[1216€]
Computational Complexity

and
Discrete Mathematics

Ryuhei Uehara, and Eiichiro Fujisaki

Japan Advanced Institute of Science and Technology

November 20th, 2017.

Eiichiro Fujisaki (JAIST) Comp. Complexity and Discrete Math. Nov. 20th, 2017



1216e (Computational Complexity and Discrete Math):

Discrete Math

e URL: http://www. jaist.ac.jp/~fujisaki/index-e.html
e Date: 11/6, 11/8, 11/13, 11/15, 11/20 (twice), 11/22, 11/27 (test)
@ Room: Room I-2
o Office Hour: Monday 13:30 — 15:10
o Reference (%)
o NEMm, ARMIHERE, HiEHE.
o “Abstract Algebra,” David Dummit and Richard Foote, Prentice Hall.
o REAAFM, IAE,
Free eBook URL:
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/TEACH/
e "A Computational Introduction to Number Theory and Algebra,”

Victor Shoup, Cambridge University Press.
Free eBook URL: http://www.shoup.net/ntb/

Eiichiro Fujisaki (JAIST) Comp. Complexity and Discrete Math. Nov. 20th, 2017 2 /60


http://www.jaist.ac.jp/~fujisaki/index-e.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/TEACH/
http://www.shoup.net/ntb/

What will you study in the part of Discrete Math.?

From Algebra (fi5fU2X)
@ Axioms of Groups (#f), Rings (¥%), Fields ({4)
e Equvalent class ([FIfiEi%H)
o Equivalent relation ([FIfER4$%), Congruence (£1Al)
e Lagrange's Theorem (7 7' 7 v ¥ = DEHE)
o Lagrange's Theorem — Fermat’s little Theorem, and Euler's Theorem
@ Fundamental Homomorphism Theorem(s) (¥#[F] Y& #H)
o Normal subgroup (IE#LEZTHE), Residue class group (RIRERE) (=
Quotient group (Fi#f))
e Fundamental Homomorphism Theorem — Chinese Reminder Theorem
(CRT).
@ Ring Fundamental Homomorphism Theorem (& [H] 7 Bl )
o ldeal; Ideal (for ring) <= Normal subgroup (for group).
o Residue class ring (FIREER) (= Quotient ring (FiER))
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What will you study (cont.)

Number Theory (#5555 5m)

o Generalization of Integers (Informal)

o Integral Domain (#1%): Euclidean domain (2 —7 V) v F#&),
Principal ideal domain (PID) (HLH{A 7 7 )L H&8K), Unique factorization
domain (UFD) (— =/ fifHEN).

e Euclidean domain C PID C UFD.

@ Extended Euclidean Algorithm (#A5R2—72 V v F D HFRik)

e Solution for:

o linear Diophantine equation (—X7 4 % 7 7 v b A /iR, and

e computing the inverse of an (invertible) element in (residue class) ring
Z/nZ.

Application: RSA public-key cryptosystem. Related to:
e Euler's totient function ¢(n), Euler's Theorem
e Structure of Z/nZ

@ Chinese Remainder Theorem
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Today's Contents

© Normal Subgroup (IEHLERST#) and Residue Class Group (FIAEHRAF)
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How to Define Binary Operation on Quotient Set?

Let H be a subgroup of (G, o). Define a new operation x on G/H as
follows:

aH « bH £ {(ao h;) o (bo h))|h;, hj € H}.
We want * to be a binary operation. So, we want to hold

cH = aH x bH

for some ¢ € G. However, it is not the case (for arbitrary group G and
subgroup H).
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Normal Subgroup (IERLEBITHE)

Definition 1 (Normal Subgroup)

Let H be a subgroup of G. We say that H is a normal subgroup of G if for
all a € G, it holds that
aH = Ha.

We often write H <1 G to denote that H is a normal subgroup of G.

By definition, left coset (Z=%5x#4H) aH and right coset (i %#%) Ha are
the same subset of G if H is a normal subgroup. Hence, G/H and G\H
are the same partition of G.

