features, and

they are passed from mother node \Ken ga" to its head daughter \ga" as

shown in Figure 9.

(POS:P; GR:SBJ; SUBCAT:{}) = PP[SBJ]

Ken ga

(POS:N; SUBCAT:{}) (POS:P; GR:SBJ; SUBCAT:{[NP]})

Figure 9: \Ken ga"

5.3 The SUBCAT feature and the SUBCAT Feature

Principle

The SUBCAT feature takes a set of categories as its value for which the category

subcategorizes. For example, a category S subcategorizes for nothing, while

another category VP subcategorizes for a subject. Thus, the SUBCAT values

17

in VP and TV show a set of complements needed to make up a sentence (cf.

example(12)). There are three cases in the SUBCAT Feature Principle, for

complementation, adjunction, and coordination, depending on the relation-

ship between the SUBCAT values of the three nodes in the Phrase Structure

Rule(x5.4).

Principle 2 The SUBCAT Feature Principle (SFP): 3

Complementation M ! C H

The value of the SUBCAT feature of the head, H, uni�es with that of the

mother, M, except for the category in H's SUBCAT that uni�es with the com-

plement, C.

Adjunction M ! A H 4

The value of the SUBCAT feature of the head uni�es with that of the mother.

Coordination M ! H H

The values of the SUBCAT feature of the heads unify with the mother.5

3It is not very clear how the three cases, complementation, adjunction, and coordina-

tion, are distinguished from [Gun87]
4In order to further specify what kind of adjunct can appear in a local tree, the feature

ADJUNCT is used.

The ADJUNCT Feature Principle: the value of the feature ADJUNCT of A uni�es with

H. This is described on in p.26 [Gun87]
5Coordination is not treated in [Gun87] and will not be in this thesis.

18

5.4 The Phrase Structure Rule

JPSG has only one phrase structure rule.

De�nition 3 The Phrase Structure Rule (PSR) in JPSG:

M ! D H

Mother has two daughters, D and H, and the last daughter is called the head.

With the HFP, SFP, and the Phrase Structure Rule, a sentence \Ken ga

Naomi wo aisiteru" (Ken loves Naomi) can be parsed in the following way

(Figure 10 and Figure 9).

(POS:V; SUBCAT:{}) = S

(POS:V; SUBCAT:{PP[SBJ]}) = VP

Ken ga Naomi wo aisiteru (loves)

(POS:V; SUBCAT:{PP[SBJ], PP[OBJ]})PP[SBJ] PP[OBJ]

Figure 10: \Ken ga Naomi wo aisiteru"

19

6 JPSG in LexGram

JPSG is loosely based on HPSG, while LexGram can be considered as a lex-

ical version of HPSG. There are some advantages and disadvantages in im-

plementing JPSG in LexGram. One advantage is that the local tree encoded

by JPSG is the similar kind of binary tree as the one by LexGram. Another

advantage is that the HEAD Feature Principle, SUBCAT Feature Principle,

and Phrase Structure Rule (x5.2, x5.3, and x5.4) correspond to LexGram's

Fundamental Phrase Structure Schemata (x4.4). When the daughter in the

PSR (De�nition 3) is a complement, the head corresponds to a functor cat-

egory in CG which takes that daughter and results in the mother node (cf.

(14a)). If the daughter is an adjunct, i.e the SUBCAT value of the mother is

identical to that of the head, the adjunct corresponds to a functor category

which takes the head to result in the head as its mother (cf. (14b)).

(14) (a) M

D MnD

(b) H

H/H H

One disadvantage is that the order of applying arguments is �xed in Lex-

Gram, while JPSG does not assume any predetermined order among com-

plements in the subcat feature. Thus, it can deal with
exibility in word

order. Another disadvantage is that the relativization cannot be encoded in

the same way as in (x4.5.4) where the relative pronoun is de�ned to have a

slashed sentence �S since Japanese does not have relative pronouns. These

problems are discussed in the later chapter.

In this chapter, I will explain the following aspects of the implemented parser

based on JPSG in LexGram:

� the head features of the grammar based on those of JPSG,

20

� the de�nition of the lexicon (13) in LexGram,

� the derivation of \Ken ga Naomi wo aisiteru" with the lexicon, and

� the semantic representations used in the parser.

6.1 Head Features

I rede�ned head features in the following way using typed feature structures

in CUF, while JPSG does not have any types. Some features are added to

the originals in JPSG to cover the phenomena discussed in x7.

The type nonterminal, head feature(3) in x4.2, is divided into four cate-

gories, v(verb phrase), n(noun phrase), p(post positional phrase), and p2(particle),

and each one can carry its own head features. The implemented grammar

does not have the head feature POS(Part Of Speech) in JPSG, as this is

expressed by CUF types such as v and n.

nonterminal = v | n | p | p2.

v ::

sub : sub_info.

p ::

gr : gr_info,

pform : pf_info,

n ::

aform : af_info.

p2 ::

p2form : p2_info.

21

Verb Verb has a head feature sub. The feature sub has the information

about the elements of the feature leaves and is used for subject verb agree-

ment. The verb adnominal form and subject verb agreements are explained

in the later sections.

Post Positional Phrase gr (grammatical function) shows what case the

postpositional particle carries, such as nominative, and pform (particle form)

keeps the form of that particle. We need that information since the cases

depend on verbs and other post positional particles.

Noun The feature aform (adnominal particle form) is used when a noun

is constructed with adnominal particles such as `no' and nouns. The feature

aform keeps the form of the particle.

Particle There are particles which are neither adnominal particles nor post

positional particles, such as `to' in x7.3.1. p2form keeps the form of the

particle.

6.2 De�nition in LexGram

With the above head feature de�nitions, example(13) can be written in Lex-

Gram in the following way. The feature leaves in LexGram corresponds to

the subcat feature in JPSG.

A phrase is recognized as a sentence, when its feature syn is v, and its feature

leaves is saturated. The derivation of \Ken ga Naomi wo aisiteru" with the

de�nition (15) is shown in Figure 11.

22

(15) a. l('Ken') := noun.

b. l('Naomi') := noun.

c. l(ga) := pp & nominative & pform(ga).

d. l(wo) := pp & accusative & pform(wo).

e. l(aisiteru) := vt & leaves([accusative, nominative]).

noun := root:syn:n & saturated.
pp := root:syn:p & leaves([noun&dir:left]).
vt := root:syn:v & leaves([pp& dir:left, pp&dir:left]).
nominative := root:syn:gr: sbj.
accusative := root:syn:gr: obj.
saturated := leaves([]).
leaves(L) := leaves: L.

2
4root:syn:v
leaves:hi

3
5

PPnom

Ken ga2
6666664
root:syn:

2
664
p

gr:sbj

pform:ga

3
775

leaves:hi

3
7777775

2
4root:syn:v
leaves:

D
PPnom

E
3
5

PPacc

Naomi wo2
6666664
root:syn:

2
664
p

gr:obj

pform:wo

3
775

leaves:hi

3
7777775

aisiteru2
4root:syn:v
leaves:

D
PPacc, PPnom

E
3
5

Figure 11: A derivation of \Ken ga Naomi wo aisiteru"

23

6.3 Semantic Representation

The semantic theory adopted in JPSG is based on Montague semantics and

JPSG employs �-expressions as its semantic representation.

Using �-expressions, the de�nition(15) added its semantic representation

could be something like (16) below, where � and � are indices to denote

the identities between the parts of semantics of head categories and that of

complements. P, x, and y are lambda variables. In the de�nition, the CUF

sort root sem(X) denotes the feature structure root:sem:X.

(16) a. l('Ken'):= noun & root sem(�P P(k))

b. l('Naomi'):= noun & root sem(�P P(n)).

c. l(ga):= pp & nominative &pform(ga) &root sem(�) & leaves([root sem(�)]).

d. l(wo):= pp & accusative &pform(wo) & root sem(�) & leaves([root sem(�)]).

e. l(aisiteru) : = vt & root sem(� (�y�(�x love(x,y)))) &
leaves([accusative &root sem(�), nominative & root sem(�)]).

With this de�nition, we want to obtain a representation for the formula

love(k, n) 6 when `ken ga naomi wo aisiteru' is derived as a sentence suc-

cessfully. For this purpose, we have to

� implement �-expressions in feature structures,

� de�ne representations for formulae, and

� implement some procedures for �-conversion.

For example, �x.�y.love(x, y) 7 should be written in feature structures such

as example(17), and love(k, n) as example(18):

6This is the result of the following �-conversion :

�Q:Q(n)(�y:�P:P (k)(�x:love(x; y))) = �Q:Q(n)(�y:love(k; y)) = love(k, n).
7�x.�y.love(x, y) is an abbreviation for �x.�y.love(y)(x)

24

(17)
2
666666664

lambda: X

formula:

2
666664

lambda: Y

formula:

2
664
rel: love

args:

"
arg1: X
arg2: Y

#
3
775

3
777775

3
777777775

(18)
2
664
rel: love

args:

"
arg1: k
arg2: n

#
3
775

However, for technical reasons, I employed various feature names instead of

simulating the � calculus and adopted the following conventions for semantic

representations. Uni�cation is also used instead of �-conversion, although

uni�cation is less expressive than �-conversion. 8

Using feature names The following feature structure(19) represents the

same semantic expression as �x:�y:love(x; y) in example(17), where the fea-

ture subj and obj play the same role as �. Using feature names, uni�cation

becomes much simpler than using �, because we do not need to remember

the whole structures. For example, when we used � for features such as

example(17), we would have had to remember which variable speci�es the

object to assign a value to it, because it is not clear only from the representa-

tion. Also, we would have had to specify the whole path(formula:lambda:Y)

to unify the value to it.

(19)
2
66666664

subj: X
obj:Y

formula:

2
664
rel: love

args:

"
arg1: X
arg2: Y

#
3
775

3
77777775

8For example, uni�cation cannot simulate the conversion (�P.P(a))�X.X .

25

Convention-1 Proper nouns such as `Ken' are treated in the same way as

common nouns. For example, the meaning of `Ken' is expressed by the for-

mula �x:named(x; ken) and represented by example(20), while JPSG de�nes

it as �P:P (k) as was seen in example(16a).

(20)
2
666664

index: X

formula:

2
664
rel: named

args:

"
arg1: X
arg2: ken

#
3
775

3
777775

Convention-2 Japanese does not have strict distinction between nouns

and noun phrases as pointed out by Gunji([Gun87] p.202). Since there is

no determiner in Japanese which corresponds to English ones, a noun can

be interpreted in a number of ways. For example, a Japanese common noun

such as `inu'(dog) can correspond not only to a dog but also to the dog and

dogs. Thus, nouns can be regarded as being attached hidden determiners

and treated as noun phrases. 9

Because of the above reason, the parser considers every noun to be at-

tached determiners. For example, the original meaning of Ken is expressed

as �x:named(x; ken) and represented as example(20), but the example(21),

which expresses �P:9x:named(x; ken) ^ P (x), is recorded as the semantic

representation for (cf. example(23a)).

The example(21) does not include a representation for the formula P(x) in

the feature structure forms, but it will be added later to the tail of the list.

The feature vstore(variable store) is used for storing the variable X to be

exported to the function P.

9Such a use of common nouns was not considered in [Gun87]. Noun phrases in [Gun87]

are limited to the ones composed of quanti�ers and common nouns.

26

(21)
2
66666666664

vstore:X

formula:

2
66666664

vars:
D
X
E

forms:

*2664
rel: named

args:

"
arg1: X
arg2: ken

#
3
775
+
3
77777775

3
77777777775

De�nition of the feature sem To support the above semantic representa-

tion, the type sem(cf. feature structure(3) in x4.2) is de�ned in the following

way. The value of the feature formula has the semantic representation as its

value. The feature subj, obj, obj2, and index play the same role as the �

operator.

(22) sem ::
formula : quantified_formula.

sem = verbal_sem | np_sem.

verbal_sem ::
subj: afs, %nominative
obj : afs, %accusative
obj2: afs. %dative; or locative

np_sem ::
index: afs,
vstore: afs,
semf:semf.

semf :: % semantic information for subcat
animate: boolean,
attribute: att_info.

boolean = {+, -}.
att_info = { loc, dir }.

quantified_formula::
vars: list,
forms: list.

formula= basic_relation.

basic_relation ::
label: afs,
rel : afs,

27

args: argument_frame.

argument_frame ::
arg1 : top,
arg2 : top,
arg3 : top.

Lexicon with semantic representations As a result, the example (16)

is rede�ned as (23). The semantic representation(24) is obtained through

a derivation of `ken ga naomi wo aisiteru', using the de�nition(23). The

structure(24) represents the formula 9y:9x:named(y; naomi)^named(x; ken)^

love(x; y) 10.

The CUF sort n type('Ken') in (23) denotes the semantic representation(20),

np semantics(n type(ken)) the representation(21), and vt type('LOVE')

the representation(19).

(23) a. l('Ken'):= noun & np_semantics(n_type('KEN')).

b. l('Naomi'):= noun & np_semantics(n_type('NAOMI')).

c. l(ga):= pp & nominative &pform(ga) &root_sem(S) &
leaves([root_sem(S)]).

d. l(wo):= pp & accusative &pform(wo) & root_sem(S) &
leaves([sem(S)]).

e. l(aisiteru) : =
vt &
vt_type('LOVE')&
subj:S & obj:O & forms(F)&
root_sem(vars(append(V1, V2))&

forms(append(F1, append(F2, F)))&
leaves([accusative&root_sem(vstore:O&vars(V)&forms(F1)),

nominative&root_sem(vstore:S&vars(V)&forms(F2))]).

