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Section II 

Chapter 5 

Information 

Luciano Floridi 

 

1. Introduction 

Information “can be said in many ways”, like being (Aristotle, Metaphysics Γ.2), and 

the correlation is probably not accidental. Information, with its cognate concepts like 

computation, data, communication etc., plays a key role in the ways we have come to 

understand, model and transform reality. Quite naturally, information has adapted to 

some of being’s ridges.  

Because information is a multifaceted and polyvalent concept, the question 

“what is information?” is misleadingly simple, exactly like “what is being?”. As an 

instance of the Socratic question “ti esti...?”, it poses a fundamental and complex 

problem, intrinsically fascinating and no less challenging than “what is truth?”, “what 

is virtue?” “what is knowledge?” or “what is meaning?”. It is not a request for 

dictionary explorations but an ideal point of intersection of philosophical 

investigations, whose answers can diverge both because of the conclusions reached 

and because of the approaches adopted. Approaches to a Socratic question can usually 

be divided into three broad groups: reductionist, antireductionist and non-reductionist. 

Theories of information are no exception.  

Reductionists support the feasibility of a “unified theory of information” (UTI, 

see the UTI web site for references), general enough to capture all major kinds 

information (from Shannon’s to Baudrillard’s, from genetic to neural), but also 

sufficiently specific to discriminate between conceptual nuances. They attempt to 

show that all kinds of information are ultimately reducible conceptually, genetically 

or genealogically to some Ur-concept, mother of all instances. The development of a 

systematic UTI is a matter of time, patience and intelligent reconstruction. The 

ultimate UTI will be hierarchical, linear (even if probably branching), inclusive and 

incompatible with any alternative model.  

Reductionist strategies are unlikely to succeed. Several surveys  have shown 

no consensus or even convergence on a single, unified definition of information (see 

for example Braman 1989, Losee 1997, Machlup 1983, NATO 1974, 1975, 1983, 
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Schrader 1984, Wellisch 1972, Wersig and Neveling 1975). This is hardly surprising. 

Information is such a powerful and flexible concept and such a complex phenomenon 

that, as an explicandum, it can be associated with several explanations, depending on 

the level of abstraction adopted and the cluster of requirements and desiderata 

orientating a theory. Claude Shannon (1993, 180), for one, was very cautious:  

The word “information” has been given different meanings by various writers in the general field of 
information theory. It is likely that at least a number of these will prove sufficiently useful in certain 
applications to deserve further study and permanent recognition. It is hardly to be expected that a 
single concept of information would satisfactorily account for the numerous possible applications of 
this general field. 
 
At the opposite end, antireductionists stress the multifarious nature of the concept of 

information and of the corresponding phenomena. They defend the radical 

irreducibility of the different species to a single stem, objecting especially to 

reductionist attempts to identify Shannon’s quantitative concept of information as the 

required Ur-concept and to ground a UTI on the mathematical theory of 

communication. Antireductionist strategies are essentially negative and can soon 

become an impasse rather than a solution. They allow specialised analyses of the 

various concepts of information to develop independently, thus avoiding the vague 

generalisations and mistaken confusions that may burden UTI strategies. But their 

fragmented nominalism remains unsatisfactory insofar as it fails to account for the 

ostensible connections permeating and influencing the various ways in which 

information qua information “can be said”. Connections, mind, not Wittgensteinian 

family resemblances. The genealogical analogy would only muddy the waters here, 

giving the superficial impression of having finally solved the difficulty by merely 

hiding the actual divergences. The die-hard reductionist would still argue that all 

information concepts descend from the same family, whilst the unrepentant 

antireductionist would still object that we are facing mere resemblances, and that the 

various information concepts truly have different roots.  

Non-reductionists seek to escape the dichotomy between reductionism and 

antireductionism by replacing the reductionist hierarchical model with a distributed 

network of connected concepts, linked by mutual and dynamic influences not 

necessarily genetic or genealogical. This “hypertextual analysis” can be centralised in 

various ways or completely decentralised and perhaps multi-centred.  

According to decentralised or multi-centred approaches, there is no key 

concept of information. More than one concept is equally important, and the 
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“periphery” plays a counterbalancing role. Depending on the orientation, information 

is seen as interpretation, power, narrative, message or medium, conversation, 

construction, a commodity and so on,. Thus, philosophers like Baudrillard, Foucault, 

Lyotard, McLuhan, Rorty and Derrida are united by what they dismiss, if not 

challenge: the predominance of the factual. For them information is not in, from or 

about reality. They downplay the aboutness of information and bend its referential 

thrust into a self-referential circle of hermeneutical communication. Their classic 

target is Cartesian foundationalism seen as the clearest expression of a hierarchical 

and authoritarian approach to the genesis, justification and flow of information. 

Disoriented, they mistake it as the only alternative to their fully decentralised view.      

Centralised approaches interpret the various meanings, uses, applications and 

types of information as a system gravitating around a core notion with theoretical 

priority. The core notion works as a hermeneutical device that influences, interrelates 

and helps to access other notions. In metaphysics, Aristotle held a similar view about 

being, and argued in favour of the primacy of the concept of substance. In the 

philosophy of information, this “substantial” role has long been claimed by factual or 

epistemically-oriented semantic information. The basic idea is that, in order to 

understand what information is, the best thing to do is to start by analysing it in terms 

of the knowledge it can yield about its reference. The perspective is not without 

competitors. Weaver (1949), for example, supported a tripartite analysis of 

information in terms of (1) technical problems concerning the quantification of 

information and dealt with by Shannon’s theory; (2) semantic problems relating to 

meaning and truth, and (3) what he called “influential” problems concerning the 

impact and effectiveness of information on human behaviour, which he thought had to 

play an equally important role. In pragmatic contexts, it is common to privilege a 

view of information as primarily a resource for decision making processes. One of the 

tasks of this chapter is to show how in each case the centrality of epistemically-

oriented semantic information  is presupposed rather than replaced.  

We are now well placed to look at the structure of this chapter. In the 

following pages the question “what is information?” is approached from a non-

reductionist and epistemically centralised perspective. In section two, the concept of 

semantic information is reviewed assuming that factual information is the most 

important and influential sense in which information qua information “can be said”. 

No attempt is made to reduce all other concepts to factual information. Factual 
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information is like the capital of the informational archipelagos, crucially positioned 

to provide a clear grasp of what information is, and a privileged gateway to other 

important concepts that are interconnected but not necessarily reducible to a single 

Ur-concept. To show this in practice and to enrich our understanding of what else 

information may be, we shall look at two neighbouring areas of great importance. 

Section three summaries the mathematical theory of communication, which studies 

the statistical behaviour of uninterpreted data, a much impoverished concept of 

information. Section four outlines some important philosophical programs of research 

that investigate a more enriched concept of semantic information. Space constraints 

prevents discussion of several other important concepts of information, but some of 

them are at least mentioned in the conclusion. 