More importantly, it holds that (proven later)

aH x bH = (ao b)H,

and hence, x is a binary operation!
[Note] We often write a normal subgroup as N (instead of H) and often abusely
use o as x on G/H.
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Property of Normal Subgroup (1)

Let NV be a subgroup of G. Then, all the following conditions are
equivalent:

N is a normal subgroup of G.
For all a € G, aN = Na.

For all ae G, aN C Na.

For all a € G, Na C aNN.
Forallae G, N =aNa"l.
Forallae G, N C aNa™'.
Forae G, aNa—!' C N.

000000
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Property of Normal Subgroup (2)

Show that if aN = Na for all a € G, then N = aNa1.

e Vne N,3an" e N,

1 1

n= (aoa_l)ono(aoa_l) = gonoa loaoa ! = aonoa ! € aNa™l.

Hence, N C aNa~!
e Vne N,3n" e N,

1 1

aonoa t=nocacat=neN.

Hence, aNa—1 c N.
Therefore, it holds N = aNa~1. ]

Try to prove all the remaining directions by yourself.
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Residue Class Group (FIRERE)

Let N be a normal subgroup of G. Then G/N = G\N, because aN = Na
for all a € G. We say that aN(= Na) is a coset or residue class of G.

G/N(= G\N) is a group, which is called a residue class group.

See * is a binary operation on G/H. Indeed, aN * bN turns out (a o b)N as follows:
® Vh W € N,3he N,

(aoh)o(boh/):ao(hob)oh':ao(boﬁ)oh'6(aob)N.

Hence, aN x bN C (ao b)N.

(aob)N =ao(bN)=aoeobN C aN * bN
Hence, (a0 b)N C alN x bNN.

Therefore, aN x bN = (ao b)N.
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Proof of Theorem 2.

G/H(= G\H) is a group, because:
@ Gp: * is a binary operation on G/N. (Already shown!)
e Gi: The associative law (i &#EHI) holds. (Omit)
@ Gp: eN is the identity of G/N, because

aN xeN = (aoce)N = aN
@ Gs: The inverse of aN is a 1N, because

aNxa N =(aca !)N=eN

Prove by yourself that the associative law holds.

Nov. 20th, 2017
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The Integers Modulo n: Z/nZ, again

As a residue class group: (Z/nZ,+).

e Binary operation, addition “+", on Z/nZ:
(a+nZ)+ (b+nZ) 2 {a+a+ b+ B|a,B € nZ},

@ (Z/nZ,+) is an additive group. So, nZ is a normal subgroup of Z.
e Hence, (a+ nZ) + (b+ nZ) = (a+ b) + nZ.
e Note: (a+ b) + nZ = (a+ b mod n) + nZ.

As a partition of Z: Z/nZ = {a+ nZ}czn where Zn = {0,1,...,n—1} is
called a complete system of representatives (for the coset of nZ in Z,) (58

SRFER).
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Today's Contents

© Group Homomorphism (##E[AY) and Group Isomorphism (Ff[FI%)
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Group Homomorphism (Ff#E[w] /)

Let (G, o) and (G’,) be groups. Let f : G — G’ be a map from G to G'.
Let e, e’ be the identities of G, G’, respectively.

Definition 2 (Homomorphism (#E[FHI5 (%))

We say that f : G — G’ is homomorphic if for all x,y € G, it holds that
flxoy)=f(x)-f(y).
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Property of Group Homomorphism

Proposition 1

Let e and €’ be the identities of G and G’, respectively. If f : G — G’ is
homomorphic, then f(e) = ¢’

Proposition 2

| A\,

If f: G — G’ is homomorphic, then for all x € G, it holds that
f(x71)=f(x)~ L

| N\

Proposition 3

If f: G — G’ is homomorphic, then Im(f) is a subgroup of G’.
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Proofs

Proof of Propostion 1.
Since eo e = e and f is homomorphic, f(e) = f(eoe) = f(e) - f(e). Act
f(e)™* on the both sides, then &' = f(e). O

| A\

Proof of Proposition 2.

By definition, x o x1 = e for all x € G. Hence,

f(xox™1) = f(x)- f(x~1) = f(e) = €. Then act f(x)~"' from the left on
the both sides of f(x)- f(x~!) = €. Then, we have f(x~ 1) = f(x)"}. [

Proof of Proposition 3.
Omit. Prove by yourself.
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Group Isomorphism (H£D[F])

Let (G,0) and (G’,-) be groups.