10This is the result of the conversion:

�Q9y:named(y; naomi) ^Q(y)(�w:�P9x:named(x; ken) ^ P (x)(�z:love(z; w)))

28

(24)
2
6666666666666666666666664

vars:
D
Y,X

E

forms:

*

2
664
rel: named

args:

"
arg1: Y
arg2: naomi

#
3
775,

2
664
rel: named

args:

"
arg1: X
arg2: ken

#
3
775,

2
664
rel: love

args:

"
arg1: X
arg2: Y

#
3
775

+

3
7777777777777777777777775

6.4 Summary

In this section, I explained (1)the head features and (2)semantic represen-

tations employed in the implemented parser. For the implementation, I re-

de�ned the head features in JPSG using typed feature structures and added

some features to cover the phenomena to be discussed later. As for semantic

representations, I employed various feature names and uni�cation while �

and �-conversion are used in JPSG. Also, I employed some conventions as

explained in x6.3.

29

7 Phenomena in the Data

There are two approaches to the study of languages; the competence and

performance approaches [Win83]. In the performance approach, real data

such as corpora and the results of psychological experiments are analysed

to study the mechanisms underlying the phenomena. In the competence

approach, the analysis is replaced by the intuitions of native speakers about

their language. The target of the study is then not the actual usage of

language, but the structure of the language at a certain abstract level.

Since I am more interested in applications, I opted for the performance ap-

proach. The reason why I chose the Japanese Map Task Corpus [AIK+94]

for the analysis is that it records spontaneous dialogues.

In this section, �rstly I explain the Japanese Map Task Corpus (JMTC) and

the data I picked up from that corpus. Then I explain typical phenomena in

the data:

� Noun Phrases

� Agreement

� Relative Clauses

� Flexibility in Word Order and Arguments

7.1 The Japanese Map Task Corpus

The Japanese Map Task Corpus is a collection of task-oriented dialogues

aimed to support the study of spontaneous speech at many levels. The corpus

uses the Map Task in which speakers must collaborate verbally. The basic

design of the task follows that of the Edinburgh Map Task Corpus [ABB+91].

30

The Map Task The task involves two participants each of whom is given a

map to work with. One speaker plays the role of instruction giver in describ-

ing a route on his map to the follower whose map has only the starting point

and no route. The goal of this task is that the follower must reproduce the

giver's route using information obtained through communication. The maps

given to the giver and follower describe the same areas but they are slightly

di�erent (See the maps for giver and follower in Appendix A). Although the

participants are informed that their maps may not be identical, they do not

know how they may di�er.

7.2 Data Studied

For this project, I selected from �fteen dialogues in JMTC one hundred sen-

tences which include words expressing directions or locations. I �rst marked

these words in the corpus, and picked up seven to ten sentences from each

dialogue. Then I modi�ed this data as explained below. Since the same

person tends to use the same pattern of sentences, I collected sentences from

di�erent speakers' dialogues. The data are shown in Appendix I, where each

item has three lines as below; the �rst is the Japanese sentence in Roman

font, the second is the word to word translation in English of the �rst, and

the third is the translation of the �rst into English.

(s1) syupatsutiten ga sabaku no yoko ni aru

starting-point NOM desert NO next-to DAT there-is

\There is a starting point next to desert"

Since there are no corresponding words in English as for the Japanese par-

ticles, I indicated them by their cases or sounds written in capital letters.

For example, the particle `ga' in (s1) carries nominative case and is speci�ed

31

with NOM, while `ni' is speci�ed with DAT. The particle `no' is speci�ed with

its sound, NO.

Overview The tense of all sentences is present and there are no determiners

in the data. 11 No anaphora appears in the data, either. They are all assertive

since I modi�ed the data. The average length of a sentences is six words.

The sentences whose verbs are copular such as `aru' and `iru'(`there is') have

subjects but all others do not have subjects. 12

Modi�cations Because the corpus is a collection of dialogues and most

sentences are incomplete or grammatically incorrect, I modi�ed some parts

of the data while keeping locative expressions and the overall meaning as in

the originals. I also changed some forms of verbs and nouns which are not

our target. The modi�cations are listed below:

1. Changing aspectual verb forms to sentence �nal forms so that the data

become sentences

sogen no tokoro kara masugu itte,

! sogen no tokoro kara masugu iku.

plain NO place from straight go

(Go straight from the plain.)

2. Adding a missing post positional particle, `no'

sinkohoukou migi

! sinkohoukou no migi

heading direction relative to right

11Nouns in Japanese do not have di�erent forms for singular and plural nouns and there

is no corresponding word to the English word `a'. There are some determiners similar to

`the' but usually native speakers do not use them.
12Since the hearers are denoted by the subjects in those sentences and it is obvious both

to the speakers and the hearers, the native Japanese speakers omit them.

32

(the right relative to heading direction)

3. Adding verbs so that the data become sentences

syupatutiten ga sabaku no yoko ni

! syupatutiten ga sabaku no yoko ni aru

starting point NOM desert NO beside LOC there is

(There is a starting point beside the desert.)

4. Shortening the names for landmarks

nagarenohayai kawa

! kawa

whose stream is rapid river

(the river)

5. Deleting adjectives and intensi�ers

itiban migi

! migi

most right

(the right)

6. Changing interrogative sentences to declarative ones

ginko ga migisita ni aru yone

! ginko ga migisita ni aru

bank NOM below right LOC there is isn't it?

(There is a bank below right.)

7. Changing the honori�c form to the normal form

o furo

! furo

honori�c marking bath

(bath)

Lexicon The data has nineteen di�erent nouns for locations and directions,

six di�erent post positions, and twelve verbs (sentential form) and two verbs

33

(adnominal form).13 The other words are names for landmarks in the maps.

The lexical items are summarised in Appendix B. In the data, particles are

observed more frequently than other word classes. The adnominal particle

`no' is the most frequently observed particle followed by `ni', `ga', and `wo'.

As for verbs, `aru'(there is) is most frequently used, and others are verbs

expressing actions for movement such as `tooru'(pass by).

7.3 The Phenomena

In the following sections, I explain typical phenomena found in the data:

� Noun Phrases

� Agreement

� Relative Clauses

� Flexibility in Word Order and Arguments

7.3.1 Noun Phrases

Many noun phrases in the data are of the form `A no B' which contains two

nouns A and B with an adnominal particle `no'. Some noun phrases include

more than one `no' in a phrase such as `ginko no tokoro no hidari'(the left of

the place at the bank). In the data, there are two types as to `B': location

and direction. Also, when `B' is a word `aida'(space/between), `A' takes the

form `A1 to A2' where `A1' and `A2' are nouns and `to' is another adnominal

particle. In the following, I explain the relation between `A', `B', and `no'.

13the di�erence between a sentential form and an adnominal form is explained in x7.3.3

34

Location The noun phrase `A no B', where `B' is a location, can be para-

phrased to a relative clause. For example, `ginko no tokoro' , where `A' is

`ginko'(bank) and `B' is `tokoro'(place), can be paraphrased to `ginko ga aru

tokoro' (the place where the bank stands) with the following rule:

A `no' B ! A `ga aru' B,

where `ga' is a particle and `aru' is the verb which means exist.

Hence, when the paraphrase rule can be applied to, `A no' plays an adjective

role to `B' and `B' is restricted by `A no'.

Direction When `B' is a direction such as `ginko no hidari', where A is

`ginko'(bank) and B is `hidari'(left), the above paraphrasing is not possible.

Thus, what role do `A', `no', and `B' play for constructing the meaning of

`A no B'? There is a common meaning between `ginko no hidari'(left of the

bank) and `hidari'(left); Both of them denote the same direction, left. The

di�erence is that `ginko no hidari' is more speci�c than `hidari'. Thus, `A no'

restricts B by adding an item of information to B.

B is the word `aida' This is a special case of the above Location. When

B is the word `aida'(`space'), `A' usually takes the form of `A1 to A2' such

as (s12'). There is also a pattern involving an additional particle such as

`to'(To*) in (s12), but this `to' can be omitted without changing the meaning.

Both (s12) and (s12') denote the same meaning. That is, the combined

particle `to no' plays the same role as `no'.

(s12) seitetsujo to ki to no aida wo tooru

iron-mill To tree To* No gap Wo pass-through

\Pass through the gap between the iron mill and the tree"

35

(s12') seitetsujo to ki no aida wo tooru

iron-mill To tree No gap Wo pass-through

\Pass through the gap between the iron mill and the tree"

To sum up, when `B' is a location or direction, the noun phrase `A no B'

inherits the attributes from `B', and the meaning of `A no B' is a subset of

that of `B'. For example, the set of entities for `ginko-no-tokoro', is a subset

of entities for `tokoro', that is ([[`ginko-no-tokoro']] � [[`tokoro']]). Similarly,

([[`ginko-no-hidari']] � [[`hidari']]) holds.

7.3.2 Agreement

Japanese does not have the same subject-verb agreement as English does, but

there are other types of agreement. One is the relation between the verbs

`aru' in (s1) and `iru' (s9) and their subjects. Although they have the same

meaning, `exist/there is', they need di�erent types of subjects; the subject

of `aru' has to be animate while the subject of `iru' should not be animate.

(s1) syupatsutiten ga sabaku no yoko ni aru

starting-point NOM desert NO next-to LOC there-is

\There is a starting point next to desert"

(s9) yama no migite ni kamosika ga iru

mountain NO right LOC goat NOM there-is

\There is a goat on the right of a mountain"

The following sentence(s2) has the verb `mieru'(can see) and the post posi-

tional particle `wa' which can be both nominative and accusative case. Since

people know that only animal can see something and `tsuirakugenba' (clash-

spot) is not animate, `tsuirakugenba' cannot be interpreted as the subject of

(s2).

36

(s2) tsuirakugenba wa sinkouhoukou no migigawa ni mieru

clash-spot ACC heading-direction NO rightS LOC see

\See the clash spot on your right hand side"

The following example shows that certain verbs require particular post po-

sitional particles for case markers. For example, when a verb expresses an

ability, such as `mieru'(can see) in (s2'), the case of the particle `ga' must

be accusative although it is usually nominative. Thus, the post positional

phrase \ken ga" in example(s2') cannot be interpreted as its subject although

`mieru' requires an animate subject as shown above and `Ken' is animate.

(s2') Ken ga migigawa ni mieru

Ken ACC right LOC can see

\(You) can see Ken on the right"

7.3.3 Relative Clauses

Relativization in Japanese is di�erent from that of English in the following

respects as the corpus (s62) and [Gun87](r1) show:

� Japanese does not have relative pronouns such as who.

� Head nouns (or noun phrases) follow relative clauses.

� Some relative clauses are not bound by their head nouns (or noun

phrases). (Type II relativization)

In the corpus(s62), `haka no e ga � owatta'(� indicates a trace) is a relative

clause, and is bound by the noun, `atari'. Notice that traces in relative clauses

are post positional phrases, but the postcedents are nouns (or noun phrases)

such as `atari' in (s62).

37

(s62) haka no e ga � owatta atari wo magaru

graveyard NO picture NOM TRACE end somewhere ACC turn

\Turn around at the place where the picture of a graveyard ends"

The forms of main verbs in relative clauses such as `owatta' in the exam-

ple(s62) is called adnominal since it always precedes nouns (or noun phrases),

and is distinguished from sentential �nal form such as `magaru' in the exam-

ple(s62)

Type II relativization such as (r1) `hangagu ga yakeru nioi' has no trace in

the relative clause except for a free gap and is not bound by the postcedent

`nioi'. Type II relativization cannot be observed in English.

(r1) hanbagu ga yakeru nioi

hamburger NOM grill smell

\the smell of grilling hamburger"

7.3.4 Flexibility in Word Order and Arguments

Japanese is
exible in its word order and arguments. Let us see �rst an

example of
exible word ordering. Both sentences (s40) and (s40') end with

the same verb, `aru'(exist/there is), and have the same meaning, but the

order of post positional phrases are di�erent.

(s40) sogen ga yama no sita ni aru

plain NOM mountain NO foot LOC there-is

\there is a plain on the foot of the mountain"

(s40') yama no sita ni sogen ga aru

mountain NO foot LOC plain NOM there-is

\there is a plain on the foot of the mountain"

38

The following sentences (s14), (s5), and (s5') show
exibility concerning ar-

guments. (s14) and (s5) end with the same verb `magaru'(turn), but the

arguments are marked with di�erent particles `ni' and `wo'. The verb `mag-

aru' can also take at the same time these two post positional phrases marked

by `ni' and `ga' as shown in (s5').

(s14) migigawa ni magaru

right LOC turn-to

\Turn to the right"

(s5) atoti no kado wo magaru

ruin NO corner ACC turn-to

\Turn at the corner of the ruin"

(s5') atoti no kado wo migigawa ni magaru

ruin NO corner ACC right LOC turn-to

\Turn at the corner of the ruin to the right"

39

7.4 Conclusion

The data selected from the corpus had the following phenomena:

� Many noun phrases have the form `A no B', where `A' and `B' are

nouns and `no' is an adnominal particle. When `B' means a location or

direction, the set of entities for `A no B' is always a subset of the set of

entities for `B'.

� Although Japanese does not have the same subject-verb agreement as

English, there are some agreement phenomena between complements

and verbs such that the verb `iru'(to exist) always requires an animate

subject.