 

2. Semantic information 

In this section, a general definition of semantic information is introduced, followed by 

a special definition of factually-oriented semantic information. The contents of the 

section are based on Floridi (2003 and forthcoming a). The approach is loosely 

connected with the methodology developed in situation logic (see section 3.2).  

 

2.1. Semantic information as content 

Information is often used in connection with communication phenomena to refer to 

objective (in the sense of mind-independent or external, and informee-independent) 

semantic contents. These can be of various size and value, formulated in a range of 

codes and formats, embedded in physical implementations of different kinds. They 

can variously be produced, processed, communicated and accessed. The Cambridge 

Dictionary of Philosophy, for example, defines information thus: 

an objective (mind independent) entity. It can be generated or carried by messages (words, sentences) 
or by other products of cognizers (interpreters) Information can be encoded and transmitted, but the 
information would exist independently of its encoding or transmission. 
 
Examples of information in this broad sense are this Guide, E. A. Poe’s The Raven, 

Verlaine’s Song of Autumn, the Rosetta Stone and the movie Fahrenheit 451. 

Over the last three decades, many analyses have converged on a General 

Definition of Information (GDI) as semantic content  in terms of data + meaning (see 

Floridi forthcoming a for extended bibliography): 
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GDI) σ is an instance of information, understood as objective semantic content, if 

and only if: 

GDI.1) σ consists of n data (d), for n ≥ 1; 

GDI.2) the data are well-formed (wfd);  

GDI.3) the wfd are meaningful (mwfd = δ). 

GDI has become an operational standard especially in fields that treat data and 

information as reified entities (consider, for example, the now common expressions 

“data mining” and “information management”). Examples are Information Science; 

Information Systems Theory, Methodology, Analysis and Design; Information 

(Systems) Management; Database Design; and Decision Theory. Recently, GDI has 

begun to influence the philosophy of computing and information (Floridi 1999 and 

Mingers 1997).  

According to GDI, information can consist of different types of data δ. Data 

can be of four types (Floridi 1999): 

δ.1) primary data. These are the principal data stored in a database, e.g. a simple array 

of numbers. They are the data an information-management system is generally 

designed to convey to the user in the first place. 

δ.2) metadata. These are secondary indications about the nature of the primary data. 

They describe properties such as location, format, updating, availability, copyright 

restrictions, and so forth. 

δ.3) operational data. These are data regarding usage of the data themselves, the 

operations of the whole data system and the system’s performance. 

δ.4) derivative data. These are data that can be extracted from δ.1-δ.3, whenever the 

latter are used as sources in search of patterns, clues or inferential evidence, e.g. for 

comparative and quantitative analyses (ideometry). 

GDI indicates that information cannot be dataless, but it does not specify which types 

of δ constitute information. This typological neutrality (TyN) is justified by the fact 

that, when the apparent absence of data is not reducible to the occurrence of negative 

primary data, what becomes available and qualifies as information is some further 

non-primary information µ about σ constituted by some non-primary data δ.2-δ.4. For 

example, if a database query provides an answer, it will provide at least a negative 

answer, e.g. “no documents found”. If the database provides no answer, either it fails 

to provide any data at all, in which case no specific information σ is available, or it 
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can provide some data δ to establish, for example, that it is running in a loop. 

Likewise, silence, as a reply to a question, could represent negative information, e.g. 

as implicit assent or denial, or it could carry some non-primary information µ, e.g. the 

person has not heard the question. 

Information cannot be dataless. In the simplest case, it can consist of a single 

datum (d). A datum is reducible to just a lack of uniformity between two signs. So our 

definition of a datum (Dd) is: 

Dd) d = (x ≠ y) 

where the x and the y are two uninterpreted variables. 

The dependence of information on the occurrence of syntactically well-formed data, 

and of data on the occurrence of differences variously implementable physically, 

explain why information can be decoupled from its support. Interpretations of this 

support-independence vary radically because Dd leaves underdetermined not only the 

logical type to which the relata belong (see TyN), but also the classification of the 

relata (taxonomic neutrality), the kind of support required for the implementation of 

their inequality (ontological neutrality) and the dependence of their semantics on a 

producer (genetic neutrality).  

Consider the taxonomic neutrality (TaN) first. A datum is usually classified as 

the entity exhibiting the anomaly, often because the latter is perceptually more 

conspicuous or less redundant than the background conditions. However, the relation 

of inequality is binary and symmetric. A white sheet of paper is not just the necessary 

background condition for the occurrence of a black dot as a datum, it is a constitutive 

part of the datum itself, together with the fundamental relation of inequality that 

couples it with the dot. Nothing is a datum per se. Being a datum is an external 

property. GDI endorses the following thesis: 

TaN) a datum is a relational entity.  

No data without relata, but GDI is neutral with respect to the identification of data 

with specific relata. In our example, GDI refrains from identifying  either the black 

dot or the white sheet of paper as the datum.  

Understood as relational entities, data are constraining affordances, 

exploitable by a system as input of adequate queries that correctly semanticise them to 

produce information as output. In short, information as content can also be described 
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erotetically as data + queries (Floridi, 1999). I shall return to this definition in section 

3.2.  

Consider now the ontological neutrality (ON). By rejecting the possibility of 

dataless information, GDI endorses the following modest thesis: 

ON) no information without data representation. 

Following Landauer and Bennett 1985 and Landauer 1987, 1991 and 1996, ON is 

often interpreted materialistically, as advocating the impossibility of physically 

disembodied information, through the equation “representation = physical 

implementation”: 

ON.1) no information without physical implementation. 

ON.1 is an inevitable assumption when working on the physics of computation, since 

computer science must necessarily take into account the physical properties and limits 

of the data carriers. Thus, the debate on ON.1 has flourished especially in the context 

of the philosophy of quantum computing (see Landauer 1991, Deutsch 1985, 1997; Di 

Vincenzo and Loss 1998; Steane 1998 provides a review). ON.1 is also the 

ontological assumption behind the Physical Symbol System Hypothesis in AI and 

Cognitive Science (Newell and Simon 1976). But ON, and hence GDI, does not 

specify whether, ultimately, the occurrence of every discrete state necessarily requires 

a material implementation of the data representations. Arguably, environments in 

which all entities, properties and processes are ultimately noetic (e.g. Berkeley, 

Spinoza), or in which the material or extended universe has a noetic or non-extended 

matrix as its ontological foundation (e.g. Pythagoras, Plato, Descartes, Leibniz, 

Fichte, Hegel), seem perfectly capable of upholding ON without necessarily 

embracing ON.1. The relata in Dd could be monads, for example. Indeed, the classic 

realism debate can be reconstructed in terms of the possible interpretations of ON. 

