
Investigation of Repository Reprecation Models in Globally Distributed
Configuration Management

Kazuhiro Fujieda
Japan Advanced Institute of Science and Technology
1-1 Asahidai, Tatsunokuchi, Nomi, Ishikawa, Japan

{fujieda,ochimizu}@jaist.ac.jp

Koichiro Ochimizu

Abstract

The replication of repositories is an important mecha-
nism for the distributed configuration management in open
source software development (OSSD) projects. There are
various styles of replication taken place in OSSD projects.
On investigation we found tools or systems supporting them
should have the following functions : partial replication,
both of pull and push model in change propagation, and
condensation of successive versions into one version. This
paper proposes a primitive tool grafting version trees be-
tween repositories to satisfy these requirements. This tool
will become the basis of the environment to support various
styles of repository replication.

1. Introduction

Open source software development (OSSD) projects are
typical cases of global software development. Most of all
such projects use CVS [2] for their software configuration
management. CVS allows developers to access its reposi-
tory via the Internet. It doesn’t provide file locking. Devel-
opers can check out the same part of the repository, work
on it concurrently, then resolve inconsistency in their work.
This style of development can decrease the cost of negotia-
tion among developers separate globally and has supported
the rapid evolution of open source software.

CVS, however, provides only a single repository model.
It leads two problems. 1) It requires a server connected to
the Internet with wide bandwidth and an organization main-
taining it. 2) It coerces a single set of management poli-
cies of the repository. Such a set includes how to give the
write permission to developers, how to commit changes to
the repository, how to use branches, and so on. You can see
examples of such policies in [5] [7] [6]. The former problem
can be solved by hosting services typical of SourceForge1,

1http://sourceforge.net/

The latter problem can decrease concurrency of the work.

Developers or teams in one project sometime need to
proceed their work to a considerable extent separately with
the overall project. Although they need configuration man-
agement in this case, they can’t use the project’s repository
unless their work meets management policy in the project.

If it doesn’t meets the policy and they think the nego-
tiation with other members troublesome, they often create
full or partial replicas from the repository. They will work
on the replicas inconsistently with the original, and incor-
porate the changes of other members in the original spo-
radically. Then they will propagate their own changes from
their replicas to the original according to the project’s poli-
cies. This style of development with replicas can augment
concurrency of their work.

The repository replication is often taken place because of
network bandwidth or server resources. CVS allows read-
only access to a repository by anonymous users. The server
hosting it can have too heavy load to trouble developer’s
work. In this case, developers like to separate repositories
for them and read-only access with replication. They also
like to settle replicas in their local hosts when they have
only sporadic or narrow connectivity to the server.

Although repository replication is important in OSSD
projects, CVS doesn’t support it at all. Developers cre-
ate replicas by the supplementary tool named CVSup [3]
or by hand. CVSup support only one-way mirror natu-
rally, so it can’t fully support their own work on replicas.
There are two configuration management systems support-
ing the replication: BitKeeper [1] and ClearCase Multi-
site [4]. Each of them supports one style of development
with replicas. These styles can’t necessarily cover various
styles of development with replicas taken place in OSSD
projects.

In this paper, we first investigate these styles of develop-
ment with replicas, then discuss problems in the above two
configuration management systems. Finally, we will show
the design of the replication tool as a supplement to CVS.



Original

1.1

1.2

1.3

1.4

1.5

1.6

Replica

1.1

1.2

1.3

1.3.2.1

1.3.2.2

1.4

1.5

1.3.2.3

1.3.2.3

2.
3

1

4

5

Figure 1. Basic scenario of replication and
change propagation.

2. Replication Models in OSSD

2.1. Basic Scenario

We present the basic scenario of replication and change
propagation really taken place in OSSD projects with CVS
and CVSup. Figure 1 illustrates this scenario.

1. Create a replica.

A developer create a replica from a repository by hand
or CVSup. He/she often create it from part of files
and/or part of versions in the original to save costs of
network bandwidth and storage.

2. Create a branch in the replica.

Branches are traditionally used in version control sys-
tems to isolate changes from the main line of develop-
ment. Although he/she work on the replica, a branch is
necessary to easily incorporate changes from the orig-
inal.

3. Work on the branch.

He/she adds his/her own changes to the branch in the
replica.

4. Pull changes from the original and merge them into the
replica.

He/she sporadically pulls changes from the original
and add them to the trunk in the replica. CVSup can
support this operation as long as the version number
of the branch doesn’t crash any branch in the original.
He/she merges them into his or her branch after that if
necessary.