Definition 3 (Isomorphism Map ([AIZ544))

f: G — G'is isomorphicif f: G — G’ is bijective and homomorphic.
Then, we say that G and G’ are isomorphic, denote by G = G'.

Definition 4 (Kernel (£%

Let Ker(f) £ {x € G| f(x) = ¢ € G'}, which is called the kernel of f.

Proposition 4

A homomorphism map f : G — G’ is isomorphic if Im(f) = G’ and

Ker(f) = {e}.
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Proof of Proposition 4

It surfices to show that homomorphic f is bijective. f is surjective because
of Im(f) = G’. f is injective if

\V/X1, Xy € G (f(Xl) = f(XQ) — X1 = X2>

which can be shown as follows: By f being homomorphic and the fact that
f(x~1) = f(x)~!, the above condition is equivalent to

VXl,XQ eG <f(X1 OX271 = ¢ — X1 OX271 :e)l
This implies that (let x; = x and x; = e)
Vx € G (f(x):e' — x:e)

This condition is equivalent to Ker(f) = {e}.
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Today's Contents

© Fundamental Homomorphism Theorem (o HE[FI 7 )
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Fundamental Homomorphism Theorem (#f o ¥#E ] 12 Bil )

Theorem 3 (Fundamental Homomorphism Theorem)

Let f : G — G’ be a homomorphism map from group G to group G'.
Then, all the followings hold.

@ Im(f) is a subgroup of G'.
@ Ker(f) is a normal subgroup of G.

© f: xoKer(f) € G/ker(f) — f(x) € G" is homomorphic, and it holds
that

G /Ker(f) = Im(f)
In particular, when Im(f) = G’ (surjective), G/Ker(f) = G'.
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@ Im(f) is a subgroup of G'. Omit.

@ Ker(f) is a normal subgroup of G, because: For all a € G, all
x € Ker(f),

flaoxoa™)=f(a) f(x)-f(a~}) = f(a) € fla) ' = ¢

Hence, for all a € G, it holds that a o Ker(f) o a~! C Ker(f). This
implies that Ker(f) is a normal subgroup of G.

© Go to next page.
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Proof (Cont.)

Since N := Ker(f) is a normal subgroup,
f:xNeG/Nw— f(x)e G

is homomorphic, because

F((xN) o (yN)) = f((x o y)N) = f(x o y) = f(x) - ().

Think of f(xN) = f(yN) & f(x) = f(y) & f(xoy ) =¢ <
xoy~te N(:=Ker(f)) & x € yN & xN = yN. Hence,

F(XN) = f(yN) = xN = yN,

which means f is injective and hence, G/Ker(f) = Im(f). In particular if
Im(f) = G’, then G/Ker(f) = G'. Quod erat demonstrandum (Q.E.D.)
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Direct Product of Groups (HfD &)

Let (Gi1,-1),...,(Gn,n) be groups. Define the direct product of
Gl, ey GQ as

Gy x - X Gy ={(x1,...,xn) | x1 € G1,...,%n € Gp}.
Define a binary operation o on G; X -+ X G, as
(X1y s Xn) 0 (X1, s X0) 2 (XL 1 Xy s Xn o XL

Then, Gy X --- X G, turns out a group (under binary operation o).
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Applications (1)

In general, it is not easy to show two groups are isomorphic. The Fundamental
Homomorphism Theorem is a very useful tool for investigating such problems.

e From a map x € Z+— i* € C*(= C — {0}), it is shown that
Z)47 = (i),

where Z /47 is an additive group under +. Generally speaking, if the
order of a is n where a is an element in some group,

Z/n7 = (a).
@ By x — €™, define a map from (R, +) to (C*,-).

R/Z=T:={zeC"||z| =1}.
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Applications (2)

@ Let M,(R) be the set of n x n matrices whose entries are real
numbers. Let GL,(R) = {A € M,(R) | det(A) # 0}, and
SL,(R) = {A € M,(R) | det(A) = 1}.