All this explains why GDI is also consistent with two other popular slogans 

this time favourable to the proto-physical nature of information and hence completely 

antithetic to ON.1: 

ON.2) “It from bit. Otherwise put, every “it” every particle, every field of force, 

even the space-time continuum itselfderives its function, its meaning, its very 

existence entirelyeven if in some contexts indirectlyfrom the apparatus-elicited 

answers to yes-or-no questions, binary choices, bits. “It from bit” symbolizes the idea 

that every item of the physical world has at bottoma very deep bottom, in most 
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instancesan immaterial source and explanation; that which we call reality arises in 

the last analysis from the posing of yes-no questions and the registering of equipment-

evoked responses; in short, that all things physical are information-theoretic in origin 

and that this is a participatory universe.” (Wheeler 1990, 5); 

and 

ON.3) “[information is] a name for the content of what is exchanged with the outer 

world as we adjust to it, and make our adjustment felt upon it.” (Wiener 1954, 17). 

“Information is information, not matter or energy. No materialism which does not 

admit this can survive at the present day” (Wiener 1961, 132).  

ON.2 endorses an information-theoretic, metaphysical monism: the universe’s 

essential nature is digital, being fundamentally composed of information as data 

instead of matter or energy, with material objects as a complex secondary 

manifestation (a similar position has been defended more recently in physics by 

Frieden 1998, whose work is based on a Platonist perspective). ON.2 may but does 

not have to endorse a computational view of information processes. ON.3 advocates a 

more pluralistic approach along similar lines. Both are compatible with GDI. 

A final comment concerning GDI.3 can be introduced by discussing a fourth 

slogan: 

ON.4) “In fact, what we mean by information - the elementary unit of information - is 

a difference which makes a difference”. (Bateson 1973, 428). 

ON.4 is one of the earliest and most popular formulations of GDI (see for example 

Franklin 1995, 34 and Chalmers 1996, 281; note that the formulation in MacKay 

1969, that is “information is a distinction that makes a difference”, predates Bateson’s 

and, although less memorable, is more accurate). A “difference” is just a discrete state 

(that is, a datum), and “making a difference” simply means that the datum is 

“meaningful”, at least potentially.  

 Finally, let us considers the semantic nature of the data. How data can come to 

have an assigned meaning and function in a semiotic system in the first place is one of 

the hardest problems in semantics. Luckily, the point in question here is not how but 

whether data constituting information as semantic content can be meaningful 

independently of an informee. The genetic neutrality (GeN) supported by GDI states 

that: 

GeN) δ can have a semantics independently of any informee. 
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Before the discovery of the Rosetta Stone, Egyptian hieroglyphics were already 

regarded as information, even if their semantics was beyond the comprehension of 

any interpreter. The discovery of an interface between Greek and Egyptian did not 

affect the semantics of the hieroglyphics but only its accessibility. This is the weak, 

conditional-counterfactual sense in which GDI.3 speaks of meaningful data being 

embedded in information-carriers informee-independently. GeN supports the 

possibility of information without an informed subject, to adapt a Popperian phrase. 

Meaning is not (at least not only) in the mind of the user. GeN is to be distinguished 

from the stronger, realist thesis, supported for example by Dretske (1981), according 

to which data could also have their own semantics independently of an intelligent 

producer/informer. This is also known as environmental information, and a typical 

example given are the concentric rings visible in the wood of a cut tree trunk, which 

may be used to estimate the age of the plant.  

To summarise, GDI defines information broadly understood as semantic 

content comprised of syntactically well-formed and meaningful data. Its four types of 

neutrality (TyN, TaN, ON and GeN) represent an obvious advantage, as they make 

GDI perfectly scalable to more complex cases and reasonably flexible in terms of 

applicability and compatibility. The next question is whether GDI is satisfactory when 

discussing the most important type of semantic information, namely factual 

information. 

 

2.2. Semantic information as factual information 

We have seen that semantic information is usually associated with communication. 

Within this context, the most important type of semantic information is factual 

information, which tells to the informee something about something else, for example 

where a place is, what the time is, whether lunch is ready or that penguins are birds. 

Factual information has a declarative (Kant’s judicial) nature, is satisfactorily 

interpretable in terms of first-order, classic predicate logic, is correctly qualifiable 

alethically and can be appropriately analysed in the following form “a’s being (of 

type) F carries the information that b is G” (Dretske 1981, Barwise and Seligman 

1997). 

Does GDI provide a definition of factual information? Some philosophers 

(Barwise and Seligman 1997, Dretske 1981, Floridi 2003 and forthcoming a, Grice 

1989) have argued that it does not, because otherwise false information would have to 
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count as a type of factual information, and there are no convincing reasons to believe 

it does, whilst there are compelling reasons to believe that it does not (for a detailed 

analysis see Floridi forthcoming a). As Dretske and Grice have put it: “[…] false 

information and mis-information are not kinds of information – any more than decoy 

ducks and rubber ducks are kinds of ducks” (Dretske 1981, 45) and “False 

information is not an inferior kind of information; it just is not information” (Grice 

1989, 371). Let us see the problem in more detail. 

The difficulty lies here with yet another important neutrality in GDI. GDI 

makes no comment on the truthfulness of data that may comprise information (alethic 

neutrality AN): 

AN) meaningful and well-formed data qualify as information, no matter whether they 

represent or convey a truth or a falsehood or have no alethic value at all. 

Verlaine’s Song of Autumn counts as information even if it does not make sense to ask 

whether it is true or false, and so does every sentence in Old Moore’s Almanac, no 

matter how downright false. Information as purely semantic content is completely 

decoupled from any alethic consideration (Colburn 2000 and Fox 1983 can be read as 

defending this perspective). However, if GDI is taken to define also factual 

information, then  

a) false information about the world (including contradictions), i.e. misinformation, 

becomes a genuine type of factual information;  

b) tautologies qualify as factual information;  

c) “it is true that p” where p can be replaced by any instance of genuine factual 

information, is no longer a redundant expression, e.g. “it is true” in the conjunction 

“‘the earth is round’ qualifies as information and it is true” cannot be eliminated 

without semantic loss; and finally 

d) it becomes impossible to erase factual information semantically (we shall be more 

and more informed about x, no matter what the truth value of our data about x is).  

None of these consequences is ultimately defensible, and their rejection forces a 

revision of GDI. “False” in “false information” is used attributively, not predicatively 

As in the case of a false constable, false information is not factual information that is 

false, but not factual information at all. So “false information” is, like “false 

evidence”, not an oxymoron, but a way of specifying that the informational contents 

in question do not conform to the situation they purport to map, and so fail to qualify 

as factual information. Well-formed and meaningful data may be of poor quality. Data 
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that are incorrect (vitiated by errors or inconsistencies), imprecise (precision is a 

measure of the repeatability of the collected data) or inaccurate (accuracy refers to 

how close the average data value is to the actual value) are still data and may be 

recoverable. But, if the are not truthful, they can only amount to semantic content at 

best and misinformation at worst.  