� In Japanese, head nouns (or noun phrases) follow relative clauses. The

main verb in the relative clause is in the last of the clause and comes

just in front of the head noun. Because of that, the verb is called an

adnominal form and is distinguished from the sentential �nal form.

� Many sentences in the data lack the subjects, and the number of argu-

ments for the same verb is often di�erent. The word order in the data

is also very
exible.

Based on the analysis we have done, I will implement the following aspects

in addition to the basic part described in x6.

� the adnominal particles

� agreements between complements and verbs

� relative clauses

�
exibility in word orders and arguments

40

8 Grammar

In this section, �rstly, I show alternatives to encode the following phenomena

explained in x7.

� Noun Phrases

� Agreements

� Relative Clauses

� Flexibility in Word Order and Arguments

Then, I explain the reasons for the decision I made about each item. In the

following sections, I take the head features, lexicons, and semantics de�ned

in x6.2 as the basic de�nitions and change them to cover the phenomena.

8.1 Noun Phrases

There are two possible categories for `no' of `A no B':

a) no := (NP/NP)nNP

b) no := (NPnNP)/NP

Both a) and b) can derive `ginko no tokoro'(place at the bank) as a noun

phrase, but the parsing trees are di�erent as below. The tree (25a) is derived

with a), and (25b) is derived with b).

(25) (a) NP

NP/NP

ginko
(bank)

no

NP

tokoro
(place)

(b) NP

NP

ginko
(bank)

NPnNP

no tokoro
(place)

41

Let us recall the relation between `A', `B', and `no' discussed in x7.3.1. When

`B' is a location or direction, the phrase `A no' plays a similar role to adjectives

and restricts the meaning of `B'. Thus `A no B' should be divided into two

parts `A no' and `B'. Hence, the tree (25a) re
ects the relation between `A

no' and `B' correctly while (25b) does not.

Although the category a) works in the above example, when a noun phrase

has more than one `no' such as `ginko no tokoro no hidari', the category will

derive the phrase as a noun phrase in two di�erent ways as shown in (26).

Applying the same analysis to this case, the phrase should be divided into

the two, `ginnko no tokoro ' and `hidari'. Thus only (26b) re
ects the relation.

(26) (a) NP

NP/NP

NP

ginko
(bank)

no

NP

tokoro no hidari
(leftwards)

(b) NP

NP/NP

NP

ginko no tokoro
(the place at the bank)

no

NP

hidari
(left)

When `B' is the word `aida', `A' usually takes the form of `A1 to A2' and the

same situation happens as shown in (27).(The category for `to' is de�ned in

the same way as `no') This case also has to keep the relation `A no' and `B',

and only (27b) re
ects the relation correctly.

(27) (a) NP

NP/NP

NP

seitetsujo
(iron-mill)

to

NP

ki no aida
(between trees)

(b) NP

NP/NP

NP

seitetsujo to ki
(iron-mill and trees)

no

NP

aida
(between)

42

When the adnominal particle `no' has an additional particle `to' preceding

to it, the combined particle `to no' plays the same role as `no' as explained

in x7.3.1. Thus, the tree for `seitetsujo to ki to no aida' should be the one as

below.

(28) NP

NP/NP

NP

seitetsujo to ki
(iron-mill and trees)

j

to no

NP

aida
(between)

The following is a possible encoding for the adnominal particles, `no' and

`to'. The feature aform is the head feature for noun phrases which records

the forms of adnominal particles. The CUF sort goal, apform(~no), prevents

the noun phrase on the right of `no' from composing the form `A no B'.

Therefore, we can avoid generating the tree(26a) and tree(27a).

The CUF sort ap semantics/1 generates the semantic representations for the

noun phrase `A no/to B'. In the program, ap means an adnominal particle.

(29) l(no) := ap(no)& ap_semantics(no) & apform(no)&
l(to) := ap(to)& ap_semantics(to) & apform(to);

root:syn:p2&leaves:[].

%% Category: (NP/NP)\NP
ap(no) := root_syn(n)&

leaves([np_goal, np_r_goal&apform(~no)]).

%Category: ((NP/NP)\NP)\AP
ap(no) := root_syn(n)&

leaves([p2_goal, np_goal, np_r_goal&apform(~no)]).

%% Category: (NP/NP)\NP
ap(to) := root_syn(n)&

leaves([np_goal, np_r_goal&apform(~no)]).

43

np_goal := root:syn:n & dir:left.
np_r_goal := root:syn:n & dir:right.
apform(X) := root:syn:aform:X.
p2_goal := root:syn:p2&dir:left.

8.2 Agreement

To deal with the phenomena described in x7.3.2, each noun should have the

information on animateness as a feature, but there is a question whether the

information is semantic or syntactic. From a philosophical point of view, it

would be strange if animateness was treated as part of syntactic information.

In the following sections, I discuss the encoding in each approach.

8.2.1 Syntactic approach

The feature animate can be added to the head feature structures for a noun

phrase in the following way. animate(+) shows that the noun is animate

and animate(-) shows the noun is NOT animate.

(30) n ::
animate: boolean.

boolean = {+, -}.

Then, we need to constrain the element, its subject, of the feature leaves of

`aisiteru':

(31) l(aisiteru):= vt &
leaves([accusative, nominative&animate(+)]).

animate(A):= root:syn:animate:A.

However, this is not enough because verbs take post positional phrases as

their complements but the head features of nouns are not inherited to post

44

positional phrases. Thus, we need to add the feature animate in the head

of post positional phrase and also to change the de�nition of post positional

phrase in order to store the information about animateness as below:

(32) p::
gr:gr_info,
pform:pf_info,
animate: boolean.

pp := root:syn:p&
animate(A)&
leaves([nun&animate(A)&dir:left]).

8.2.2 Semantic approach

The semantic structure can be changed in the following way to have the

information about animateness:

(33) np_sem::
index: afs,
animate: boolean.

The semantics for a post positional phrase is the same as its complement,

i.e. the noun phrase, so that the de�nition of post positional phrases, pp

de�ned in x6.2, does not need to be changed. The subject for `aisiteru' can

be constrained in the same way as in the syntactic approach but the de�nition

of CUF sort animate is a little di�erent. It refers to the semantic feature,

not to the syntactic feature as below:

(34) l(aisiteru):= vt &
leaves([accusative, nominative&animate(+)]).

animate(A):= root:sem:animate:A.

45

8.3 Relative clauses

Since Japanese does not have relative pronouns as explained in x7.3.3, relative

clauses cannot be expressed in the same way as described in x4.5.4. There are

at least two ways to encode Japanese relative clauses; One of them is to treat

relative clauses as adjuncts, similar to adjectives described in x4.5.3 (we will

call this the adjunct approach). In the adjunct approach, verb adnominal

forms are de�ned as the category which takes fewer arguments than the

originals on the left and the head noun on the right. Thus, this approach

does not use any traces for relative clauses. For example, the adnominal

form of `aisiteru'(`love') can be de�ned as the category (NP/NP)nPP (Figure

12). The problem in this approach is that we have to enumerate semantic

representation for every case; if there is not the nominative argument in the

relative clause, the head noun is the subject. if there is not the accusative

argument, the head noun is the object, so on. A problem of this approach

is that every verb will have additional lexical entries, which lead to parsing

ambiguities.

`Kenga'
PP

`aisiteru'
(NP=NP)nPP

NP=NP
< `Naomi'

NP

NP
>

Figure 12: The Adjunct Approach

The other way (we call this the trace approach) is to de�ne noun phrases as

a category which takes a relative clause, �S, and results in a NP as shown in

Figure 13, where � shows the trace.

One of the problems of the trace approach is to do with the semantics of

nouns. In Montague grammar, a noun is a basic category which does not

take any complements. Another problem is that if every noun has the two

46

`Ken ga � aisiteru'
�S

`Naomi'
NPn�S

NP
<

Figure 13: The Trace Approach

categories 1) NP and 2) NP/�S, parsing ambiguity increases more than in the

�rst approach because nouns appear most frequently in sentences.

8.3.1 The Adjunct Approach

The adnominal form of a transitive verb, vt adnominal, can be de�ned in

CUF using join trees/2 and project/2 in the following way, where the

symbol ; is a disjunct operator:

(35) l(aisiteru) := vt ; vt_adnominal.
vt_adnominal:= join_trees(adj, project(vt, [_])).

The CUF sort vt uses the same de�nition as in example(15) in x6.2, and adj

can be de�ned in the same way as in example(9) in x4.5.3. As the result, the

CUF sort vt adnominal denotes the following feature structures, where PP

denotes the same feature structures by the CUF sort pp and NP by noun in

x6.2:

(36)
2
4root:syn: n

leaves:
D
PP, NP

E
3
5

The CUF sorts, project/2 and join trees/2, are library functions de�ned

in the following way.

project/2 The CUF sort project(Tree, CutOffLeaves) cuts o� the leaves

CutOffLeaves from the arguments ofTree(We call this operation projection

47

of a category and the resulting category projected form or projected

category).

project((root:R&leaves:append(L1, L2)), L1):=
(root:R&leaves:L2).

join tree/2 The CUF sort join trees(Tree1, Tree2) replaces the lexi-

cal head of Tree1 by Tree2.

join_trees((root:R1&leaves:L1), (root:R2&leaves:L2)):=
(root:R1&leaves:append(L2, L1)).

8.3.2 The Trace approach

As I described above, a noun has two categories with this approach: (37b)

takes no argument; (37c) takes a sentence which includes a trace, s slash.

These are de�ned in CUF as follows:

(37) a. l(naomi):= noun.

b. noun:= root:syn:n&leaves([]).

c. noun:= root:syn:n&leaves([s_slash&dir:left]).

s_slash:= root:syn:v & leaves:[] & slash:[pp].

8.4 Flexibility in Word Order and Arguments

Japanese is
exible in its word order and use of arguments as explained in

x7.3.4. The following examples (38a) and (38b) have the same meaning, and

sentences which lack complements such as (38c) are often observed.

(38) a. Ken-ga Naomi-wo aisiteru

NOM ACC love

\Ken loves Naomi"

48

b. Naomi-wo Ken-ga aisiteru

NOM ACC love

\Ken loves Naomi"

c. Naomi-wo aisiteru

ACC love

\loves Naomi"

There are two choices to deal with the
exibilities:

� To de�ne all arguments of a verb as having adverbial categories, being

functions from sentences to sentences as described in [Whi88].

� To de�ne a verb as having categories in addition to the basic ones, and

also the argument list for a verb as a set of arguments rather than a

list in a similar way to JPSG.

In the following sections, I explain each approach and its possible encodings.

8.4.1 Using Adverbial Category

In this approach, there is no distinction between VP and S, and post po-

sitional phrases are de�ned as adjuncts similar to adverbs. Thus, a post

positional particle is de�ned as a category which takes a noun phrase on the

left and a sentence on the right, resulting in a sentence. For example, given

the above category for post positional particles `ni' and `ga' as shown in (39),

both corpus (s40) and (s40') in x7.3.4 can be recognized as S successfully, as

shown in Figure 14 and 15.

(39) a. `ni':= (S/S)nNP

b. `ga':= (S/S)nNP

49

`sogen ga'

S=S

`yama no sita ni'

S=S
`aru'
S

S
>

S
>

Figure 14: A derivation of `sogen ga yama no sita ni aru'

`yama no sita ni'

S=S

`sogen ga'

S=S
`aru'
V P

S
<

S
>

Figure 15: A derivation `yama no sita ni sogen ga aru'

In the adjunction approach, the lexicon for `ga', `wo', and `aisiteru', can be

de�ned as shown in example(40). In this de�nition, verb does not have any

complements so that a post positional phrase can be de�ned without copying

the arguments of its complement as presented in x4.5.3.

(40) l(ga):= pp(ga, sbj).

l(wo):= pp(wo, obj).

l(aisiteru):= verb.

pp(Pform, GR) :=

root:syn:(vp & pform:Pform & gr:GR) &

leaves([noun&dir:left, verb&dir:right]).

verb:= root:syn:vp & leaves([]).

Although example(40) can deal with
exibility both in word order and ar-

guments, it is too general to prevent parsing the following ungrammatical

sentences:

50

(41) a. *Ken-ga Naomi-ga aisiteru

NOM NOM love

b. *Ken-ga Naomi-wo Naomi-ga aisiteru

NOM ACC NOM love

Example(a) has two complements marked by the same case marker, `ga' and

example(b) has an extra complement, `Naomi ga'.

We also have to encode the subject-verb agreement shown in x8.2 in this

approach. To do that, verbs should have the constraints expressed as their

head features. And the post positional phrases should be checked whether

the argument verb has a complement marked by the same case of the particle.

In addition, we have to get the same semantic representation such as example(24)

in x6.3 both from (38a) and its canonical form(38b). Thus, we have to de�ne

semantics for all sentences with di�erent word orders, although the syntax

de�nition can be general.

8.4.2 Changing Subcategorization

The subcategorization approach of LexGram does not make it easy to imple-

ment the
exibility in word order and arguments because the order and the

number of elements of the feature leaves are �xed.

Let us consider the word order �rst, taking the verb `aru' (exist) in the corpus

(s40) in x7.3.4 as its example. The basic category for `aru' can be de�ned as

follows:

(42) `aru' := (SnPP)nPP

51

In this way, `aru' is speci�ed to take two post positional phrases from its left

to become S, but the de�nition does not say which PP is subject or locative.

Supposing that cases are checked in the semantics, then sentences (s40) and

(s40') are recognized as S (Figure 16 and 17).