By det : M,(R) — R*, it holds that

GL,(R)/SL,(R) = R*.
@ Define a map from (Z,+) to (Z/piZ,+) as
x +— (x mod p;) + piZ.

Let n=n1-ny---ny, where ny,...,n; are relatively prime to the
others. Then, it holds that

Z/nZ = 7)mZ X L]/ mZ X -+ X L/ nZ,

where Z/nZ,7Z/mZ, ... ,7Z/nyZ are additive groups under +.
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@ !deal (£ 77 V) and Residue Class Ring (FIA%EHIR)
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Reminder: Ring (¥%)

Definition 5 (Axiom of Ring)

A ring (R,+,) is called a ring if R is a set with two binary operations, +
and -, on R, and satisfies the following axioms:
@ Ri: (R,+) is an Abelian group (or an additive group).

@ Ry: (R,-) is a sem-group with the multiplicative identity 1 (i.e., a
monoid).

e Rj3 [Distributive]: For all a, b, c € R, the following holds:

(a+b)-c=(a-c)+(b-c)anda-(b+c)=(a-b)+(a-c)

Conventions:
@ (+,) are often called addition (J¥%) and multiplication (&%), respectively.
@ Denote by 0 the identiy of (R, +), the additive identity.
@ Denote by 1 the identity of (R, ), the multiplicative identity.
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Reminder: Commutative Ring (FJ#E)

Definition 6

A ring (R, +,") is called commutative if (R, -) is commutative, i.e.,

Va,be G [a-b=b-a|

For commutative ring (R, +, ), the distibuted law R3 (Z7HCiZH) is
simplified as

Va,b,ce R [(a+b)-c=(a-c)+(b-c)]
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Property of Ring

Let (R,+,-) be a ring and 0 denotes the identity of (R, +).

Proposition 5
Fro all r € R, it holds that

Forallae R, a+0=a. Hence, r-(a4+0)=r-a+r-0and
r-(a+0)=r-a, which implies r-a+r-0=r-a. By adding —(r-a) in
both sides, we have r-0 = 0. Similarly, by 0 + a = a, we have 0 - r = 0.
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Ideal (£ 7 7 V)

Definition 7 (£ 7 7 V)

A subset | of ring (R,+,") is called a left ideal (/A 7 7 V) if it satisfies
(1) and (2), a right ideal (£i4 7 7 V) if it does (1) and (3), or a
(two-sided) ideal ((Mifll) £ 77 V) if it does (1), (2), and (3).

@ (/,+) is a subgroup of (R,+).

Q@ reR xel = r-xel.

Q@ reR xel = x-rel.

@ If R is a commutative ring, then any left or right ideal of R is trivially a two-sided
ideal.

@ nZ is an ideal of ring Z, because

e (nZ,+) is a subgroup of (Z,+) and for any a € Z and x € nZ, it holds
that a-x =x-a € nZ.

@ {0} and R are always two-sided ideals of any ring R.
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Subring (HB7ER)

Definition 8 (Subring (#775R))

Let S be a subset of ring (R, +, ). S is called a subring of R if the
follwing conditions hold:

e (S,+) is a subgroup of (R,+),
@ - is a binary operationon S, ie.,, a,b€eS = a-be S, and
elesS.

@ If (two-sided) ideal / is a subring of R, then | = R, because 1 € /.
e For instance, ideal nZ.
Z,Q,R, and C (Z C Q C R C C) are all subrings of C.
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Define Multiplication on R//

Let / be a left (or right) ideal of R. Then (/,+) is a normal subgroup of
(R,+), because (R, +) is an additive group. So, R/l is a residue class
group, where r + 1 2 {r+i|i €1} (r € R) is a coset (or a residue class).
Define a multiplication operation - on R/I as

(r+1)-(s+1)&{(r+i)-(s+i)|i,i" €l}.
We want to hold for all r;s € R, there is t € R such that
(r+1)-(s+1)=t+1,

which implies o is a binary operation on R/I.
If [ is a two-sided ideal of R, then we indeed have

(r+1)-(s+1)=(r-s)+1.
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Residue Class Ring (FlIEER)

Theorem 4 (Residue Class Ring (FI/RJHER))

Let / be an ideal of ring (R, +, ). Since (R, +) is a normal subgroup of
(I,+), R/l is a residue class group. Define the multiplication on R// as

(r+0)-(s+)E{(r+i)-(s+i)|i,i"€l}.