The special definition of information (SDI) needs to include a fourth condition 

about the positive alethic nature of the data in question:  

SDI) σ is an instance of factual information if and only if: 

SDI.1) σ consists of n data (d), for n ≥ 1; 

SDI.2) the data are well-formed (wfd); 

SDI.3) the wfd are meaningful (mwfd = δ); 

SDI.4) the δ are truthful. 

Factual information encapsulates truthfulness, which does not contingently supervene 

on, but is necessarily embedded in it. And since information is “said primarily in 

factual ways”, to put it in Aristotelian terms, false information can be dismissed as no 

factual information at all, although it can still count as information in the sense of 

semantic content. 

 

3. The mathematical theory of communication 

Some features of information are intuitively quantitative. Information can be encoded, 

stored and transmitted. We also expect it to be additive and non-negative. Similar 

properties of information are investigated by the mathematical theory of 

communication (MTC) with the primary aim of devising efficient ways of encoding 

and transferring data.  

MTC is not the only successful mathematical approach to information theory, 

but it certainly is the best and most widely known, and the one that has had the most 

profound impact on philosophical analyses. The name for this branch of probability 

theory comes from Shannon’s seminal work (Shannon 1948, now Shannon and 

Weaver 1998). Shannon pioneered this field and obtained many of its principal 

results, but he acknowledged the importance of previous work done by other 

researches at Bell laboratories, most notably Nyquist and Hartley (see Cherry 1978 

and Mabon 1975). After Shannon, MTC became known as information theory, an 

appealing but unfortunate label, which continues to cause endless misunderstandings. 
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Shannon came to regret its widespread popularity, and we shall avoid using it in this 

context.  

This section outlines some of the key ideas behind MTC, with the aim of 

understanding the relation between MTC and the philosophy of information. The 

reader with no taste for mathematical formulae may wish to go directly to section 3.2, 

where some implications of MTC are discussed. The reader interested in knowing 

more can start by reading Weaver 1949 and Shannon 1993b, then Schneider 2000, 

Pierce 1980 and Jones 1979 and finally Cover and Thomas 1991. 

 

3.1. The quantification of raw information 

MTC has its origin in the field of electrical communication, as the study of 

communication limits. It develops a quantitative approach to information as a means 

to answer two fundamental problems: the ultimate level of data compression and the 

ultimate rate of data transmission. The two solutions are the entropy H in equation [9] 

and the channel capacity C. The rest of this section illustrates how to get from the 

problems to the solutions. 

Imagine a very boring device that can produce only one symbol, like Poe’s 

raven, who can answer only “nevermore”. This is called a unary device. Even at this 

elementary level, Shannon’s simple model of communication applies (see Fig. 1).  

INFORMER 

information 

source 

NOISE 

Information source 

ENCODING 

TRANSMITTER 

INFORMEE 

information 

destination 

DECODING 

RECEIVER 

message 

INFORMANT 

sent signal received signal

Fig. 1    Communication model (adapted from Shannon 1948, 1998) 

CHANNEL 

ALPHABET 
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The raven is the informer, we are the informee, “nevermore” is the message (the 

informant), there is a coding and decoding procedure through English, a channel of 

communication and some possible noise.  

Informer and informee share the same background knowledge about the 

collection of usable symbols (the alphabet). Given this a priori knowledge, it is 

obvious that a unary device produces zero amount of information. Simplifying, we 

already know the outcome so our ignorance cannot be decreased. Whatever the 

informational state of the system, asking appropriate questions to the raven does not 

make any difference. Note that a unary source answers every question all the time 

with only one symbol, not with silence or symbol, since silence counts as a signal, as 

we saw in 2.1. A completely silent source also qualifies as a unary source.  

Consider now a binary device that can produce two symbols, like a fair coin A 

with its two equiprobable symbols {h, t}; or, as Matthew 5:37 suggests, “Let your 

communication be Yea, yea; Nay, nay: for whatsoever is more than these cometh of 

evil”. Before the coin is tossed, the informee (for example a computer) is in a state of 

data deficit greater than zero: the informee does not “know” which symbol the device 

will actually produce. Shannon used the technical term “uncertainty” to refer to data 

deficit. In a non-mathematical context this is a misleading term because of its strongly 

semantic connotations. Recall that the informee con be a very simple machine, and 

psychological, mental, doxastic or epistemic states are clearly irrelevant. Once the 

coin has been tossed, the system produces an amount of raw information that is a 

function of the possible outputs, in this case 2 equiprobable symbols, and equal to the 

data deficit that it removes.  

Let us build a slightly more complex system, made of two fair coins A and B. 

The AB system can produce 4 ordered outputs: <h, h>, <h, t>, <t, h>, <t, t>. It 

generates a data deficit of 4 units, each couple counting as a symbol in the source 

alphabet. In the AB system, the occurrence of each symbol removes a higher data 

deficit than the occurrence of a symbol in the A system. In other words, each symbol 

contains more raw information. Adding an extra coin would produce a 8 units of data 

deficit, further increasing the amount of information carried by each symbol in the 

ABC system, and so on.  

We are ready to generalise the examples. Call the number of possible symbols 

N. For N = 1, the amount of information produced by a unary device is 0. For N = 2, 

by producing an equiprobable symbol, the device delivers 1 unit of information. And 
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for N = 4, by producing an equiprobable symbol the device delivers the sum of the 

amount of information provided by coin A plus the amount of information provided 

by coin B, that is 2 units of information, although the total number of symbols is 

obtained by multiplying A’s symbols by B’s symbols. Our information measure 

should be a continuous and monotonic function of the probability of the symbols. The 

most efficient way of satisfying these requirements is by using the logarithm to the 

base 2 of the number of possible symbols (the logarithm to the base 2 of a number is 

the power to which 2 must be raised to give the number, for example log 2 8 = 3, since 

23 = 8). Logarithms have the useful property of turning multiplication of symbols into 

addition of information units. By taking the logarithm to the base 2 (henceforth log 

simply means log 2) we have the further advantage of expressing the units in bits. The 

base is partly a matter of convention, like using centimetres instead of inches, partly a 

matter of convenience, since it is useful when dealing with digital devices that use 

binary codes to represent data. Given an alphabet of N equiprobable symbols, we can 

rephrase some examples more precisely (Fig. 2) by using equation [1]: 

log 2 (N) = bits of information per symbol    [1] 

 

Device Alphabet Bits of information per symbol 

Poe’s raven (unary)  1 symbol log(1) = 0 

1 coin (binary) 2 equiprobable symbols log(2) = 1 

2 coins 4 equiprobable symbols log(4) = 2 

1 die 6 equiprobable symbols log(6) = 2.58 

3 coins 8 equiprobable symbols log(8) = 3 

Fig. 2 

 

