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1. Introduction

Information “can be sad in many ways’, like being (Arigtotle, Metaphysics G.2), and
the corrdation is probably not accidenta. Information, with its cognate concepts like
computation, data, communication etc., plays a key role in the ways we have come to
underdand, modd and trandform redity. Quite naturdly, information has adapted to
some of being’ s ridges.

Because information is a multifaceted and polyvdent concept, the question
“whet is information?’ is mideadingly smple, exactly like “what is bang?’. As an
ingtance of the Socraic question “ti edi...?’, it poses a fundamentd and complex
problem, intrindgcaly fascinaing and no less chdlenging than “what is truth?’, “what
is virte?” “what is knowledge?” or “what is meaning?’. It is not a request for
dictionary explorations but an ided point of intersection of  philosophica
investigations, whose answers can diverge both because of the conclusons reached
and because of the approaches adopted. Approaches to a Socratic question can usualy
be divided into three broad groups. reductionist, antireductionist and non-reductioni<t.
Theories of information are no exception.

Reductionists support the feesibility of a “unified theory of information” (UTI,
see the UTlI web dte for references), generd enough to capture dl mgor kinds
information (from Shannon's to Baudrillad's, from genetic to neurd), but adso
aufficiently specific to discriminate between conceptua nuances. They dtempt to
show that dl kinds of information are ultimately reducible conceptualy, geneticaly
or genedogicdly to some Ur-concept, mother of dl ingances. The deveopment of a
gysematic UTIl is a matter of time, patience and intdligent recongruction. The
utimate UTI will be hierarchicd, linear (even if probably branching), incdusve and
incompatible with any dternative modd.

Reductionist drategies are unlikely to succeed. Severa surveys have shown
No consensus or even convergence on a sngle, unified definition of information (see
for example Braman 1989, Losee 1997, Machlup 1983, NATO 1974, 1975, 1983,



Schrader 1984, Wellisch 1972, Wersg and Neveling 1975). This is hardly surprising.
Information is such a powerful and flexible concept and such a complex phenomenon
that, as an explicandum, it can be associated with severad explanations, depending on
the level of abdraction adopted and the cluster of requirements and desderata
orientating a theory. Claude Shannon (1993, 180), for one, was very cautious

The word “information” has been given different meanings by various writers in the general field of
information theory. It is likely that at least a number of these will prove sufficiently useful in certain
applications to deserve further study and permanent recognition. It is hardly to be expected that a
single concept of information would satisfactorily account for the numerous possible applications of
this general field.

At the opposte end, antireductionists stress the multifarious nature of the concept of
information and of the corresponding phenomena. They defend the radicd
irreducibility of the different species to a gngle sem, objecting especidly to
reductionist attempts to identify Shannon’'s quantitative concept of information as the
required Ur-concept and to ground a UTI on the mahematical theory of
communication. Antireductionist  drategies are essentidly negative and can  soon
become an impasse rather than a solution. They dlow specidised andyses of the
vaious concepts of information to develop independently, thus avoiding the vague
generdisations and mistaken confusons tha may burden UTI draegies. But ther
fragmented nomindism remains unsatidactory insofar as it fals to account for the
odensble connections permedating and influencng the vaious ways in which
information qua information “can be sad’. Connections, mind, not Wittgensteinian
family resemblances. The genedogicd anadogy would only muddy the waters here,
giving the supefidd impresson of having findly solved the difficulty by merdy
hiding the actud divergences. The die-hard reductionig would dill argue that dl
information concepts descend from the same family, whils the unrepentant
antireductionist would ill object that we are facing mere resemblances, and that the
various information concepts truly have different roots.

Nonreductionists seek to escape the dichotomy between reductionism and
antireductionism by replacing the reductionis hierarchicd modd with a distributed
network of connected concepts, linked by mutud and dynamic influences not
necessxily genetic or genedogicd. This “hypertextud andyss’ can be centraised in
various ways or completely decentralised and perhaps multi-centred.

According to decentrdised or multi-centred approaches, there is no key
concept of information. More than one concept is equdly important, and the



“periphery” plays a counterbdancing role. Depending on the orientation, information
IS seen as interpretation, power, narative, message or medium, conversation,
condruction, a commodity and so on,. Thus, philosophers like Baudrillard, Foucault,
Lyotard, McLuhan, Rorty and Derida ae united by wha they dismiss, if not
chdlenge the predominance of the factud. For them information is not in, from or
about redity. They downplay the aboutness of information and bend its referentia
thrus into a <Hf-referentid cdrde of hermeneuticd communication. Their dassc
target is Catesan foundationdism seen as the clearest expresson of a hierarchicad
and authoritarian gpproach to the geneds judification and flow of information.
Disoriented, they mistake it as the only dternative to their fully decentralised view.