Then, it holds (r+1)-(s+/)=r-s+ 1, and R/l is a ring, called a
residue class ring (BIARHEHIR).

@ The addition on R/ is defined as

(r+D+(+DE{r+D)+(s+i)]i,i" €1},

anditholds (r+ 1)+ (s+1)=(r+s)+1.

@ If R is commutative, then R// is also commutative.
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The Integers Modulo n: Z/nZ, again and again

As a residue class ring (Z/nZ,+, -).

@ Binary operation, addition “+", on Z/nZ:
(a+nZ)+ (b+nZ) & {a+a+ b+ B|a,B € nZ},
which results in (a+ nZ) + (b+ nZ) = (a+ b) + nZ, because nZ < Z.
e Note: (a+ b) + nZ = (a+ b mod n) + nZ.
@ Binary operation, multiplication *.", on Z/nZ:
(a+nZ)-(b+nZ)2 {(a+a)-(b+5)|o,f € nZ},

which results in (a+ nZ) - (b+ nZ) = (a- b) + nZ, since nZ is an ideal.
o Note: (a-b)+ nZ = (a- b mod n) + nZ.
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Ring Product

Let Ry,..., R, be rings. Define the product of them as
Ry x -+ xRy ={(xt,...,xn)|x1 € Ri,...,xn € Ry}

Define binary operations on it as

(1>

(X1, s xn) + (X, X)) = O+ X1,y Xn + X))

(X153 Xn) - (XL ey X0) 2 (X1 XYy ey X XD)

Then it is a ring.

The zero element 0 in Ry X --- x Ry is (Og,,...,0r,). If each ring, R;, has
1;, The product also has 1, which is (1g,, ..., 1g,).
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Properties of Ring Product

Proposition 6

(Rix - X Rp)* =R x- xRS

n-

Generally, for monoid G, ..., Gy, (G1 X -+ X Gp)* = G X --+ X G,

Proposition 7

If R= Ry X -+ X Ry, then R* = R x --- x RY.

Show R* = (Ry x -+ X R;)*. Then it holds by Proposition (6).

Proposition 8

(OR,,...,Ri,...,0g,) is an ideal in product ring (Ry X --- X Rp).

Even for non-commutative Ry, --- , Ry, (Or,,...,Ri,...,0g,) is a
(two-sided) ideal.
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Today's Contents

© Fundamental Ring Homomorphism Theorem (B [r] ¢ #)
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Ring Homomorphism (B# o #E[F] )

Let R and R’ be rings with multicative identities, 1 and 1/, respectively.
Let f : R — R’ be a map from R to R’.

Definition 9 (Ring Homomorphism)

for all x,y € R, if
fix+y)=f(x)+1f(y), flx-y)="Ff(x) f(y), and f(1) =1,

then f is called a ring homomorphism map. In particular, f is called an
isomorphism map ([FRIZ54R) if it is bijective. If f : R — R’ is isomorphic,
we say that R, R’ are isomorphic, denote by R = R’.

@ NOTE: It is not led by the first two equations that (1) = 1’. Hence needed.
@ Im(f) = {f(x)|x € R} is the image of f.
@ Ker(f) ={x € R|f(x) =0" € R’} is the kernel of f.
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Fundamental Ring Homomorphism Theorem (¥% ¥ [H] Y
E )

Theorem 5 (Fundamental Ring Homomorphism Theorem)
Let f : R — R’ be ring homomorphic. Then,
O Im(f) = {f(x)|x € R} is a subring of R'.
Q Ker(f) ={x e R|f(x) =0 € R'} is a (two-sided) ideal of R.