The basic idea is all in equation [1]. Raw information can be quantified in terms of 

decrease in data deficit (uncertainty). Unfortunately, real coins are always biased. To 

calculate how much information they produce one needs to rely on the frequency of 

the occurrences of symbols in a finite series of tosses, or on their probabilities, if the 

tosses are supposed to go on indefinitely. Compared to a fair coin, a slightly biased 

coin must produce less than 1 bit of information, but still more than 0. The raven 

produced no information at all because the occurrence of a string S of “nevermore” 

was not informative (not surprising, to use a more intuitive, but psychologistic 
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vocabulary), and that is because the probability of the occurrence of “nevermore” was 

maximum, so overly predictable. Likewise, the amount of raw information produced 

by the biased coin depends on the average informativeness (also known as average 

surprisal, another unfortunate term to refer to the average statistical rarity) of the 

string S of h and t produced by the coin. The average informativeness of the resulting 

string S depends on the probability of the occurrence of each symbol. The higher the 

frequency of a symbol in S, the less raw information is being produced by the coin, up 

to the point when the coin is so biased to produce always the same symbol and stops 

being informative, behaving like the raven. So, to calculate the average 

informativeness of S we need to know how to calculate S and the informativeness of a 

ith symbol in general. This requires understanding what the probability of a ith symbol 

(Pi) to occur is. 

The probability Pi of the ith symbol can be “extracted” from equation [1], 

where it is embedded in log(N), a special case in which the symbols are equiprobable. 

Using some elementary properties of the logarithmic function we have:  

)log()
1

log()log()log( 1 P
N

NN −=−=−= −    [2] 

The value of 1/N = P can range from 0 to 1. If the raven is our source, the probability 

of “good morning” is 0. In the case of the coin, P(h) + P(t) = 1, no matter how biased 

the coin is. Probability is like a cake that gets sliced more and more thinly depending 

on the number of guests, but never grows beyond its original size. More formally:    

1
1

=∑
=

N

i
iP       [3] 

The sigma notation simply means that if we add all probabilities values from i = 1 to i 

= N the sum is equal to 1.  

We can now be precise about the raven: “nevermore” is not informative at all 

because Pnevermore = 1. Clearly, the lower the probability of occurrence of a symbol, the 

higher is the informativeness of its actual occurrence. The informativeness u of a ith 

symbol can be expressed by analogy with – log (P) in equation [2]: 

)log( ii Pu −=       [4] 

Next, we need to calculate the length of a general string S. Suppose that the biased 

coin, tossed 10 times, produces the string: <h, h, t, h, h, t, t, h, h, t>. The (length of 

the) string S (in our case equal to 10) is equal to the number of times the h type of 
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symbol occurs added to the numbers of times the t type of symbol occurs. 

Generalising for i types of symbols: 

∑
=

=
N

i
iSS

1

      [5] 

Putting together equations [4] and [5] we see that the average informativeness for a 

string of S symbols is the sum of the informativeness of each symbol divided by the 

sum of all symbols: 

∑

∑

=

=
N

i
i

i

N

i
i

S

uS

1

1       [6] 

Formula [6] can be simplified thus: 

i

N

i

i u
S
S

 
1

∑
=

      [7] 

Now Si/S is the frequency with  which the ith symbol occurs in S when S is finite. If 

the length of S is left undetermined (as long as one wishes), then the frequency of the 

ith symbol becomes its probability Pi. So, further generalising formula [7] we have: 

i

N

i
i uP  

1
∑

=

      [8] 

Finally, by using equation [4] we can substitute for ui and obtain  

symbol)per  (bits log
1

i

N

i
i PPH ∑

=

−=     [9] 

Equation [9] is Shannon’s formula for H = uncertainty, what we have called data 

deficit (actually, Shannon’s original formula includes a positive constant K which 

amounts to a choice of a unit of measure, bits in our case; Shannon used the letter H 

because of R.V.L. Hartley’s previous work). Equation [9] indicates that the quantity 

of raw information produced by a device corresponds to the amount of data deficit 

erased. It is a function of the average informativeness of the (potentially unlimited) 

string of symbols produced by the device. It is easy to prove that, if symbols are 

equiprobable, [9] reduces to [1] and that the highest quantity of raw information is 

produced by a system whose symbols are equiprobable (compare the fair coin to the 

biased one). 

To arrive at [9] we have used some very simple examples: a raven and a 

handful of coins. Things in life are far more complex. For example, we have assumed 
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that the strings of symbols are ergodic: the probability distribution for the occurrences 

of each symbol is assumed to be stable through time and independently of the 

selection of a certain string. Our raven and coins are discrete and zero-memory 

sources. The successive symbols they produce are statistically independent. But in 

real life occurrences of symbols are often interdependent. Sources can be non-ergodic 

and have a memory. Symbols can be continuous, and the occurrence of one symbol 

may depend upon a finite number n of preceding symbols, in which case the string is 

known as a Markov chain and the source a n-th order Markov source. Consider for 

example the probability of being sent an “e” before or after having received the string 

“welcom”. And consider the same example through time, in the case of a child 

learning how to spell English words. In brief, MTC develops the previous analysis to 

cover a whole variety of more complex cases. We shall stop here, however, because 

in the rest of this section we need to concentrate on other central aspects of MTC.  

The quantitative approach just sketched plays a fundamental role in coding 

theory (hence in cryptography) and in data storage and transmission techniques. 

Recall that MTC is primarily a study of the properties of a channel of communication 

and of codes that can efficiently encipher data into recordable and transmittable 

signals. Since data can be distributed either in terms of here/there or now/then, 

diachronic communication and synchronic analysis of a memory can be based on the 

same principles and concepts (our coin becomes a bistable circuit or flip-flop, for 

example), two of which are so important to deserve a brief explanation: redundancy 

and noise. 

Consider our AB system. Each symbol occurs with 0.25 probability. A simple 

way of encoding its symbols is to associate each of them with two digits: 

<h, h> = 00 

<h, t> = 01 

<t, h> = 10 

<t, t> = 11 

Call this Code 1. In Code 1 a message conveys 2 bits of information, as expected. Do 

not confuse bits as bi-nary units of information (recall that we decided to use log2 also 

as a matter of convenience) with bits as bi-nary digits, which is what a 2-symbols 

system like a CD-ROM uses to encode a message. Suppose now that the AB system is 

biased, and that the four symbols occur with the following probabilities:  
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<h, h> = 0.5 

<h, t> = 0.25 

<t, h> = 0.125 

<t, t> = 0.125 

This system produces less information, so by using Code 1 we would be wasting 

resources. A more efficient Code 2 should take into account the symbols’ 

probabilities, with the following outcomes:  

<h, h> = 0    0.5 × 1 binary digit = .5 

<h, t> = 10  0.25 × 2 binary digits = .5 

<t, h> = 110  0.125 × 3 binary digits = .375 

<t, t> = 111  0.125 × 3 binary digits = .375 

In Code 2, known as Fano Code, a message conveys 1.75 bits of information. One can 

prove that, given that probability distribution, no other coding system will do better 

than Fano Code. On the other hand, in real life a good codification is also modestly 

redundant. Redundancy refers to the difference between the physical representation of 

a message and the mathematical representation of the same message that uses no more 

bits than necessary. Compression procedures work by reducing data redundancy, but 

redundancy is not always a bad thing, for it can help to counteract equivocation (data 

sent but never received) and noise (received but unwanted data). A message + noise 

contains more data than the original message by itself, but the aim of a 

communication process is fidelity, the accurate transfer of the original message from 

sender to receiver, not data increase. We are more likely to reconstruct a message 

correctly at the end of the transmission if some degree of redundancy counterbalances 

the inevitable noise and equivocation introduced by the physical process of 

communication and the environment. Noise extends the informee’s freedom of choice 

in selecting a message, but it is an undesirable freedom and some redundancy can 

help to limit it. That is why, in a crowded pub, you shout your orders twice and add 

some gestures. 