`sogen ga'
PP

`yama no sita ni'
PP

`aru'
(SnPP)nPP

SnPP
<

S
<

Figure 16: A derivation of `sogen ga yama no sita ni aru'

`yama no sita ni'
PP

`sogen ga'
PP

`aru'
(SnPP)nPP

SnPP
<

S
<

Figure 17: A derivation of `yama no sita ni sogen ga aru'

To deal with optional arguments shown in (s14), (s5) and (s5') in x7.3.4,

`magaru' needs projected categories in addition to the original one.

`magaru' (base form) := (SnPPnPP)nPP

`magaru' (projected form) := SnPPnPP

`magaru' (projected form) := SnPP

With these categories, the sentences (s14) and (s5') are recognized as S as

shown in Figure(18) and (19).

With this approach, the de�nition for verb `aisiteru' in example(15) in x6.2

cannot deal with the canonical form speci�ed in example(38b). The de�nition(43)

shown below, stopping checking the complements' cases, recognises both

52

`miginigawa ni'
PP

`magaru'

SnPP

S
<

Figure 18: A derivation of `migigawa ni magaru'

`atoti no kado wo'
PP

`migigawa ni'
PP

`magaru'

(SnPP)nPP

SnPP
<

S
<

Figure 19: A derivation of `atoti no kado wo migigawa ni magaru'

(38a) and (38b) as sentences. However, we become unable to reject the

ungrammatical sentence(41a).

(43) l(aisiteru):= vt.

As mentioned in x8.4.1, we must get the same semantic representation from

every canonical sentence. That is, we need to know which argument is nom-

inative and accusative for constructing the semantic representation anyway.

Example(43) can be revised as in (44) which checks cases while generat-

ing semantic representations. CUF sort per/1 permutates a list and results

in the permutated list, so that the same semantic representation such as

example(24) in x6.3 can be obtained both from (38a) and (38b).

(44) l(aisiteru) : =
vt &
vt_type('LOVE')&
subj:S & obj:O & forms(F)&
root_sem(vars(append(V1, V2))&

forms(append(F1, append(F2, F)))&
leaves(per([accusative&root_sem(vstore:O&vars(V)&forms(F1)),

nominative&root_sem(vstore:S&vars(V)&forms(F2))])).

To deal with
exibility in arguments, we have to enumerate every case. Thus,

53

`aisiteru' will have additional categories which have only one argument while

its basic category has two as seen in (44). Using CUF sort project/2, `aisiteru'

can be de�ned in the following way, where vt p1 semantics checks the case

of an argument and calculates semantic representation. When an argument

lacks, the semantic representation for a verb will have an unbounded variable

as its argument.

(45) l(aisiteru):= vt&vt_semantics;

project(vt, [_])& vt_p1_semantics.

8.5 The Implemented Grammar

In the above sections, I have shown the alternatives to encode the phenomena

discussed in x7. I have chosen the following approaches for each case:

� The category for the noun phrases which have the form `A no B'

The category for adnominal particle `no' is de�ned as (NP/NP)nNP

which re
ects the relation between `A no' and `B'. Also, `no' is de�ned

not to have a noun phrase of the form `A no B' on its right. Another

adnominal particle `to' is de�ned in a similar way.

� Relative Clauses: the adjunct approach

I chose the adjunct approach because relative clauses in Japanese play

a similar role to adjectives, and it is common to treat adjectives as

adjuncts in Categorial Grammar as described in x4.5.3. Another reason

is that the trace approach could su�er more parsing ambiguities as I

mentioned in x8.3.

� Agreement: the semantic approach

54

Since the semantic approach does not need to change the structure of

the grammar, I chose this approach.

� Flexibility in Word Order and Arguments: the subcategorization ap-

proach

I decided to choose the subcategorization approach since I cannot be

convinced that a grammar which gets the correct semantics for every

corpus can be written in the adjunct approach. Although the subcat-

egorization approach seems to be not
exible enough, it is more solid

than the adjunct approach and is easy to describe constraints between

verbs and complements.

In the data, every verb has a maximum number of complements, and there is

no more than one post positional particle in the same sentence which carries

the same case. The classi�cation of verbs and particles in the corpus is shown

in Appendix C and D.

The implemented parser has 96 lexical items, and is constructed from the

following ten �les. The numbers in the table shows the size (in bytes) of each

�le.

55

�le Name size contents

gen.cuf 937 general CUF tools

syn.cuf 1556 head feature def.

type signature for nonterminal

cat.cuf 2004 syntactic category de�nition

sem.cuf 1272 semantic feature def.

type signature for sen

lexsem.cuf 1011 lexical semantics

phrsem.cuf 1009 semantics def except verb semantics

verbsem.cuf 7498 verb semantics

interface.cuf 3237 interface between lexicon and semantics def

lex.cuf 3384 lexicon

psent.cuf 5790 100 test data in LexGram

Table 1: Table of �les

56

9 Evaluation

The purpose of this evaluation is to check the coverage of the grammar de-

scribed in x8 and to check the e�ciency of the parser. The LexGram parser

uses a Head-driven chart parsing strategy [vN96], which is particularly useful

for lexicalist grammar formalisms such as HPSG and Categorial Grammar.

The Head-driven chart parsing is bi-directional in the sense that it adopts

both bottom-up and top-down strategies, and also head-driven in the sense

that it does not parse a phrase from left to right but starts by locating a

potential head of the phrase and then proceeds to parsing its daughters.

To check the coverage of the grammar, the selected data shown in AppendixI

were parsed using the program check/0 (Appendix G). The average run

time for parsing one sentence was calculated using programs timer/0 and

av time/0 (Appendix G). The programs were run ten times and the average

was calculated by hand. Of the one hundred sentences, there was one sentence

which could not be parsed with the grammar and two sentences which got two

di�erent semantic representations. In this section, I explain the problematic

cases and about the run time.

9.1 Problematic Cases

Sentence (s85) could not be parsed with the grammar since the subject of

the sentence is animate, but the verb requires an inanimate subject. Because

the speaker and the hearer made the conversation while watching maps, both

knew that `gorira' denoted a picture of a gorilla in the map. This is the reason

why the verb `iru' was used. Since this case is outside the scope of what we

intend to cover, we can ignore this.14

14In the run time test, I changed `gorira' to be inanimate

57

(s85) kyanpu to taisho no iti ni gorira ga aru

camp TO opposite NO side LOC gorilla NOM there-is

\There is a gorilla on the opposite side of the camp"

The following sentences (s3) and (s6) are assigned two di�erent semantic

representations.

(s3) atoti to iu tokoro no hidarigawa wo tooru

ruin DAT called place NO left ACC pass-by

\Pass by the left of the place called ruin"

(s62) haka no e ga owatta atari wo magaru

graveyard NO picture NOM end somewhere ACC turn

\Turn at around the end of the picture of graveyard"

The noun phrases, `atoti to iu tokoro no hidarigawa' in(s3) and `haka no e ga

owatta atari' in (s62), can be recognized as noun phrases from the two di�erent

derivations shown in Figure 20, 24, 22, and 23. The existence of adnominal

particles, `no', and adnominal verbs, `iu' and `owatta' in the phrases causes

those di�erent derivations, as the �gures show.

`atoti to iu'
NPnNP

`tokoro'
NP

NP
>

`no'
(NP=NP)nNP

NP=NP
<

`hidarigawa'
NP

NP
>

Figure 20: `atoti to iu tokoro no hidarigawa'

Let us consider the noun phrase `atoti to iu tokoro no hidarigawa' in (s3)

�rst. The meaning of ((`atoti to iu tokoro' `no') (`hidarigawa')) in Figure 20

is that `there is a place called ruin, and it is the left of that place'. On the

58

`atoti to iu'
NP=NP

`tokoro'
NP

`no'
(NP=NP)nNP

NP=NP
<

`hidarigawa'
NP

NP
>

NP
>

Figure 21: `atoti to iu tokoro no hidarigawa'*

`haka no e ga owatta'

NP=NP
`atari'
NP

NP
>

Figure 22: `haka no e ga owatta atari'2

haka
NP

`no'
(NP=NP)nNP

NP=NP
<

`e ga owatta'

NP=NP
`atari'
NP

NP
>

NP
>

Figure 23: `haka no e ga owatta atari'*

59

other hand, the second ((`atoti to iu') (`tokoro no hidarigawa')) means nothing.

Since `tokoro' (place), call it X, is an abstract noun and does not specify any

particular place, we cannot get a meaning for `the left of X'.

In the case of (s62), the meaning of ((`haka no e ga owatta') (`atari')) in Figure

22 is that `the place where the picture of a graveyard ends', while the meaning

of the second ((`haka no')(`e ga owatta atari')) in Figure 23 is that `the place

where a picture ends and a graveyard exists'. Since there are a lot of items in

a map, it is ambiguous which place the second interpretation speci�es. It is

also clear that the �rst reading is the speaker's intention from the situation

where the speaker was looking at a picture of a graveyard.

However, in the following cases, the above false derivation can be correct.

(s3') has the same pattern as `atoti to iu tokoro no hidarigawa' in (s3), and

(s62') as `haka no e ga owatta atari'. The correct meanings of the strings are

obtained from the derivations in Figure(24) and Figure(25).

(s3') Naomi to iu Ken no tomodati

Naomi DAT called Ken NO friend

\Ken's friend who is called Naomi"

(s62') Ken no futi ga kaketa sara

Ken NO edge NOM broken dish

\Ken's dish whose edge is broken"

Thus, we must derive the strings in two di�erent ways as the parser did, but

it will have to be able to select the correct one.

9.2 Run Time Test

The program timer/0 in Appendix G is used to record the runtime for pars-

ing each sentence. The test was done ten times and the average run time for

60

`Naomi to iu'
NP=NP

`Ken'
NP

`no'
(NP=NP)nNP

NP=NP
< `tomodati'

NP

NP
>

NP
>

Figure 24: `Naomi to iu Ken no tomodati'

Ken
NP

`no'
(NP=NP)nNP

NP=NP
<

`futi ga kaketa'

NP=NP
`sara'
NP

NP
>

NP
>

Figure 25: `Ken no futi ga kaketa sara'

one sentence was 271.77 msec. Sentence (s16) was the worst in every test,

which took more than 700msec. The fastest sentence was di�erent each time,

but (s26) was most often faster than the others. One of the ten results is

presented in the table (Appendix E), and a histogram is in Appendix F.

In the following sections, I observe the results and explain the reasons for

the results.

9.2.1 Observation

The items of the table in Appendix E are sorted by their runtime; the �rst,

(s26), took the least time to be parsed, while the 100th took the most. The

�rst line of the table shows the meaning of each column; SNo means sentence

number, L the length of the sentence, PP the number of post positional par-

ticles in the sentence, AP the number of adnominal particles in the sentence,

and V the verb type of the verb in the sentence (v2: a verb which takes two

arguments, v3: a verb which takes three arguments). The histogram shows

the distribution of the times, where one star, *, corresponds to ten msec.

61

In the following, I list some characteristic features of the table.

� The �rst �ve sentences, (s26), (s19), (s52), (s35), and (s22), took less

than or equal to 100 msec. All of them have the same length, (�ve

words), two post positional particles, no adnominal particles, and the

same verb type, v2.

� The �rst forty four items, from (s26) to (s65), have the same verb type,

v2, except the �ve v3 type sentences (s30), (s96), (s36), (s40), and (s8)

marked with a star, *. Most of them are parsed in between 130 and 160

msec. All the exceptions have no adnominal particles and fewer words

than the others; the average word number of the �ve is 3.5 words while

the average of the others is 6.82 words.

� The rest of the items in the table, from the 45th to the 100th, have the

same verb type v3, except sentence (s23) marked with a star, *. The

sentence (s23) is the longest sentence in the data.

� From the 45th to 85th, all sentences have the same pattern; the length

of �ve words, one postpositional particle, one adnominal particle, and

v3 type. They range within 100 msec and most of them took 300 or

310 msec to be parsed. From the 90th to the 97th, they have two

adnominal particles and they took 200 msec longer to be parsed than

the others.

� The two groups of sentences (s42), (s50), (s99) and (s81), (s4), (s2)

have the same pattern; the seven words length, one post positional

particle, and one adnominal particle. The di�erence between the two

is in the verb type; the �rst group is of type v2 and the second is of

v3. Although the di�erence is just in the verb type, the second took

twice as long as the �rst to be parsed; the average run time of the �rst

group is 147 msec, while the second is 396 msec.

62

� Sentences (s62) and (s3) were the 98th and 99th, respectively, although

they have just one adnominal particle. All other sentences after the

90th have more than two adnominal particles. The characteristic point

of these is that both have relative clauses, while the others do not.

� The worst sentence is (s16). The di�erence between this and the oth-

ers is the number of adnominal particles. (s16) has three adnominal

particles while no other sentences have that many adnominal particles.

The verb of (16) is also of v3 type.

9.2.2 Analysis

There are two main factors for the run time as the observations show; the

di�erence of verb types, and the number of the adnominal particles. Let us

consider the verb type �rst.

The v2 type verb has two and the v3 verb type has three arguments in their

basic categories.

v2 type := (SnPP)nPP (original category)

SnPP (projected category)

v3 type := ((SnPPn)PP)nPP (original category)

(SnPP)nPP ; SnPP (projected category)

In addition to the basic category, each verb type has projected categories in

order to allow free gaps in a sentence as discussed in x8.4.2. Also, if a verb has

two arguments for its syntactic category, it will have two lexical entries to get

the same semantic representation from the di�erent word ordered sentences

as discussed in x8.4.2. Thus, if the number of arguments becomes three,

the number of the lexical entries becomes six. Considering the projected

63

categories, one v3 type verb has �fteen lexical entries, while v2 has four.