© f: x+Ker(f) € R/ker(f) — f(x) € R’ is ring homomorphic and it
holds that

R/Ker(f) = Im(f).
If Im(f) = R’ (4251), then G /Ker(f) = R'.
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Let n = p1--- py, where py ... py are relatively prime.
For Z/nZ, Z/mZ, ..., Z/piZ, by Fundamental Homomorphism Theorem
and Proposition 7,

Z/nZ
(Z/nZ)*

Z/p1Z X e X Z/ng
(Z/PZ)* % - x (Z/piZ)"

12

Therefore, for

x € (Z/nZ)* < (x1,....x) € (Z/p1Z)* x -+ x (Z/pyZ)*
and
y €(Z/nZ)* < (W1,---,ye) € (Z/pZ)* x -+ x (Z/pe) ™,

it holds that
Xy (X1 Y1,y X0 Vi)
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@ Chinese Remainder Theorem (H[E A D438 #H)
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Reminder: Chinese Remainder Theorem (H'[E A DRI E

)

e In Sunzi Suanjing ( "R T-H#%) ): What is that integer when divided
by 3 is remainder 2; divided by 5 is remainder 3; and divided by 7 is

remainder 2.
x =2mod 3
x =3 modbH
x=2mod7

@ For n= pipo--- px (such that for every p;, p;j (i # j), (pi, pj) = 1),
it holds

Z/nZ =2 7L)pZ X - X L/pxZ.  (isomorphism)
The CRT gives the concrete map .
U L/piZ X - X L] pxle — L] nZ.
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CRT

Thanks to Fundamental Ring Homomorphism theorem, we can show

7,)105Z = 7,/37 x /57 x 7./ TZ.
o Define f: Z — Z/37Z x Z/5Z x Z/TZ as

F(x) = (s, [xls, 7).

where [x], £ x + nZ.
@ Show f is ring homomorphic.

e Show Im(f) =Z/37Z x Z/5Z x Z/TZ and Ker(f) = 105Z
(1056=3-5-7).
@ Then, the above holds.
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For n = p1 - po--- py such that each p; is relatively prime, let x1,..., x¢ be
integers such that

n n n
—Xx1t+ —xe+-+—xe=1 (1)
p1 P2 Pe

In general, for any a1, ..., a, € Z such that (ai,...,a,) = 1, the following

equation has a solution of integers,
X1+ -+ aX,=1.

Since each pj is relatively prime, it holds that (p—”l, cel P—”E) =1 and hence,
there are x1,...,x¢ € Z, satisfying (1).
Then, f1:Z/m7Z x --- x Z/nyZ — 7./ nZ is led by

-1 n n n
(X1, xe) =x1—x1 +Xx0—x2+ - + Xp—X¢-
p1 P2 Pt
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Solution (Cont.)

f~1 is indeed the inverse map of f.

5
X €Z/nZ (X1y...yx¢) EZ/P1Z X -+ X L] peZ

F1
—

It can be shown as follows: Since

n n . .
—xi=1 (mod p;), —x; =0 (mod p;) (j#1i),
Pi Pj
it holds that

n n n
Xi=x1—X1+ -+ Xi—Xi+- -+ xa—xe (mod p;)
P1 Pi Pe

Therefore, for x = le%xl + sz—’;xg 4+ x,-ﬁx,' 4+ 4 X,,ﬁxg, it holds
that f(x) = ([x1]ps,- - - [Xelpy)-
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Solution of Sunzi Suanjing

Let f:Z/105Z — 7. /37 x 7Z./5Z x Z/TZ be a canonical isomorphism
map. Then, f~1is shown as

fﬁl(X3,X5,X7) = [—35X3 + 21x5 + 15x7 105’

where we use 35 (—1)+21-1+4+15-1=1.
Since x3 =2, x5 = 3, x7 = 2,

f71(2,3,2) = [23]105 = 23 + 105Z.

46 / 60
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Extension

Let X be an integer such that divided by 3 is remainder 2; divided by 5 is
remainder 3; divided by 7 is remainder 2. Let Y be an integer such that
divided by 3 is remainder 1; divided by 5 is remainder 2; divided by 7 is
remainder 5. Then, what is XY mod 105 ?
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Extension

Let X be an integer such that divided by 3 is remainder 2; divided by 5 is
remainder 3; divided by 7 is remainder 2. Let Y be an integer such that
divided by 3 is remainder 1; divided by 5 is remainder 2; divided by 7 is
remainder 5. Then, what is XY mod 105 ?