 We are now ready to understand Shannon’s two fundamental theorems. 

Suppose the 2-coins biased system produces the following message: <t, h>  <h, h> 

<t, t>  <h, t><h, t>. Using Fano Code we obtain: 11001111010. The next step is to 

send this string through a channel. Channels have different transmission rates (C), 
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calculated in terms of bits per second (bps). Shannon’s fundamental theorem of the 

noiseless channel states that  

Let a source have entropy H (bits per symbol) and a channel have a capacity C (bits per second). Then 
it is possible to encode the output of the source in such a way as to transmit at the average rate of C/H – 
ε symbols per second over the channel where ε is arbitrarily small. It is not possible to transmit at an 
average rate greater than C/H. (Shannon 1998, 59). 
 
In other words, if you devise a good code you can transmit symbols over a noiseless 

channel at an average rate as close to C/H as one may wish, but, no matter how clever 

the coding is, that average can never exceed C/H. We have already seen that the task 

is made more difficult by the inevitable presence of noise. However, the fundamental 

theorem for a discrete channel with noise comes to our rescue: 

Let a discrete channel have the capacity C and a discrete source the entropy per second H. If H ≤ C 
there exists a coding system such that the output of the source can be transmitted over the channel with 
an arbitrarily small frequency of errors (or an arbitrarily small equivocation). If H > C it is possible to 
encode the source so that the equivocation is less than H – C + ε where ε is arbitrarily small. There is 
no method of encoding which gives an equivocation less than H – C. (Shannon 1998, 71) 
 
Roughly, if the channel can transmit as much or more information than the source can 

produce, then one can devise an efficient way to code and transmit messages with as 

small an error probability as desired These two fundamental theorems are among 

Shannon’s greatest achievements. And with our message finally sent, we may close 

this section. 

 

3.2. Some conceptual implications of MTC 

For the mathematical theory of communication (MTC) information is only a selection 

of one symbol from a set of possible symbols, so a simple way of grasping how MTC 

quantifies raw information is by considering the number of yes/no questions required 

to guess what the source is communicating. One question is sufficient to guess the 

output of a fair coin, which therefore produces 1 bit of information. A 2-fair-coins 

system produces 4 ordered outputs: <h, h>, <h, t>, <t, h>, <t, t> and therefore requires 

two questions, each output containing 2 bits of information, and so on. This erotetic 

analysis clarifies two important points.  

First, MTC is not a theory of information in the ordinary sense of the word. 

The expression “raw information” has been used to stress the fact that in MTC 

information has an entirely technical meaning. Consider some examples. Two 

equiprobable “yes” contain the same quantity of raw information, no matter whether 

their corresponding questions are “would you like some tea?” or “would you marry 
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me?”. If we knew that a device could send us with equal probabilities either the movie 

Fahrenheit 451 or this whole Guide, by receiving one or the other we would receive 

many bytes of data but only one bit of raw information. On June 1 1944, the BBC 

broadcasted a line from Verlaine’s Song of Autumn: “Les sanglots longs des violons 

de Autumne”. The message contained almost 1 bit of information, an increasingly 

likely “yes” to the question whether the D-Day invasion was imminent. The BBC then 

broadcasted the second line “Blessent mon coeur d'une longueur monotone”. Another 

almost meaningless string of letters, but almost another bit of information, since it 

was the other long-expected “yes” to the question whether the invasion was to take 

place immediately. German intelligence knew about the code, intercepted those 

messages and even notified Berlin, but the high command failed to alert the Seventh 

Army Corps stationed in Normandy. Hitler had all the information in Shannon’s sense 

of the word, but failed to understand the real meaning and importance of those two 

small bits of data. As for ourselves, we were not surprised to conclude that the 

maximum amount of raw information is produced by a text where each character is 

equally distributed, that is by a perfectly random sequence.  

Second, since MTC is a theory of information without meaning, and 

information – meaning = data, mathematical theory of data communication is a far 

more appropriate description than information theory. In section 2.1 we saw that 

information as semantic content can also be described erotetically as data + queries. 

Imagine a piece of information such as “the earth has only one moon”. It is easy to 

polarise almost all its semantic content by transforming it into a query + binary 

answer: “does the earth have only one moon? + yes”. Subtract the “yes” and you are 

left with virtually all the semantic content, fully de-alethicised (the query is neither 

true nor false). The datum “yes” works as a key to unlock the information contained 

in the query. MTC studies the codification and transmission of raw information by 

treating it as data keys, as the amount of details in a signal or message or memory 

space necessary to unlock the informee’s knowledge. As Weaver (1949, 12) remarked 

“the word information relates not so much to what you do say, as to what you could 

say. MTC deals with the carriers of information, symbols and signals, not with 

information itself. That is, information is the measure of your freedom of choice when 

you select a message”.  

Since MTC deals not with information itself but with the carriers of 

information, that is messages constituted by uninterpreted symbols encoded in well-
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formed strings of signals, it is commonly described as a study of information at the 

syntactic level. MTC can be successfully applied in ICT (information and 

communication technologies) because computers are syntactical devices. What 

remains to be clarified is how H in equation [9] should be interpreted.  

Assuming the ideal case of a noiseless channel of communication, H is a 

measure of three equivalent quantities:  

a) the average amount of raw information per symbol produced by the informer, or 

b) the corresponding average amount of data deficit (Shannon’s “uncertainty”) that 

the informee has before the inspection of the output of the informer, or  

c) the corresponding informational potentiality of the same source, that is, its 

informational entropy.  

H can equally indicate (a) or (b) because, by selecting a particular alphabet, the 

informer automatically creates a data deficit (uncertainty) in the informee, which then 

can be satisfied (resolved) in various degrees by the informant. Recall the erotetic 

game. If you use a single fair coin, I immediately find myself in a 1 bit deficit 

predicament. Use two fair coins and my deficit doubles, but use the raven, and my 

deficit becomes null. My empty glass is an exact measure of your capacity to fill it. Of 

course, it makes sense to talk of raw information as quantified by H only if one can 

specify the probability distribution.  