Hence, the di�erence of the verb type a�ects the run time signi�cantly.

The other factor, adnominal particles such as `no' and `to', have the category

(NP/NP)nNP. A noun phrase with `no' has the general form `A no B' as shown

below, where nmeans the total number of `no' occurring in the noun phrase `A

no B', Xy means a phrase containing y occurrences of `no'. (i � 0; i � n� 1)

(46) `no'

A

Xi

B

Xn�1�i

Using the above notation, the number of possible analyses of a noun phrase

with `no' can be expressed with the following expression.

f(Xn) =
n�1X
i=0

f(Xi) � f(Xn�1�i)

f(X0) = 1

Let us consider the ambiguity of `no' in detail, taking the worst case (s16) as

an example, where the noun phrase `kyanpu no hidari no koya no hidari' has

three `no's. According to the above expression, it can be divided into three

cases as shown below:

f(`kyanpu no hidari no koya no hidari') =

f(`kyanpu')*f(`hidari no koya no hidari') +

f(`kyanpu no hidari') * f(`koya no hidari') +

f(` kyanpu no hidari no koya') * f(`hidari').

Since f(X0) = 1, f(X1) = 1(= 1 � 1), and f(X2) = 2(= 1 + 1), the result

of the above expression becomes �ve (=1*2 + 1*1 + 2*1). Thus, the noun

phrase has twice as many ambiguities as the one with two `no's.

64

10 Conclusion

The parser based on JPSG was implemented in LexGram and was tested

against the one hundred sentences collected from the Japanese Map Task

Corpus. Although LexGram provides only two built-in rules, the parser suc-

ceeded in covering some characteristic phenomena in Japanese: (1)word order

variation, (2)gaps in a sentence, and (3)relativization. It parses sentences at

a reasonable speed, an average of 271.77 msec. per sentence with an average

of 6 words per sentence.

We have also shown that it is easy to write a grammar in LexGram. The core

part of the program was implemented in a few weeks. CUF types and sorts

turned to be very useful for implementing the parser. There was, however, a

problem that debugging was sometimes hard due to lack of good debugging

tools.

10.1 Comparison With Related Work

The Adverbial Approach Whitelock [Whi88] proposes to de�ne all ar-

guments of a verb as the functor category SnS, functions from sentences to

sentences, and a verb is de�ned as a sentence S. In his approach, it is easy

to cover the word order variation and gaps in a sentence. However, we chose

a di�erent approach to cover the same phenomena; To deal with word order

variation, the argument list for a verb as a set of arguments rather than

as a list. The gaps in a sentence are dealt with by giving verbs categories

additional to the basic ones. We also consider semantic representations for

sentences, while he did not attempt it due to his approach.

JPSG In the thesis, JPSG [Gun87] is implemented in a Categorial Gram-

mar. Sentences can be parsed only with the forward and backward function

65

application rules. Although JPSG uses traces and foot feature principles

to de�ne relative clauses, we have proposed an alternative which does not

require traces. However, the implemented grammar requires more lexical

entries.

10.2 Future Work

I would like to extend the parser in the following aspects so that it can cover

the problems pointed out in x9.1 and also can deal with morphology.

Semantic Representation The semantic representation on the whole has

not been studied enough for the data in this thesis. For example, we have

not considered semantic representations for adverbs and adjectives, which

should be implemented. In addition, as the two problems pointed out in x9.1

suggest, we should check the semantics of noun phrases to eliminate false

semantic representations and noun phrases should have more information

for the checking. I am also expecting that enriching the semantics for noun

phrases allows the parser to cover the sentences where particles are omitted

as we observed in x7.2 since the meaning of the particles could be guessed

from the meaning of the noun phrases.

Morphology In this thesis, I did not consider morphology. For example,

`aisiteru' is treated as one word. However, the word can actually be seen as

composed of `aisu'(to love) and `iru'(the present tense). Honori�c informa-

tion, omitted from the data in x7.2, can also be dealt with when we extend

the parser.

66

References

[ABB+91] Anne H. Anderson, Miles Bader, Ellen G. Bard, Elizabeth H.

Boyle, Gwyneth M. Doherty, Simon C. Garrod, Stephen D. Isard,

Jacqueline C. Kowtko, Jan M. McAllister, Jim Miller, Cather-

ine F. Sotillo, Henry S. Thompson, and Regina Weinert. The

HCRC Map Task Corpus. Language and Speech, 34(4):351{366,

1991.

[AIK+94] Motoko Aono, Akira Ichikawa, Hanae Koiso, Shinji Sato, Makiko

Naka, Syun Tutiya, Kenji Yagi, Naoya Watanabe, Masato

Ishizaki, Michio Okada, Hiroyuki Suzuki, Yukiko Nakano, and

Keiko Nonaka. The Japanese Map Task Corpus: an interim re-

port. In Spoken Language Processing, volume SLP3(5), pages 25{

30. Information Processing Society of Japan, 1994. in Japanese.

[Car92] Bob Carpenter. The Logic of Typed Feature Structures. Tracts

in Theoretical Computer Science. Cambridge University Press,

Cambridge, 1992.

[DD93] Jochen D�orre and Michael Dorna. CUF - a formalism for lin-

guistic knowledge representation. Technical report, August 1993.

DYANA2 Report R.1.2A.

[GKPS85] Gerald Gazdar, Ewan Klein, G.K. Pullumi, and Ivan Sag. Gener-

alized Phrase Structure Grammar. Blackwell, Oxford, UK, 1985.

[Gun87] Takeo Gunji. Japanese Phrase Structure Grammar. D.Reidel

Publishing Company, Holland, 1987.

[HTH+86] H.Miyoshi, T.Gunji, H.Sirai, K.Hasida, and Y.Harada. A phrase

structure grammer for Japanese; JPSG. Technical report, Insti-

67

tute for New Generation Computer Technology(ICOT), Tokyo,

Japan, 1986. TR0199.

[KB95] Esther K�onig-Baumer. LexGram - a practical categorial gram-

mar formalism. In Proceedings of the Workshop on Computa-

tional Logic for Natural Language Processing, Edinburgh, Scot-

land, April 1995. A Joint COMPULOGNET/ELSNET/EAGLES

Workshop.

[Lam61] Joachim Lambek. On the calculus of syntactic types. In R. Jakob-

son, editor, Structure of Language and its Mathematical As-

pects, pages 166{178. American Mathematical Society, Provi-

dence, Rhode Island, 1961. Proceedings of the Symposium in

Applied Mathematics, XII.

[PS94] Carl Pollard and Ivan A. Sag. Head Driven Phrase Structure

Grammar. The University of Chicago Press and Center for the

Study of Language and Information, Chicago, Ill. and Stanford,

Ca., 1994.

[Usz86] Hans Uszkoreit. Categorial Uni�cation Grammars. In Proceedings

of the 11th International Conference on Computational Linguis-

tics, pages 187{194, Bonn, 1986.

[vN96] Gertjan van Noord. An e�cient implementation of

the Head-corner parser. Manuscript available via

http://grid.let.rug.nl/ vannoord/papers/ Netherlands Organiza-

tion for Scienti�c Research, Language and Speech Technology -

document number 25, 1996.

[Whi88] P. Whitelock. A feature-based categorial morpho-syntax for

Japanese. In Uwe Reyle and Christian Rohrer, editors, (eds.)

68

(1988): Natural Language Parsing and Linguistic Theory, pages

230{259. Reidel, 1988.

[Win83] Terry Winograd. Language as a cognitive process: Syntax.

Addition-Wesley Publishing Company, 1983.

[Zee88] Henk Zeevat. Combining categorial grammar and uni�cation. In

Uwe Reyle and Christian Rohrer, editors, Natural Language Pars-

ing and Linguistic Theories, pages 202{229. Reidel, 1988.

69

A Map

the copy of the map will be added

70

B Lexicon

The number in the table shows the frequncy of each word in the data.

Items: 96words

%%a

agaru (to go up) : 1

aida (space) : 3

apati (apachi) : 1

aru (to exist) : 37

atari (surroundings) : 3

atoti (ruin) : 4

%%b

bokugo (shelter) : 1

bokujo (farm) : 2

boti (graveyard) : 3

%%d

danso (dislocation) : 3

denwa (phone-booth) : 2

%%e

e (picture) : 2

%%f

furo (bath) : 3

%%g

ga (NOM) : 39

gake (cliff) : 4

gareki (ruin) : 1

ginko (bank) : 9

gorira (gorira) : 1

%%h

haikyo (ruin) : 6

haji (side) : 2

haka (graveyard) : 1

hasira (pole) : 1

hatake (farm) : 1

hayasi (forest) : 1

hidari (left) : 9

hidarigawa(left) : 13

hidarisita(bottom left) : 4

hidariue(top left) : 6

hou (side/way) : 12

%%i

iku (to go) : 18

iru (to exist) : 3

iti (position) : 1

iu (called) : 1

iwa (rock) : 1

%%k

kado (corner) : 1

kaigansen(coast) : 1

kamosika(mountain-goat) : 1

kanu (canu) : 1

kawa (river) : 7

ki (tree) : 3

kinenhi (monument) : 1

kojo (factory) : 2

kokuyurin(forest) : 1

koya (cottage) : 2

kozan (mine) : 2

kuru (to come) : 5

kyanpu (camp) : 9

kyoru (dinosaur) : 1

%%m

made (LOC) : 11

magaru (to turn to) : 5

makiba (farm) : 2

71

mannaka (middle) : 4

mawaru (to turn) : 2

mieru (can see) : 2

mieru (see) : 2

migi (right) : 4

migigawa(right) : 8

migisita(bottom right) : 3

migite (right) : 2

migiue (top right) : 2

minka (house) : 2

mitisirube(guideboad) : 1

mizutamari(pond) : 2

mo (ACC) : 1

mon (gate) : 1

%%n

ni (LOC) : 58

no (NO) : 100

numa (bog) : 2

%%o

owatta (ended) : 1

%%s

sabaku (desert) : 4

sakeru (to avoid) : 1

seitetsujo(iron-mill) : 4

sinkouhoukou(heading direction): 2

sita (botoom) : 21

sogen (plain) : 4

sotogawa(outside) : 1

sunahama(beach) : 2

susumu (to go) : 2

syupatsutiten(starting point): 9

%%t

taisho (opposite) : 1

tenbodai(observatory) : 1

tizu (map) : 2

to (TO, DAT) : 9

tokoro (place) : 8

tooru (to pass by) : 22

tsuirakugenba(clash spot): 2

tsukiatari(end) : 1

tsuribasi(bridge) : 1

%%u

ue (upside) : 10

usi (cow) : 1

uti (house) : 1

%%w

wa (ACC) : 1

wan (bay) : 2

wo (ACC) : 34

%%y

yama (mountain) : 5

yoko (next) : 4

72

C Particles

The post positional particles in the corpus carry the following cases. Since I
choose the subcategorization approach, described in x8.5, the categories for
all post positional particles are the same as shown below.

C.1 Post Positional Particle

Particle Case Category

ga NOM PPnNP
mo ACC PPnNP
wa ACC PPnNP
wo ACC PPnNP
to DAT PPnNP
ni LOC PPnNP

made LOC PPnNP

C.2 Adnominal Particle

Particle Category

no (NP/NP)nNP
no ((NP/NP)nNP)nP2
to (NP/NP)nNP
to P2

D Verbs

D.1 Verb Types

Verbs(sentential �nal form) in the corpus are classi�ed into the following four
types. Each type has its basic category and also projected categories.

v3 ann is the verb type which takes three arguments(nominative, accusative,
and locative); its nominative argument is animate, its accusative argument
is not animate, and its locative argument is not animate.

v3 aoo is the verb type which takes three arguments(nominative, accusative,
and locative); and its nominative argumeent is animate, the others can be

73

anything.

copl an is the verb type which is copular and takes two arguments; its nom-
inative argument is animate, its locative argument is not animate.

copl nn is the verb type which is copular and takes two arguments; its nom-
inative argument is not animate, locative is not animate.

D.2 Verbs

Verb Type Verbs

v3 ann agaru, iku, kuru, magaru, mawaru, sakeru, tooru, susumu
v3 aoo mieru, miru
copl an iru
copl nn aru

Verb Type Category Explanation

v3 ann ((SnPPx)nPPy)nPPz x, y, z are either
(SnPPx)nPPy nominative & animate(+),
SnPPx accusative & animate(-), or

locative & animate(-).
v3 aoo ((SnPPx)nPPy)nPPz x, y, z are either

(SnPPx)nPPy nominative & animate(+),
SnPPx accusative & animate(Any), or

locative & animate(Any).
copl an (SnPPx)nPPy x, y are either

SnPPx nominative & animate(+),or
locative & animate(-).

copl nn (SnPPx)nPPy x, y are either
SnPPx nominative & animate(-),or

locative & animate(-).