By Fundamental Ring Homomorphism Theorem, it can be easily
computed.
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Extension

Let X be an integer such that divided by 3 is remainder 2; divided by 5 is
remainder 3; divided by 7 is remainder 2. Let Y be an integer such that
divided by 3 is remainder 1; divided by 5 is remainder 2; divided by 7 is
remainder 5. Then, what is XY mod 105 ?

By Fundamental Ring Homomorphism Theorem, it can be easily
computed.

(2-1mod3)-(—35)+(3-2mod5)-21+(2-5mod 7)-15
=2.(-35)+1-21+3 15 = —4.

The answer is [—4]105 = [101]105.
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Today's Contents

@ Extended Euclidean Algorithm (JEiR1— 27V v F D EFRIE)
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Euclidean Algorithm (22— 2V v F DA FRIE)

The Euclidean Algorithm is a famous algorithm that takes a, b € N as
input, and outputs (a, b). For all k € Z such that a — kb > 0, it holds that
(a, b) = (a — kb, b).

By definition, it is obvious that (a, b) = (b, a).

Euclidean Algorithm:
o (Step 0) Take (a,b) (a > b).
o (Step 1) Set (a, b) := (b, a mod b).
o (Step 2) By iterating Stepl, a, b go smaller.
o (Step 3) Finally when it goes to (d,0), output d, which is (a, b).

Eiichiro Fujisaki (JAIST)
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Extended Euclidean Algorithm

It solves aX + bY = d for a, b € N. There are solution (X, Y) € Z? if and
only if d = (a, b).

Extended Euclidean Algorithm

(Step 0) Take (a,b) (a > b) as input. Set (ao, bo) := (a, b) and i := 0.

(Step 1) Set (X;, Yi) = (1,0) and (X/, Y/) = (0, 1), which implicitly represents
a=aXi+boYi (X=1,Y =0)and b= aoX/ + boY/ (X' =0, Y' = 1) when
i =0.

@ (Step 2) Compute quotient k and remainder r(= a mod b) such that a = kb+r,
which implies r = a — kb = a(X; — kX{) + b(Y; — kY/). Set (a, b) := (b, r).
@ (Step 3) Set as follows:
(X, Y):=(X/,Y!), (X,Y'):=(Xi—kX,Yi—kY/)
Note that a = agX + boY, b= aocX' + b Y.
@ (Step 4) Seti:=i+1. Set (X;,Yi):=(X,Y)and (X/,Y/):=(X,Y).
@ Repeat from (Step 2) to (Step 4). a, b go smaller.

@ Finally when (a, b) goes to (d,0) where d = (a, b), output d along with (X, Y),
which satisfying d = aoX + bo Y.
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What Extended Euclidean Algorithm means

What Extended Euclidean Algorithm solves
@ Solution of linear equation aX + bY = d for d = (a, b).

@ Soultion of the inverse of a € (Z/nZ)*. Indeed, X such that aX =1
(mod n) can be obtained by the solution of aX + nY = 1.

It can be extended for the solution of a; X1 + - - + a, X, = d where
d=(a1,...,an)-
o By observing
(a1,...,an-1,an) = ((31 — kian), -, (an—1 — kn—12an), a,,), you can
apply the similar technique to that case.

@ Let's set variables as above.
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Today's Contents

© Appendix (Reminder)
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Group (#¥)

Definition 10 (Axiom of Group)

Let G be a set associated with a binary operation o. G is called a group if
the it satisfies the following axioms:

Go (Binary Operation) o: G x G — G is a binary operation on G.
G (Associative) Va,b,c € G [(aob)oc=ao(boc)].