 Regarding (c), MTC treats raw information like a physical quantity, such as 

mass or energy, and the closeness between equation [9] and the formulation of the 

concept of entropy in statistical mechanics was already discussed by Shannon. The 

informational and the thermodynamic concept of entropy are related through the 

concepts of probability and randomness (“randomness” is better than “disorder” since 

the former is a syntactical concept whereas the latter has a strongly semantic value), 

entropy being a measure of the amount of “mixedupness” in processes and systems 

bearing energy or information. Entropy can also be seen as an indicator of 

reversibility: if there is no change of entropy then the process is reversible. A highly 

structured, perfectly organised message contains a lower degree of entropy or 

randomness, less raw information and causes a smaller data deficit, consider the 

raven. The higher the potential randomness of the symbols in the alphabet, the more 

bits of information can be produced by the device. Entropy assumes its maximum 

value in the extreme case of uniform distribution. Which is to say that a glass of water 

with a cube of ice contains less entropy than the glass of water once the cube has 
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melted, and a biased coin has less entropy than a fair coin. In thermodynamics, we 

know that the greater the entropy, the less available the energy. This means that high 

entropy corresponds to high energy deficit, but so does entropy in MTC: higher values 

of H correspond to higher quantities of data deficit. 

 

4. Some philosophical approaches to semantic information 

The mathematical theory of communication approaches information as a physical 

phenomenon. Its central question is whether and how much uninterpreted data can be 

encoded and transmitted efficiently by means of a given alphabet and through a given 

channel. MTC is not interested in the meaning, aboutness, relevance, usefulness or 

interpretation of information, but only in the level of detail and frequency in the 

uninterpreted data, being these symbols, signals or messages. On the other hand, 

philosophical approaches seek to give an account of information as semantic content, 

investigating questions like “how can something count as information? and why?”, 

“how can something carry information about something else?”, “how is information 

related to error, truth and knowledge?”, “when is information useful?”. Philosohers 

usually adopt a propositional orientation and an epistemic outlook, endorsing, often 

implicitly, the prevalence of the factual (they analyse examples like “The Bodleian 

library is in Oxford”). How relevant is MTC to similar analyses? 

In the past, some research programs tried to elaborate information theories 

alternative to MTC, with the aim of incorporating the semantic dimension. Donald M. 

MacKay (1969) proposed a quantitative theory of qualitative information that has 

interesting connections with situation logic (see below), whereas  Doede Nauta (1972) 

developed a semiotic-cybernetic approach. Nowadays, few philosophers follow these 

lines of research. The majority agrees that MTC provides a rigorous constraint to any 

further theorising on all the semantic and pragmatic aspects of information. The 

disagreement concerns the crucial issue of the strength of the constraint. At one 

extreme of the spectrum, a theory of semantic information is supposed to be very 

strongly constrained, perhaps even overdetermined, by MTC, somewhat like 

mechanical engineering is by Newtonian physics. Weaver’s interpretation of 

Shannon’s work is a typical example. At the other extreme, a theory is supposed to be 

only weakly constrained, perhaps even completely underdetermined, by MTC, 

somewhat like tennis is constrained by Newtonian physics, that is in the most 

uninteresting, inconsequential and hence disregardable sense (see for example Sloman 
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1978 and Thagard 1990). The emergence of MTC in the fifties generated earlier 

philosophical enthusiasm that has gradually cooled down through the decades. 

Historically, philosophical theories of semantic information have moved from “very 

strongly constrained” to “only weakly constrained”, becoming increasingly 

autonomous from MTC (for a review, see Floridi forthcoming b). 

Popper (1935) is often credited as the first philosopher to have advocated the 

inverse relation between the probability of p and the amount of semantic information 

carried by p. However, systematic attempts to develop a formal calculus were made 

only after Shannon’s breakthrough. MTC defines information in terms of probability 

space distribution. Along similar lines, the probabilistic approach to semantic 

information defines the semantic information in p in terms of logical probability space 

and the inverse relation between information and the probability of p. This approach 

was initially suggested by Bar-Hillel and Carnap (Bar-Hillel and Carnap 1953, Bar-

Hillel 1964) and further developed by Hintikka (especially Hintikka and Suppes 

1970) and Dretske 1981 (on Dretske’s approach see also chapters 17 and 18). The 

details are complex but the original idea is simple. The semantic content (CONT) in p 

is measured as the complement of the a priori probability of p: 

CONT(p) = 1 − P(p)     [10] 

CONT does not satisfy the two requirements of additivity and conditionalization, which 

are satisfied by another measure, the informativeness (INF) of p, which is calculated, 

following equations [9] and [10], as the reciprocal of P(p), expressed in bits, where 

P(p) = 1 – CONT(p) : 

INF(p) = )(log
cont1
1

log pP−=
−

    [11] 

Things are complicated by the fact that the concept of probability employed in 

equations [10] and [11] is subject to different interpretations. In Bar-Hillel and Carnap 

the probability distribution is the outcome of a logical construction of atomic 

statements according to a chosen formal language. This introduces a problematic 

reliance on a strict correspondence between observational and formal language. In 

Dretske, the solution is to make probability values refer to states of affairs (s) of the 

world observed: 

I(s) = – log P(s)    [12] 

The modal approach modifies the probabilistic approach by defining semantic 

information in terms of modal space and in/consistency. The information conveyed by 
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p becomes the set of all possible worlds or (more cautiously) the set of all the 

descriptions of the relevant possible states of the universe that are excluded by p. The 

systemic approach, developed especially in situation logic (Barwise and Perry 1983, 

Israel and Perry 1990, Devlin 1991; Barwise and Seligman 1997 provide a foundation 

for a general theory of information flow) also defines information in terms of states 

space and consistency. However, is less ontologically demanding than the modal 

approach, since it assumes a clearly limited domain of application, and it is 

compatible with Dretske’s probabilistic approach, although it does not require a 

probability measure on sets of states. The informational content of p is not determined 

a priori, through a calculus of possible states allowed by a representational language, 

but in terms of factual content that p carries with respect to a given situation. 

Information tracks possible transitions in a system’s states space under normal 

conditions. Both Dretske and situation theories require some presence of information 

already immanent in the environment (environmental information), as nomic 

regularities or constraints. This “semantic externalism” can be controversial both 

epistemologically and ontologically. Finally, the inferential approach defines 

information in terms of entailment space: information depends on valid inference 

relative to a person’s theory or epistemic state.  

Most approaches close to MTC assume the principle of alethic neutrality, and 

run into the difficulties outlined in 2.2 (Dretske and Barwise are important exceptions; 

Devlin rejects truthfulness as a necessary condition). As a result, the semantic 

approach (Floridi 2003 and forthcoming a) adopts SDI and defines factual 

information in terms of data space.  