74

E Evaluation

The average runtime: 270.6 (msc.)/ sentence

No SNo Time L PP AP V
1 (s26) 80 5 2 0 v2
2 (s19) 80 5 2 0 v2
3 (s52) 90 5 2 0 v2
4 (s35) 100 5 2 0 v2
5 (s22) 100 5 2 0 v2
6 (s36) 120 7 2 1 v2
7 (s25) 120 5 1 1 v2
8 (s59) 130 6 2 0 v2
9 (s42) 130 7 2 1 v2
10 (s37) 130 7 2 1 v2
11 (s32) 130 7 2 1 v2
12 (s31) 130 7 2 1 v2
13 (s76) 140 7 2 1 v2
14 (s45) 140 7 2 1 v2
15 (s43) 140 7 2 1 v2
16 (s33) 140 7 2 1 v2
17 (s15) 140 7 2 1 v2
18 (s11) 140 7 2 1 v2
19 (s9) 140 7 2 1 v2
20 (s84) 150 7 2 1 v2
21 (s83) 150 7 2 1 v2
22 (s57) 150 6 1 1 v2
23 (s50) 150 7 2 1 v2
24 (s44) 150 7 2 1 v2
�25 (s30) 150 3 1 0 v3
26 (s18) 150 7 2 1 v2
27 (s6) 150 7 2 1 v2
28 (s99) 160 7 2 1 v2
29 (s98) 160 7 2 1 v2
30 (s97) 160 7 2 1 v2
�31 (s96) 160 3 1 0 v3
32 (s47) 160 7 2 1 v2
33 (s17) 160 7 2 1 v2
34 (s41) 170 7 2 1 v2
35 (s40) 170 7 2 1 v2
�36 (s14) 170 3 1 0 v3
37 (s1) 180 7 2 1 v2
38 (s85) 200 8 2 2 v2
39 (s38) 210 7 1 2 v2
�40 (s100) 240 5 2 0 v3
41 (s58) 250 9 2 2 v2
42 (s51) 250 9 2 2 v2
�43 (s8) 250 5 2 0 v3
44 (s65) 270 9 2 2 v2
45 (s49) 270 5 1 1 v3
46 (s27) 280 5 1 1 v3
47 (s54) 290 5 1 1 v3
48 (s46) 290 5 1 1 v3
49 (s20) 290 5 1 1 v3
50 (s92) 300 5 1 1 v3

No SNo Time L PP AP V
51 (s87) 300 5 1 1 v3
52 (s79) 300 5 1 1 v3
53 (s77) 300 5 1 1 v3
54 (s75) 300 5 1 1 v3
55 (s70) 300 5 1 1 v3
56 (s60) 300 5 1 1 v3
57 (s55) 300 5 1 1 v3
58 (s39) 300 5 1 1 v3
59 (s34) 300 5 1 1 v3
60 (s13) 300 5 1 1 v3
61 (s7) 300 5 1 1 v3
62 (s90) 310 5 1 1 v3
63 (s86) 310 5 1 1 v3
64 (s82) 310 5 1 1 v3
65 (s73) 310 5 1 1 v3
66 (s69) 310 5 1 1 v3
67 (s66) 310 5 1 1 v3
68 (s64) 310 5 1 1 v3
69 (s63) 310 5 1 1 v3
70 (s61) 310 5 1 1 v3
71 (s56) 310 5 1 1 v3
72 (s53) 310 5 1 1 v3
73 (s48) 310 5 1 1 v3
74 (s28) 310 5 1 1 v3
75 (s21) 310 5 1 1 v3
76 (s10) 310 5 1 1 v3
77 (s91) 320 5 1 1 v3
78 (s89) 320 5 1 1 v3
79 (s88) 320 5 1 1 v3
80 (s78) 320 5 1 1 v3
81 (s72) 320 5 1 1 v3
82 (s68) 320 5 1 1 v3
83 (s29) 320 5 1 1 v3
84 (s5) 320 5 1 1 v3
85 (s94) 360 5 1 1 v3
�86 (s23) 360 10 2 2 v2
87 (s81) 380 7 2 1 v3
88 (s4) 400 7 2 1 v3
89 (s2) 410 7 2 1 v3
90 (s80) 490 7 1 2 v3
91 (s67) 490 7 1 2 v3
92 (s95) 500 7 1 2 v3
93 (s74) 500 7 1 2 v3
94 (s71) 500 7 1 2 v3
95 (s93) 510 7 1 2 v3
96 (s24) 510 7 1 2 v3
97 (s12) 580 8 1 2 v3
98 (s62) 610 8 2 1 v3
99 (s3) 620 8 2 1 v3
100 (s16) 770 9 1 3 v3

75

F Histogram

(s26) ********
(s19) ********
(s52) *********
(s35) **********
(s22) **********
(s36) ************
(s25) ************
(s59) *************
(s42) *************
(s37) *************
(s32) *************
(s31) *************
(s76) **************
(s45) **************
(s43) **************
(s33) **************
(s15) **************
(s11) **************
(s9) **************
(s84) ***************
(s83) ***************
(s57) ***************
(s50) ***************
(s44) ***************
(s30) ***************
(s18) ***************
(s6) ***************
(s99) ****************
(s98) ****************
(s97) ****************
(s96) ****************
(s47) ****************
(s17) ****************
(s41) *****************
(s40) *****************
(s14) *****************
(s1) ******************
(s85) ********************
(s38) *********************
(s100) ************************
(s58) *************************
(s51) *************************
(s8) *************************
(s65) ***************************
(s49) ***************************
(s27) ****************************
(s54) *****************************
(s46) *****************************
(s20) *****************************
(s92) ******************************
(s87) ******************************
(s79) ******************************
(s77) ******************************
(s75) ******************************
(s70) ******************************
(s60) ******************************
(s55) ******************************
(s39) ******************************
(s34) ******************************
(s13) ******************************
(s7) ******************************
(s90) *******************************
(s86) *******************************
(s82) *******************************
(s73) *******************************
(s69) *******************************
(s66) *******************************
(s64) *******************************
(s63) *******************************
(s61) *******************************
(s56) *******************************
(s53) *******************************
(s48) *******************************
(s28) *******************************
(s21) *******************************
(s10) *******************************
(s91) ********************************
(s89) ********************************
(s88) ********************************
(s78) ********************************
(s72) ********************************
(s68) ********************************
(s29) ********************************
(s5) ********************************
(s94) ************************************
(s23) ************************************
(s81) **************************************
(s4) **
(s2) ***
(s80) ***
(s67) ***
(s95) **
(s74) **
(s71) **
(s93) ***
(s24) ***
(s12) **
(s62) ***
(s3) **
(s16) ***

76

G Test Program

/* Test Program for coverate */

check:-

asserta(count(1)),

asserta(time(0,0)),

repeat,

testno(TestNo),

p0(TestNo, ID),

show_item(ID), nl, nl, %LexGram command

show_tree(ID), nl, nl, %LexGram command

until(100).

/* Program for recording runtime data */

timer:-

asserta(count(1)),

asserta(time(0,0)),

repeat,

testno(TestNo),

time0(TestNo, Time),

assert0(time(TestNo, Time)),

until(100).

time0(TestNo, Total):-

statistics(runtime,[StartTime|_]),

p(TestNo),

statistics(runtime,[EndTime|_]),

Total is EndTime - StartTime,!.

until(Max):-

count(C),

Max =< C.

until(Max):-

retract0(count(C)),

N is C + 1,

assert0(count(N)),

fail.

testno(X):-count(X), !.

retract0(X):- retract(X), !.

assert0(X):- assert(X), !.

p0(TestNo, ID):- p(TestNp, _, ID), !. %p/3 is LexGram command

av_time:-

bagof([No, Time], time(No, Time), L),

sort_list(L, Start, Sorted),

cal(Sorted, Total),

A is Total / 100,

write('The average : '), write(A), nl.

cal([], Total, Total):- !.

cal([[_|Time]|Tail], Total, Result):-

Tmp is Total + Time,

cal(Tail, Tmp, Result), !.

77

H The Code for the Parser

%% File: gen.cuf

%% Yoshiko

append([], L&list) := L.

append([H|T], L&list) := [H| append(T, L)].

del(H, [H|T]) := T.

del(H, [T1|T2]) := [T1|del(H, T2)].

mem([H|_T]) := H.

mem([_|T]) := mem(T).

per([]) := [].

per(L&list):= [X|per(del(X, L))].

%%%%

%%

%% join_trees(Tree1,Tree2) := CombinedTree.

%% - join the leaves of Tree1 and Tree2

%% (Tree2 is inserted at the head position of Tree1)

%%

join_trees(

category(Root1,Leaves1), % upper part of tree

category(_Root2,Leaves2)) := % lower part of tree

category(% combined tree

Root1,

append(Leaves2,Leaves1)).

% leaves of lower part are closer to the head leaf

%%

%% project(Category,Leaves) := Projection

%% - Leaves : those Leaves which have been cut off to produce Projection

%%

project(

category(

Root,

append(Leaves1,Leaves2)),

Leaves1) :=

category(Root,Leaves2).

%% File: syn.cuf

%% Yoshiko Fujinami

grammar_name := japanese. % added ek96-06-15

nonterminal = v | n | p | p2.

v ::

cform : cf_info,

sub : sub_info.

p ::

gr : gr_info,

pform : pf_info.

n ::

78

aform : af_info.

p2 ::

p2form : p2_info.

sub_info ::

no: boolean,

ac: boolean,

da: boolean,

lo: boolean.

gr_info = { sbj, obj, dat, loc }.

pf_info = { ga, wo, ni, wa, mo, to, made }.

p2_info = { to }.

cf_info = { senf, adnm }.

af_info = { no, to }.

boolean = { +, -}.

%===

% data access

%

'_gr'(GR) := gr: GR.

'_pform'(PF):= pform: PF.

apform(X) := root_syn(aform: X).

adnominal := root_syn(cform: adnm).

sent_final := root_syn(cform: senf).

nom(X) := root_syn(sub: no:X).

acc(X) := root_syn(sub: ac:X).

dat(X) := root_syn(sub: da:X).

loc(X) := root_syn(sub: lo:X).

nominative := root_syn(gr: sbj).

accusative := root_syn(gr: obj).

dative := root_syn(gr: dat).

locative := root_syn(gr: loc).

pform(P) := root_syn(pform: P).

gr(G) := root_syn(gr: G).

p2form(P) := root_syn(p2form: P).

nonterminal(Syn):= cons_root(Syn, _Sem).

dir(Dir) := goal(Dir, _n, _su, _sl, _c).

root(R) := category(R, _L).

goal(Dir, N) := goal(Dir, N, [], [], _C).

root_syn(S) := category(cons_root(S, _Sem), _G).

root_sem(S) := category(cons_root(_Syn, S), _G).

satured := category(_R, []).

leaves(L) := category(_R, L).

top_leaves(T) := category(_R, [T|_]).

%% File Name: cat.cuf

%% Yoshiko Fujinami

%===

%

79

%% categories

%

%% Category: NP

np := root_syn(n) &

satured.

%% Category: S\NP

v(i) := root_syn(v) &

leaves([pp_goal]).

%% Category: (S\NP)\NP

v(t) := root_syn(v) &

leaves([pp_goal, pp_goal]).

%% added form syn.cuf

%% Category: NP/NP

v(irel) := join_trees(adj, project(v(i), [_])).

%% Category: (NP/NP)\PP

v(trel) := join_trees(adj, project(v(t), [_])).

%% Category: ((S\NP)\NP)\NP

v(d) := root_syn(v) &

leaves([pp_goal, pp_goal, pp_goal]).

%% Category: NP\NP

pp := root_syn(p)&

leaves([np_goal]).

%% Category: (NP/NP)\NP

ap(no) := root_syn(n)&

leaves([np_goal, np_r_goal&apform(~no)]).

ap(to) := root_syn(n)&

leaves([np_goal, np_r_goal&apform(~no)]).

%% Category: ((NP/NP)\NP\AP

ap(no) := root_syn(n)&

leaves([p2_goal, np_goal, np_r_goal&apform(~no)]).

%% Category: P

part := root_syn(p2)&

satured.

%% Category: NP\NP

adj := category(

nonterminal(n),

[np &

goal(right,

nonterminal(n),

Leaves,

_Slash,

_C)

| Leaves]).

%% Category: VP\VP

adv := category(

nonterminal(v),

[verb_category &

goal(right,

80

nonterminal(v),

Leaves,

_Slash,

_C)

| Leaves]).

verb_category:= v(i);v(t).

adv2 := category(

nonterminal(n),

[v(trel) &

goal(right,

nonterminal(n),

Leaves,

_Slash,

_C)

| Leaves]).

%===

% goals

%

pp_goal := goal(left, nonterminal(p)).

p2_goal := goal(left, nonterminal(p2)).

vp_goal := goal(left, nonterminal(v)).

np_goal := goal(left, nonterminal(n)).

np_r_goal := goal(right, nonterminal(n)).

%% FileName: sem.cuf

%% Yoshiko Fujinami

sem ::

formula : quantified_formula.

sem = verbal_sem | np_sem.

verbal_sem ::

subj: afs, %nominative

obj : afs, %accusative

obj2: afs. %dative; or locative

np_sem ::

index: afs,

vstore:afs,

semf:semf.

semf :: % semantic information for subcat

animate: boolean,

attribute: att_info.

boolean = {+, -}.

att_info = { loc, dir }.

quantified_formula::

vars: list,

81

forms: list.

formula= basic_relation.

basic_relation ::

label: afs,

rel : afs,

args: argument_frame.

argument_frame ::

arg1 : top,

arg2 : top,

arg3 : top.

%%

% data access

%

semrepr(Formula) :=

formula : forms: [Formula].

rel(RelName, Args) :=

rel : RelName &

args: Args.