Gy (ldentity) Je € G,Va€ G [ace=eoa=a]

Gz (Invertible) Va€ G, Ja € G [acal=aloa=c¢]

Gp: Magma (% 7'%)
Go, Gy: Semi-group (*1HH)
Go, Gi, Gp: Monoid (HOZIYIAHE)

Definition 11

Group G is called abelian or commutative if the following condition holds:

Gs (Commutative) Va,b € G [aob=boa|.
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Subgroup (F77 1)

Definition 12

H is called a subgroup of group G if:
e HC G (i.e., His a subset of G).
e Va,be H [aobe H] (ie., ois a binary operation on H).
eVacH [aleH].

| A

Theorem 6

H is a subgroup of G if and only if

Va,be H [aob !cH|

Eiichiro Fujisaki (JAIST) Comp. Complexity and Discrete Math. Nov. 20th, 2017 54 / 60



Cyclic Group ([HI%F)

n
Let G be a group. For a € G, define a” 230 ---0 a and write
{...,a7 1, a%al,.. .} as (a), i.e., (a) = {a"|n € Z}.

(a) is a subgroup of G.

@ Even for non-commutative G, (a) is a commutative group.
@ (a) is called a cyclic group.

@ ais called a generator of (a). In general, a is not unique.

Definition 13

The smallest positive number n such that a” =1 (where 1 is the identity)
is called the order of a. If such a positive number does not exist, the order
of a is said infinite.

The order of a is equivalent to the order of (a).
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Left/Right Cosets and Quoticient Sets

Let H be a subgroup of G. For a € G, define

aH = {ao hlh € H}
Ha £ {ho alh € H}.

We call aH a left coset (7ERI&%H) of H and Ha a right coset (£iRIA%H)
of H. The collection of all the left/right cosets of H, {aH},c¢ and
{Ha}.cq, partition G, under the corresponding equivalent relations,
~H,lefe and ~ right-

o ~Hr < a lobe H (orequivalently aH = bH).

® ~Hright = ao b~ € H (or equivalently Ha = Hb).
Then, We write the quotient sets, G/~ jerr and G/~ right as follows:

e G/H to denote {aH} cq.

e G\H to denote {Ha},cq.
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Index (#54%) of Subgroup

Theorem 8
|G/H| = |G\H]|.

If G is commutative, then trivial. However, the above holds even for any group G and any subgroup H.

o a € G a—! € Gis bijective (42#4) (due to the uniquenss of inverse in Monoid).
e So, ah — (ah) ™! = h™1 0 a1 is bijective and hence aH = Ha ™!,
o There is a subset A of G such that {aH},c 4 partitions G and for all a, b € A (a # b), aH [ bH = (.

o By aH = Ha !, {Ha_l}aeA also partions G. Since aH = Ha~ !, {aH},ca and {Ha_l}aeA are the same partion
of G.

e Hence, |A| = |G/H| = |G\ H|. Regardless of the choice of A, G/H and G\H are unique.

NOTE: A is called a complete system of representatives for the left coset of H in G.

Definition 14

We say that [G : H] = |G/H| = |G\H]| is the index of H in G.
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Lagrange's Theorem

Theorem 9 (Lagrange's Theorem)
Let H be a subset of G. Then,

e |G| =[G : H]|H|.
@ Let G be a finite group. Then, the order of H divides the order of G,
i.e., |H| divides |G].

Let {aH}.ca be the partion of G by the left coset of H such that for all
a,be A(a#b), aH(\bH =0. Then [G: H] = |A|. For all a € A,
h(e H) — ah (€ aH) is bijective. Therefore, |G| =[G : H]|H|. O
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Map (5)

Let S and S’ be sets. Denote by f : S — S’ to show a map from S to §'.

Definition 15 (Image (&))

Let Im(f) = {f(x)|x € S}, which is called the image of S by f.

By definition, Im(f) C S,

Definition 16 (Surjective (425Y))

If Im(f) =S’, f is called surjective.

Definition 17 (Injective (HL4}))
For all x,x" € S (x # X'), if f(x) # f(x’), then f is called injective.

Definition 18 (Bijective (£=HL4T))

If f is both surjective and injective, then it is called bijective.
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Field (1K)

Definition 19

A commutative ring (K, +,-) is called a field if
e (K —{0},-) is a commutative group (FI##F),
where 0 denotes the identy of (K, +).

@ We write K* to denote the set of the invertible elements in monoid (K, -).
o (K,+,-) is a field if and only if K* = K — {0}.

@ (K*,-)is called the multicative group (FIERE) (of field (K, +,-)).

@ Let 1 be the identiy of (K*,-). Then, 1 # 0 by definition.
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