Suppose there will be exactly three guests for dinner tonight. This is our 

situation w. Imagine that you are told that 

T) there may or may not be some guests for dinner tonight; or 

V) there will be some guests tonight; or 

P) there will be three guests tonight. 

The degree of informativeness of T is zero because, as a tautology, T applies both to w 

and to ¬ w. V performs better, and P has the maximum degree of informativeness 

because, as a fully accurate, precise and contingent truth, it “zeros in” on its target w. 

Generalising, the more distant a true σ is from its target w, the larger is the number of 

situations to which it applies, the lower its degree of informativeness becomes. A 
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tautology is a true σ that is most “distant” from the world. Let us use the letter ϑ to 

refer to the distance between a true σ and w. Using the more precise vocabulary of 

situation logic, ϑ indicates the degree of support offered by w to σ. We can now map 

on the x axis the values of ϑ given a specific σ and a corresponding target w. In our 

example, we know that ϑ(T) = 1 and ϑ(P) = 0. For the sake of simplicity, let us 

assume that ϑ(V) = 0.25 (see Floridi 2003 on how to calculates ϑ values). We now 

need a formula to calculate the degree of informativeness ι of σ in relation to ϑ(σ). It 

can be shown that the most elegant solution is provided by the complement of the 

square value of ϑ(σ), that is y = 1- x2. Using our symbols we have: 

ι(σ) = 1 - ϑ(σ)2      [13] 

Fig. 3 shows the graph generated by equation [13] when we include also negative 

values of distance for false σ (ϑ ranges from –1 = contradiction to 1 = tautology). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If σ has a very high degree of informativeness ι (very low ϑ) we want to be able to 

say that it contains a large quantity of semantic information and, vice versa, the lower 

the degree of informativeness of σ is, the smaller the quantity of semantic information 

conveyed by σ should be. To calculate the quantity of semantic information contained 

in σ relative to ι(σ) we need to calculate the area delimited by equation [13], that is 

Fig. 3 

ι(σ) = 1 - ϑ(σ)2 

ϑ(σ)
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the definite integral of the function ι(σ) on the interval [0, 1]. As we know, the 

maximum quantity of semantic information (call it α) is carried by P, whose ϑ = 0. 

This is equivalent to the whole area delimited by the curve. Generalising to σ we 

have: 

3
2

 )(   
1 

0 
==∫ ασι dx     [14] 

Fig. 4 shows the graph generated by equation [14]. The shaded area is the maximum 

amount of semantic information α carried by σ.   

 

 

 

 

 

 

 

 

 

 

 

 

 

An interesting property of equation [14] is that, if we express it in bits, we have 

sbittritbit  1 1 13log2log
3
2

log =−=−=    [15] 

A trit is one base-3 digit and represents the amount of information conveyed by a 

selection among one of three equiprobable outcomes. It is linearly equivalent to log 3. 

The term sbit (semantic bit) indicates our unit of maximum semantic information α, 

concerning a given situation w, that can be conveyed by σ with ϑ = 0.  

 Consider now V, “there will be some guests tonight”. V can be analysed as a 

(reasonably finite) string of disjunctions, that is V = [“there will be one guest tonight” 

or “there will be two guests tonight” or … “there will be n guests tonight”], where n is 

the reasonable limit we wish to consider (things are more complex than this, but here 
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Fig. 4 
ι(σ) = 1 - ϑ(σ)2 
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we only need to grasp the general principle). Only one of the descriptions in V will be 

fully accurate. This means that V also contains some (perhaps much) information that 

is simply irrelevant or redundant. We shall refer to this “informational waste” in V as 

to the vacuous information in V. The amount of vacuous information (call it β) in V is 

also a function of the distance ϑ of V from w, or more generally 

βσι
ϑ

=∫ dx )(   
 

0 
     [16] 

Since ϑ(V) = 0.25, we have 

0.24479 (V)   
25.0 

0 
=∫ dxι     [17] 

Fig. 5 shows the graph generated by equation [17]. The shaded area is the amount of 

vacuous information β  in V. Clearly, the amount of semantic information in V is 

simply the difference between α (the maximum amount of information that can be 

carried in principle by σ) and β  (the amount of vacuous information actually carried 

by σ), that is the clear area in the graph of Fig. 5. More generally, and expressed in 

bits, the amount of semantic information γ in σ is: 

γ(σ) = log (α - β)     [18] 

Note the similarity between [14] and [16]. When ϑ(σ) = 1, that is, when the distance 

between σ and w is maximum, then α = β  and γ(σ) = 0. This is what happens when 

we consider T. T is so distant from w to contain only vacuous information. In other 

words, T contains as much vacuous information as P contains relevant information, 

namely 1 sbit.  
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A final comment, before closing this section. Each of the previous extentionalist 

approaches can be given an intentionalist interpretation by considering the relevant 

space as a doxastic space, in which information is seen as a reduction in the degree of 

personal uncertainty given a state of knowledge of the informee. 

 

5. Conclusion 

In this chapter we have been able to visit only a few interesting places. The 

connoisseur might be disappointed and the supporter of some local interests appalled. 

To try to appease both and to whet the appetite of the beginner here is a list of some 

very important concepts of information that have not been discussed: 

informational complexity (Kolmogorov and Chaitin, among others), a measure of the 

complexity of a string of data defined in terms of the length of the shortest binary 

program required to compute that string. Note that Shannon’s H can be considered a 

special case of Kolmogorov complexity K, since H ≈ K if the sequence is drawn at 

random from a probability distribution with entropy = H; 

instructional information (imagine a recipe, an algorithm or an order), a crucial 

concept in fields like computer science, genetics, biochemistry, neuroscience, 

cognitive science and AI (chapters 2 and 3);  

pragmatic information, central in any theory addressing the question of how much 

information a certain informant carries for an informee in a given doxastic state and 

within a specific informational environment. This includes useful information, a key 

concept in economics, information management theory and decision theory, where 

characteristics such as relevance, timeliness, updatedness, usefulness, cost, 

significance and so forth are crucial (chapter 23);  

valuable information in ethical contexts (see chapter 6 and Floridi, forthcoming d); 

environmental information, that is the possible location and nature of information in 

the world (Dretske 1981 and chapters 12-14);  

physical information and the relation between being and information (see Leff and 

Rex 1990 and chapters 12-14); 

biological information (see chapter 16). The biologically minded reader will notice 

that the 4 symbols in the AB system we built in section 3.1 could be adenine, guanine, 

cytosine and thymine, the four bases whose order in the molecular chain of DNA or 

RNA codes genetic information. 
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The nature of these and other information concepts, the analysis of their 

interrelations and of their possible dependence on MTC, and the investigation of their 

usefulness and influence in the discussion of philosophical problems are some of the 

crucial issues that a philosophy of information needs to address. There is clearly 

plenty of very interesting and important work to do.  
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