% root_sem is defined in syn.cuf

% root_sem(S) := category(cons_root(_Syn, S), _G).

sem(Sem) := cons_root(_Syn, Sem).

forms(F):= formula: forms: F.

vars(V) := formula: vars: V.

i(I) := root_sem(vstore:I).

f(F) := root_sem(formula: forms: F).

v(V) := root_sem(formula: vars: V).

attr(A) := root_sem(semf: attribute: A).

animate(A):= root_sem(semf: animate:A).

subj(S) := root_sem(subj:S).

obj(O) := root_sem(obj:O).

obj2(O2) := root_sem(obj2:O2).

%% File Name: lexsem.cuf

%% Yoshiko Fujinami

%%

% lexical semantics

%

vi_type(R) :=

verbal_sem &

(subj: Actor) &

semrepr(rel(R, (arg1: Actor))).

cp_type(R) :=

verbal_sem &

(subj: Actor &

obj2 : Object) &

semrepr(rel(R, (arg1: Actor &

82

arg2: Object))).

vt_type(R) :=

verbal_sem &

(subj: Actor &

obj : Object) &

semrepr(rel(R, (arg1: Actor &

arg2: Object))).

vd_type(R) :=

verbal_sem &

(subj: Actor &

obj : Object&

obj2: Object2) &

semrepr(rel(R,

(arg1: Actor &

arg2: Object &

arg3: Object2))).

n_type(Idn) :=

np_sem &

index:Index &

semrepr(rel('named', (arg1:Index &

arg2:Idn))).

cn_type(Rel) :=

np_sem &

(index:Index)&

semrepr(rel(Rel, arg1:Index)).

no_noun(X, Y):=

rel(no,

(arg1:X & arg2:Y)).

conc(I, X, Y):=

rel(conc,

(arg1:I & arg2:X & arg3:Y)).

%% File Name: phrsem.cuf

%% Yoshiko Fujinami

%%

% phrasal semantics

%

%% exist X: np(X)&P(X)

np_semantics(index:X&forms(F)):=

% root_sem(vars([X])&index:X&forms(F)).

root_sem(vars([X])&vstore:X&forms(F)).

%% post propositions

pp_semantics:=

leaves([root_sem(P)]) &

root_sem(P).

%% adnominal perticle

ap_semantics(no):=

leaves([i(Li)&f(Lf), i(Ri)&f(Rf)])&

% root_sem(index:Ri &

83

root_sem(vstore:Ri &

vars([Ri])&

forms(append([no_noun(Ri, Li)], append(Rf,Lf)))).

ap_semantics(no):=

leaves([_, i(Li)&f(Lf), i(Ri)&f(Rf)])&

% root_sem(index:Ri &

root_sem(vstore:Ri &

vars([Ri])&

forms(append([no_noun(Ri, Li)], append(Rf,Lf)))).

ap_semantics(to):=

leaves([i(Li)&f(Lf), i(Ri)&f(Rf)])&

% root_sem(index:I &

root_sem(vstore:I &

vars([Li, Ri])&

forms(append([conc(I, Ri, Li)], append(Rf,Lf)))).

%--

%

adv_semantics:=

leaves([root_sem(S)| _]) &

root_sem(S).

adj_semantics:=

leaves([root_sem(S)| _]) &

root_sem(S).

%% File Name: verbsem.cuf

%% Yoshiko Fujinami

%%

%===

% Definitions for Grammar

% Intransitive Verb: sentential final, and adnominal forms

% Transitive Verb: sentential final, and adnominal forms

% Copla Verb: sentential final form

% Verb with three complements: sentential final form

% (nominative, accusative, locative)

%

%===

% Intransitive Verb

%

v1(L, V, F):=

v1_p0(L, V, F).

%===

% Intransitive Verb without free gap

% Sentential Final Form

%

v1_p0(Label, V, F):=

v(i) &

v1_sem(vi_type(Label), V, F).

%---

84

% v1_sem: semantics for intransitive verb

%

v1_sem(subj:S & forms(F),

V1,

append(F, F1)) :=

leaves([NOM]) &

nom_sem(NOM, S, V1, F1).

%===

% Intransitive Verb

% Adnominal Form

%

v1_relative(Label, I, V, F):=

v(irel) &

virel_semantics(vi_type(Label), I, V, F).

%---

% Semantics for intransitive verb

%

virel_semantics(subj:Index & forms(ViSem),

Index, Var, append(NpSem, ViSem)):=

% Index, Var, append(ViSem, NpSem)):=

leaves([RNoun])&

relativized_noun(RNoun, Index, Var, NpSem).

%===

% Transitive Verb Definition

%

v2(Label, V, F):= v2_p0(Label, V, F).

v2_p0(Label, V, F):=

v(t) &

v2_sem(vt_type(Label), V, F).

%---

% Semantic Definition

% Transitive Verb

%

v2_sem(subj:S & obj:O & forms(F),

append(V1, V2),

append(append(F, F1), F2)) :=

leaves(per([NOM, ACC])) &

nom_sem(NOM, S, V1, F1) &

acc_sem(ACC, O, V2, F2).

%===

% Transitive Verb

% Adnominal Form

%

v2_relative(Label, I, V, F):=

v(trel) &

85

vtrel_semantics(vt_type(Label), I, V, F).

%---

% Semantics Definition

% Transitive verb adnominal form

%

vtrel_semantics(subj: SIndex & obj: OIndex & forms(VtSem),

OIndex, append(OV, SV),

% append(SNp, append(ONp, VtSem))):=

append(VtSem, append(SNp, ONp))):=

leaves([NOM, RNoun])&

nom_sem(NOM, SIndex, SV, SNp) &

relativized_noun(RNoun, OIndex, OV, ONp).

%% transitive verb relative caluse

%% which lacks sbject

vtrel_semantics(subj: SIndex & obj: OIndex & forms(VtSem),

SIndex,append(OV, SV),

% append(SNp, append(ONp, VtSem))):=

append(VtSem, append(SNp, ONp))):=

leaves([ACC, RNoun])&

acc_sem(ACC, OIndex, OV, ONp)&

relativized_noun(RNoun, SIndex, SV, SNp).

%---

% Copl verb

copl(L, V, F):=

copl_p0(L, V, F).

copl(L, V, F):=

copl_p1(L, V, F).

%---

% Copl Verb

% p0: without a free gap

% p1: with one free gap

%

copl_p0(Label, V, F):=

v(t) &

copl_sem(cp_type(Label), V, F).

copl_p1(Label, V, F):=

project(v(t), [_]) &

copl_p1_sem(cp_type(Label), V, F).

%---

% copl_p1_sem/4

%

copl_p1_sem(Sem, V, F):=

p1_sem(n, Sem, V, F).

86

copl_p1_sem(Sem, V, F):=

p1_sem(l, Sem, V, F).

%---

%

copl_sem(subj:S & obj2:O & forms(F),

append(V1, V2),

append(append(F1, F2), F)) :=

leaves(per([NOM, LOC])) &

nom(Na)& loc(Lo)&

nom_sem(NOM&animate(Na), S, V1, F1) &

loc_sem(LOC&animate(Lo), O, V2, F2).

%---

% p1_sem/4

%

p1_sem(n, subj:S & forms(F),

V1,

append(F1, F)):=

leaves([NOM])&

nom(Na)&

nom_sem(NOM&animate(Na), S, V1, F1).

p1_sem(a, obj:O & forms(F),

V1,

append(F1, F)):=

leaves([ACC])&

acc(Aa)&

acc_sem(ACC&animate(Aa), O, V1, F1).

p1_sem(l, obj2:O & forms(F),

V1,

append(F1, F)):=

leaves([LOC])&

loc(Lo)&

loc_sem(LOC&animate(Lo), O, V1, F1).

/*

p1_sem(d, obj2:O & forms(F),

V1,

append(F1, F)):=

leaves([DAT])&

dat(Da)&

dat_sem(DAT&animate(Da), O, V1, F1).

*/

%---

%

v3(Label, V, F) :=

v3_p0(Label, V, F).

v3(Label, V, F) :=

v3_p2(Label, V, F).

87

v3(Label, V, F) :=

v3_p1(Label, V, F).

%---

%

v3_p0(Label, V, F):=

v(d) &

v3_sem(vd_type(Label), V, F).

v3_p1(Label, V, F):=

project(v(d), [_]) &

v3_p1_sem(vd_type(Label),V,F).

v3_p2(Label, V, F):=

project(v(d), [_,_]) &

v3_p2_sem(vd_type(Label),V,F).

%---

% v3_sem/2

% semantics for verbs which takes three complements

% ann: subject is animate, objects are not animated

%

v3_sem(subj:S & obj:O & obj2:O2 & forms(F),

append(V1, append(V2, V3)),

append(F1, append(F2, append(F3, F)))):=

leaves(per([NOM, ACC, DAT]))&

nom(Na) & acc(Aa) & loc(Da) &

nom_sem(NOM& animate(Na), S, V1, F1) &

acc_sem(ACC& animate(Aa), O, V2, F2) &

loc_sem(DAT& animate(Da), O2,V3, F3).

%---

% v3_p1_sem

%

% project dative

v3_p1_sem(subj:S & obj:O & forms(F),

append(V1, V2),

append(F1, append(F2, F))):=

leaves(per([NOM, ACC]))&

nom(Na) & acc(Aa) &

nom_sem(NOM& animate(Na), S, V1, F1) &

acc_sem(ACC& animate(Aa), O, V2, F2).

% project accusative

v3_p1_sem(subj:S & obj2:O & forms(F),

append(V1, V2),

append(F1, append(F2, F))):=

leaves(per([NOM, DAT]))&

nom(Na) & loc(Da) &

nom_sem(NOM& animate(Na), S, V1, F1) &

loc_sem(DAT& animate(Da), O, V2, F2).

% project nominative

88

v3_p1_sem(obj:S & obj2:O & forms(F),

append(V1, V2),

append(F1, append(F2, F))):=

leaves(per([ACC, DAT]))&

acc(Aa) & loc(Da) &

acc_sem(ACC&animate(Aa), S, V1, F1) &

loc_sem(DAT&animate(Da), O, V2, F2).

%---

%

v3_p2_sem(Vsem, V, F):=

p1_sem(_, Vsem, V, F).

%% the locative is relarivized

v2_nd_relative_sem(subj:S&obj2:O&forms(F),

O,

V2,

append(F2, append(F, F1))):=

leaves([NOM, LOC]) &

nom_sem(NOM, S, _V1, F1) &

relativized_noun(LOC, O, V2, F2).

%---

% Verb adnominal form

% the acc is relativized

% the nominative phrase is projected

v3_p1_relative_sem(a, obj:O & obj2:D & forms(F),

O,

V2,

append(F2, append(F, F1))):=

leaves([DAT, ACC]) &

dat_sem(DAT, D, _V1, F1) &

relativized_noun(ACC, O, V2, F2).

%---

% definition for relativized noun

%

relativized_noun(root_sem(vstore:S&vars(V)&forms(F)), S, V, F) := _.

%---

% definition for complements

%

nom_sem(nominative&root_sem(vstore:S&vars(V)&forms(F)), S, V, F):= _.

acc_sem(accusative&root_sem(vstore:S&vars(V)&forms(F)), S, V, F):= _.

dat_sem(dative&root_sem(vstore:S&vars(V)&forms(F)), S, V, F):= _.

loc_sem(locative&root_sem(vstore:S&vars(V)&forms(F)), S, V, F):= _.

%% File Name: interface.cuf

%% Yoshiko Fujinami

%===

89

% Interface

%

% c/3

% Def. for nouns

% c(+Flag, +Animate, +Label)

% Flag:: cn:common noun, n:noun

% Animate:: a: animate, n: not animate

%

%===

% Nouns

%

c(cn, n, Label):=

np &

np_semantics(cn_type(Label))&

animate(-).

c(cn, a, Label):=

np &

np_semantics(cn_type(Label))&

animate(+).

c(n, Label):=

np &

np_semantics(n_type(Label))&

animate(+).

%===

% Particle

%---

% Post Positional Particle

% c(+pp, +Case, +PForm)

% Case: one of gr_info

% PForm: one of pf_info

%

c(pp, Case, PForm):=

pp &

pp_semantics &

Case &

pform(PForm).

%---

% Adnominal Particle

% c(+ap, ApForm)

%

c(ap, AF):=

ap(AF) &

ap_semantics(AF) &

apform(AF).

%---

% Particle

% whichi is a complement of an adnominal particle

%

c(p2, _ApForm):=

90

root_syn(p2)&satured.

%===

% VERBS

% c(+Flag, +Label)

% Label:: the name of the verb

%

%---

% Intransitive Verb

%

c(v1_a, Label):=

nom(+)&

v1(Label, V, F) &

root_sem(vars(V)&forms(F)).

c(v1_relative, Label):=

v1_relative(Label, I, V, F)&

root_sem(vstore:I& vars(V)& forms(F)).

%---

% Transitive Verb Sentence Final Form

%

c(v2_ao, Label):=

nom(+)& acc(_) &

v2(Label, V, F) &

root_sem(vars(V)&forms(F)).

%---

% Transitive Verb Adnominal Form

%

c(v2_relative, Label):=

v2_relative(Label, I, V, F)&

root_sem(vstore:I& vars(V)& forms(F)).

%---

% Coplua verb

%

%---

% nominative is not animate

%

c(copl_nn, Label):=

nom(-)&loc(-) &

copl(Label, V, F) &

sent_final &

root_sem(vars(V)&forms(F)).

%---

% nominative is animate;

% dative is Not animate

c(copl_an, Label):=

nom(+)&loc(-) &

copl(Label, V, F)&

sent_final &

root_sem(vars(V)&forms(F)).