When he/she can’t use CVSup, he/she doesn’t repro-
duce the version history in the original. He/she add
one version including all changes in the history by
hand. Such condensation of versions is often taken
place intentionally when he/she doesn’t need interme-
diate changes between specific versions, for example,
stable or snapshot releases.

5. Push changes from the replica to the original.

If necessary, he/she negotiates with other members
about merging his/her changes into the original. If the
negotiation succeeded, he/she adds one change con-
densed from his/her changes to the trunk in the orig-
inal. In most cases, there is no need to reproduce
the branch in the original because such branch rarely
meets the management policy of the original. Even
though he/she want to do so, it is hard because there is
no tool supporting it.

ClearCase MultiSite can’t support this scenario at all. It
performs automatic change propagation in the push model
to keep consistency between the original and replicas. It
can’t help policy separation, but solve the problem about
network resources. BitKeeper and CVS with CVSup can’t
support this style of replication.

BitKeeper naturally performs this scenario. Developers
must create replicas when they intend to make any change
in a repository. They don’t need to create branches on
their replicas at the step 2. BitKeeper automatically cre-
ates branches and merges the trunks into them at the step 4.
Additionally it makes version trees consistent between the
replica and the original at the step 5.

2.2. Advanced Scenario

BitKeeper can work on the above basic scenario. But it
always replicates all files in a repository and synchronize all
files between a replica and its original. So it can’t support
some styles of repository replication in OSSD.

When a development project use outcome of another on-
going project, it is desirable its repository contains the full
or partial replica of another repository. For example, Cyg-
win project2 uses a part of outcome by Mingw project3. Its
repository contains the partial replica of the repository of
Mingw project (Figure 3).

A project depends on outcome of multiple ongoing
projects, its repository can be composed full or partial
replica of the repositories of these projects. For exam-
ple, KAME Project4 depends on FreeBSD, NetBSD and
OpenBSD. Its repository contains partial replicas of the
repositories of those projects.

2http://www.cygwin.com/
3http://www.migw.com/
4http://www.kame.net/



Cygwin Project

Mingw Project

utils testsuite w32apicygwin

utils msys runtimew32api

Figure 2. An example of partial replica

KAME Project

freebsdkame netbsd

FreeBSD

NetBSD

OpenBSD

openbsd

Figure 3. An example of multiple parents

3. Our Approach

On the above investigation, A tool or a configuration
management system needs the following functions to cover
various style of development with repository replication.

• Partial replication in files and versions.

• Both of push and pull models to propagate changes in
both directions between a replica and its original.

• Condensation of several changes into one change on
propagating changes.

We believe it isn’t proper solution to realize a configuration
management system supporting all of the above functions.
Developers working on replicas need a specific style such as
provided by BitKeeper and ClearCase MultiSite to handle
them without confusion.

Our approach is rather simple. We will provide a supple-
ment tool grafting version trees from a repository to another
for CVS. At first, it obtains a part of version trees from the
source repository, then store them to destination repository
or grafts them on existing trees in it. It records how version
trees are transmitted between repositories. At the next time,
it grafts growing part of the trees in the source onto the cor-
responding trees in the destination. This tool is a primitive

to realize a style specific to a replica or a project. CVS sup-
ports some triggers to invoke other tools on specific timing.
We estimate the combination of these triggers and our tool
can realize various styles.

4. Conclusion and Future Work

OSSD projects need a tool supporting various styles of
repository replication. We proposed a tool grafting ver-
sion trees between repositories as a primitive to cover these
styles. Now we are implementing it in the object-oriented
scripting language ‘Ruby’. We will provide the environ-
ment allowing users to write their own style of replication
in Ruby and automate their work with their replica to some
extent.

References

[1] BitMover, Inc. BitKeeper - the scalable distributed software
configuration management system. www.bitkeeper.
com, 2002.

[2] K. Fogel. Open Source Development with CVS. CoriolisOpen
Press, 1999.

[3] J. D. Polstra. CVSup: The CVS-optimized general-purpose
network file distribution system. Available at http://www.
cvsup.org/, 2002.

[4] Rational Software Corporation. Administrator’s Guide for
Rational ClearCase MultiSite, Oct 2001.

[5] The Apache Software Foundation. Apache project guidelines
and voting rules. http://httpd.apache.org/dev/
guidelines.html, 2002.

[6] The FreeBSD Documentation Project. Committer
guide. http://www.freebsd.org/doc/en_
US.ISO8859-1/articles/committers-guide/,
Feb 2003.

[7] The Mozilla Organization. Mozilla hacking in a nutshell.
http://www.mozilla.org/hacking/, Feb 2003.