91

%---

% Ditransitive Verb

%

% nominative is animate;

% accusative and dative are Not

c(v3_ann, Label):=

nom(+) & acc(-) & loc(-) &

v3(Label, V, F) &

% sent_final &

root_sem(vars(V)&forms(F)).

% nominative is animate;

% others are any

c(v3_aoo, Label):=

nom(+) & acc(_) & loc(_) &

v3(Label, V, F)&

sent_final &

root_sem(vars(V)&forms(F)).

%===

% VERB adnominal form

%

% example "owatta"

c(cp_rel, Label):=

join_trees(adj, project(v(t), [_]))&

v2_nd_relative_sem(cp_type(Label), I, V, F) &

root_sem(vstore:I& vars(V)& forms(F)).

% example ".. to iu"

c(v3_p1_relative, Label):=

join_trees(adj, project(v(d), [_, _])) &

v3_p1_relative_sem(a, vd_type(Label), I, V, F)&

root_sem(vstore:I& vars(V)& forms(F)).

92

I Data

(s1) syupatsutiten ga sabaku no yoko ni aru
starting-point NOM desert NO next-to LOC there-is
\There is a starting point next to desert"

(s2) tsuirakugenba wa sinkouhoukou no migigawa ni mieru
clash-spot ACC heading-direction NO right LOC see
\See the clash spot on your right hand side"

(s3) atoti to iu tokoro no hidarigawa wo tooru
ruin DAT called place NO left ACC pass-by
\Pass by the left of place called ruin"

(s4) sogen mo sinkouhoukou no migigawa ni mieru
plain ACC heading-direction NO right-side LOC see
\See a plain on your right hand side"

(s5) atoti no kado wo magaru
ruin NO corner ACC turn-to
\Turn at the corner of the ruin"

(s6) tsukiatari no tokoro ni sogen ga aru
end NO place LOC plain NOM there-is
\There is a plain at the end of the road"

(s7) furo no hidarigawa wo tooru
bath NO left ACC pass-by
\Pass by the left of the bath"

(s8) furo wo migite ni miru
bath ACC right LOC see
\See a bath on your right"

(s9) yama no migite ni kamosika ga iru
mountain NO right LOC mountain-goat NOM is
\A mountain goat is on the right of the mountain"

(s10) gake no hidarigawa wo tooru
cli� NO left ACC pass-by
\Pass by the left of the cli�"

93

(s11) gake no sita ni seitetsujo ga aru
cli� NO bottom LOC iron-mill NOM there-is
\There is an iron mill at the bottom of the cli�"

(s12) seitetsujo to ki to no aida wo tooru
iron-mill TO tree TO NO gap ACC pass-through
\Pass through the gap between the iron mill and the tree"

(s13) hayasi no hidarigawa wo susumu
forest NO left ACC go
\Go by the left of the forest"

(s14) migigawa ni magaru
right LOC turn-to
\Turn to the right"

(s15) hatake ga kojo no ue ni aru
farm NOM factory NO upside LOC there-is
\There is a farm on the upside of a factory"

(s16) kyanpu no hidari no koya no hidari wo tooru
camp NO left NO cottage NO left ACC pass-by
\Pass by the left of a cottage on the left hand side of the camp"

(s17) mitisirube ga numa no migigawa ni aru
guide-board NOM bog NO right LOC there-is
\There is a guide-board on the right of a bog"

(s18) syupatsutiten ga hidarigawa no ue ni aru
starting-point NOM left NO upside LOC there-is
\There is a starting point on the upside of the left"

(s19) ginko ga migisita ni aru
bank NOM right-bottom LOC there-is
\There is a bank on the bottom right"

(s20) ginko no hidarisita made iku
ban NO left-down LOC go
\Go till the bottom left of the bank"

(s21) ginko no sita made iku
bank NO bottom LOC go
\Go till the bottom of the bank"

94

(s22) kawa ga migiue ni aru
river NOM right-upside LOC there-is
\there is a river on the upside of the right"

(s23) boti ga ginko to kawa to no aida ni aru
graveyard NOM bank TO river TO NO between LOC there-is
\There is a graveyard between a bank and a river"

(s24) boti to kawa no aida wo tooru
graveyard TO river NO between ACC pass
\ Pass between a graveyard and a river "

(s25) kawa no migi ni iru
river NO right LOC are
\You are on the right of a river"

(s26) hidarigawa ni kawa ga aru
left LOC river NOM there-is
\There is a river on the left"

(s27) kawa no ue wo iku
river NO upside ACC go
\Go on the upside of a river"

(s28) sabaku no sita made iku
desert NO bottom LOC go
\Go till the bottom of a desert"

(s29) e no hidarigawa wo iku
picture NO left ACC go
\Go on the left of the picture "

(s30) migigawa ni iku
right LOC go
\Go to the right"

(s31) syupatsutiten no migisita ni gake ga aru
start-point NO right-bottom LOC cli� NOM there-is
\There is a cli� on the right bottom of the starting point"

(s32) gake no sita ni seitetsujo ga aru
cli� NO bottom LOC iron-mill NOM there-is
\There is an iron mill on the bottom of a cli�"

95

(s33) seitetsujo no migi ni ki ga aru
iron-mill NO right LOC tree NOM there-is
\There is a tree on the right of an iron mill"

(s34) kojo no hidariue ni iku
factory NO left-upside LOC go
\Go to the upside left of a factory"

(s35) wan ga sita ni aru
bay NOM bottom LOC there-is
\There is an bay at the bottom"

(s36) syupatsutiten no sita ni sabaku ga aru
start-point NO bottom LOC desert NOM there-is
\There is a desert on the bottom of the start point"

(s37) bokugo no hidarisita ni tsuirakugenba ga aru
shelter NO bottom-left LOC clash-spot NOM there-is
\There is a clash spot on the bottom left of a shelter"

(s38) sabaku no hidarisita no haji ni iru
desert NO left-bottom NO edge LOC are
\You are at the edge on the left bottom of a desert"

(s39) atoti no ue wo tooru
ruin NO upside ACC pass
\Pass the upside of the ruin"

(s40) sogen ga yama no sita ni aru
plain NOM mountain NO bottom LOC there-is
\there is a plain on the bottom of the mountain"

(s41) yama ga atoti no migiue ni aru
mountain NOM ruin NO right-upside LOC there-is
\There is a plain on the right upside of a ruin"

(s42) mizutamari no ue ni yama ga aru
pond NO upside LOC mountain NOM there-is
\There is a mountain on the upside of a pond"

(s43) sogen no hidarigawa ni mizutamari ga aru
plain NO left LOC pond NOM there-is
\There is a pond on the left of a plain"

96

(s44) furo ga yama no hidarigawa ni aru
bath NOM mountain NO left LOC there-is
\There is a bath on the left of a mountain"

(s45) syupatsutiten no sita ni kyanpu ga aru
star-point NO bottom LOC camp NOM there-is
\There is a camp on the bottom of the start point"

(s46) koya no hidarigawa ni iku
cottage NO left LOC go
\Go to the left of a cottage"

(s47) kokuyurin ga haikyo no sita ni aru
forest NOM ruin NO bottom LOC there-is
\There is a forest on the bottom of a ruin"

(s48) haikyo no ue wo tooru
ruin NO upside ACC pass-by
\Pass by the upside of a ruin"

(s49) haikyo no hidariue ni iku
ruin NO left-upside LOC go
\Go to the upside of the left of the ruin"

(s50) bokujo ga kinenhi no sita ni aru
farm NOM monument NO bottom LOC there-is
\There is a farm on the bottom of a monument"

(s51) syupatsutiten ga hidari no ue no hou ni aru
start-point NOM left NO upside NO around LOC there-is
\There is a start point around the left upside"

(s52) kozan ga sita ni aru
mine NOM bottom LOC there-is

\There is a mine on the bottom"

(s53) kozan no sita made iku
mine NO bottom LOC go
\Go till the bottom of a mine "

(s54) ginko no atari made iku
bank NO somewhere LOC go

\Go till somewhere a bank exists"

97

(s55) danso no mannaka wo tooru
dislocation NO middle ACC pass-through
\Pass through the middle of a dislocation"

(s56) danso no hidariue wo tooru
dislocation NO left-upside ACC pass-by
\Pass by the left upside of a dislocation"

(s57) boti no sita ni hasira ga aru
graveyard NO bottom LOC pole there-is
\There is a pole on the bottom of a graveyard"

(s58) kanu ga kawa to apati no mannaka ni aru
canoe NOM river TO apache NO middle LOC there-is
\ There is a canoe in middle of a canoe and apache"

(s59) iwa no sita ni makiba ga aru
rock bottom LOC farm NOM there-is
\There is a pasture on the bottom of a rock"

(s60) ginko no hidarigawa wo tooru
bank NO left ACC pass-by
\Pass by the left of a bank"

(s61) ginko no sita wo tooru
bank NO bottom ACC pass-by
\Pass by the bottom of a bank"

(s62) haka no e ga owatta atari wo magaru
graveyard NO picture NOM end somewhere ACC turn
\Turn at somewhere the picture of a graveyard ends"

(s63) usi no sita wo tooru
cow NO bottom ACC pass-by
\Pass by the bottom of the cow"

(s64) makiba no yoko wo tooru
farm NO side ACC pass-by
\Pass by the side of the farm"

(s65) syupatsutiten ga hidariue no sunahama no tokoro ni aru
start-point NOM left-upside NO beach NO place LOC there-is
\There is a start point around the beach on the upside of the left"

98

(s66) kaigansen no tokoro wo iku
coast NO place ACC iku
\Go along the coast"

(s67) numa no sita no hou wo iku
swamp NO bottom NO around ACC go
\Go around the bottom of a swamp"

(s68) hidari no hou ni magaru
left NO toward LOC turn
\Turn toward left"

(s69) wan no tokoro wo sakeru
bay NO place ACC avoid
\Avoid the bay"

(s70) minka no yoko wo tooru
house NO side ACC pass-by
\Pass by the side of a house"

(s71) minka no hidari no tokoro wo tooru
house NO left NO place ACC pass-by
\Pass by the left of a house"

(s72) migi no hou ni iku
right NO toward LOC go
\Go toward right"

(s73) sita no hou ni iku
bottom NO toward LOC go

\Go toward the bottom"

(s74) gareki no sita no tokoro wo tooru
ruin NO bottom NO place ACC pass-by
\Pass by the bottom of the ruin"

(s75) denwa no sotogawa wo tooru
phone-booth NO outside ACC go
\Go outside of the phone booth"

(s76) denwa no migigawa wo tooru
phon-booth NO right ACC pass-by
\Pass by the right of the phon booth"

99

(s77) tizu no mannaka ni haikyo ga aru
map NO center LOC ruin NOM there-is
\There is a ruin in the center of the map"

(s78) mon no hidarigawa wo tooru
gate NO left ACC pass-by
\Pass by the left of the gate"

(s79) haikyo no migi made kuru
ruin NO right LOC come
\Come till the right of the ruin"

(s80) bokujo no ue no atari made kuru
farm NO upside NO somewhere LOC come
\Come till the upside of the farm"

(s81) haikyo no ue wo hidari ni iku
ruin NO upside ACC left LOC go
\Go to left at the upside of the ruin"

(s82) ki no migigawa ni mawaru
tree NO right LOC turn
\Turn to the right of the tree"

(s83) tenbodai ga hidariue no hou ni aru
observatory NOM left-upside NO around LOC there-is
\There is an observatory around the upside of the left"

(s84) kyanpu ga migisita no hou ni aru
camp NOM right-bottom NO toward LOC there-is
\There is a camp toward the bottom of the right"

(s85) kyanpu to taisho no iti ni gorira ga aru
camp TO opposite NO side LOC gorira NOMthere-is
\There is a gorira on the opposite side of the camp"

(s86) kyanpu no hidari wo tooru
camp NO left ACC pass-by
\Pass by the left of the camp "

(s87) hidarisita no hou ni magaru
left-bottom NO toward LOC turn
\Turn toward the bottom left"

100

(s88) kyanpu no yoko made kuru
camp NO next-to LOC come
\Come next to the camp"

(s89) tsuribasi no hou ni iku
bridge NO toward LOC go
\Go toward the bridge"

(s90) kyanpu no haji made iku
camp NO end LOC go
\Go till the end of the camp"

(s91) kyanpu no hidari wo tooru
camp NO left ACC pass-by
\Pass by the left of the camp"

(s92) kyanpu no sita made kuru
camp NO bottom LOC come
\Come till the bottom of the camp"

(s93) tizu no hidarigawa no hou ni susumu
map NO left NO toward LOC go
\Go toward the left of the map"

(s94) ginko no hidari wo mawaru
bank NO left ACC turn
\Turn at the left of the bank"

(s95) ginko to danso no mannaka made kuru
bank TO dislocation NO middle LOC come

\Come till the middle between the bank and the dislocation"

(s96) ue ni agaru
up LOC go
\Go up"

(s97) syupatsutiten ga sunahama no tokoro ni aru
start-point NOM beach NO place LOC there-is
\There is a start point at the beach"

(s98) syupatsutiten ga hidariue no hou ni aru
start-point NOM left-upside NO around LOC there-is
\There is a start point around the upside left"

101

(s99) kyoru ga sita no hou ni aru
dinosaur NOM bottom NO around LOC there-is

\There is a dinosaur around the bottom"

(s100) uti wo migigawa ni miru
house ACC right LOC see
\See a house on the right"

102