Centralised approaches interpret the various meanings, uses, applications and
types of information as a sysem gravitating around a core notion with theoretica
priority. The core notion works as a hermeneutica device that influences, interreates
and helps to access other notions. In metgphysics, Aristotle hed a smilar view about
being, and agued in favour of the primacy of the concept of substance. In the
philosophy of information, this “subgtantia” role has long been cdamed by factual or
epistemically-oriented semantic information. The basc idea is that, in order to
understand what information is, the best thing to do is to dat by andysng it in terms
of the knowledge it can yidd about its reference. The perspective is not without
competitors. Weaver (1949), for example, supported a tripartite andyss of
information in tems of (1) technica problems concerning the quantification of
information and dedt with by Shannon's theory; (2) semantic problems relating to
meaning and truth, and (3) wha he cdled “influentid” problems concerning the
impact and effectiveness of information on human behaviour, which he thought had to
play an equdly important role. In pragmatic contexts, it is common to privilege a
view of information as primarily a resource for decison making processes. One of the
tasks of this chapter is to show how in each case the centrdity of epigemicaly-
oriented semantic information is presupposed rather than replaced.

We ae now wdl placed to look a the dtructure of this chapter. In the
following pages the question “what is information? is goproached from a non-
reductionist and epistemicaly centralised perspective. In section two, the concept of
semantic  information is reviewed assuming that factud information is the mogt
important and influentid sense in which informeation qua information “can be said”.
No attempt is made to reduce al other concepts to factud information. Factua
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information is like the cepitd of the informationa archipdagos, crucidly postioned
to provide a clear gragp of what information is, and a privileged gateway to other
important concepts that are interconnected but not necessarily reducible to a single
Ur-concept. To show this in practice and to enrich our understanding of what ese
information may be, we shdl look a two neighbouring areas of grest importance.
Section three summaries the mathematicd theory of communication, which gudies
the datistical behaviour of uninterpreted data, a much impoverished concept of
information. Section four outlines some important philosophical programs of research
that investigate a more enriched concept of semantic information. Space congraints
prevents discusson of severa other important concepts of information, but some of
them are a least mentioned in the conclusion.

2. Semantic information

In this section, a generd definition of semantic information is introduced, followed by
a specid definition of factudly-oriented semantic information. The contents of the
section are based on Floridi (2003 and forthcoming a). The approach is loosdy
connected with the methodology developed in Stuation logic (see section 3.2).

2.1. Semantic information as content

Information is often used in connection with communication phenomena to refer to
objective (in the sense of mind-independent or externa, and informee-independent)
semantic contents These can be of various sze and vaue, formulated in a range of
codes and formats, embedded in physical implementations of different kinds. They
can variousy be produced, processed, communicated and accessed. The Cambridge
Dictionary of Philosophy, for example, defines information thus:

an objective (mind independent) entity. It can be generated or carried by messages (words, sentences)
or by other products of cognizers (interpreters) Information can be encoded and transmitted, but the
information would exi st independently of its encoding or transmission.

Examples of information in this broad sense are this Guide, E. A. Poe's The Raven,
Verlane s Song of Autumn, the Rosetta Stone and the movie Fahrenheit 451.

Over the last three decades, many anayses have converged on a Generd
Definition of Information (GDI) as semantic content in terms of data + meaning (see
Floridi forthcoming afor extended bibliography):



GDI) s is an indance of information, undersood as objective semantic content, if
and only if:
GDI.1) s consgsof ndata (d), forn3 1,
GDI.2) the data are well-formed (wfd);
GDI.3) the wfd are meaningful (mwfd = d).
GDI has become an operationd dandard especidly in fidds that treat data and
information as rafied entities (consder, for example, the now common expressons
“data mining” and “information management”). Examples are Information Science
Information Systems Theory, Methodology, Andyss and Desgn; Information
(Systems) Management; Database Desgn; and Decison Theory. Recently, GDI has
begun to influence the philosophy of computing and information (FHoridi 1999 and
Mingers 1997).

According to GDI, information can condst of different types of data d. Data
can be of four types (Floridi 1999):
d.1) primary data. These are the principa data stored in a database, e.g. a smple array
of numbers. They ae the data an informationmanagement sysem is genedly
designed to convey to the user in thefirst place.
d.2) metadata. These are secondary indications about the nature of the primary data
They describe properties such as location, format, updating, availability, copyright
redrictions, and so forth.
d.3) operational data. These are data regarding usage of the data themselves, the
operations of the whole data system and the system’ s performance.
d.4) derivative data. These are data that can be extracted from d.1-d.3, whenever the
latter are used as sources in search of patterns, clues or inferentid evidence, eg. for
comparative and quantitative analyses (ideometry).
GDI indicates thet information cannot be dataless, but it does not specify which types
of d conditute information. This typological neutrality (TyN) is judtified by the fact
that, when the gpparent absence of data is not reducible to the occurrence of negative
primary data, what becomes avalable and qudifies as information is some further
non-primary information mabout s condtituted by some non-primary data d.2-d.4. For
example, if a database query provides an answer, it will provide a least a negative
answer, eg. “no documents found”. If the database provides no answer, ether it fals

to provide any data a dl, in which case no specific information s is avalable, or it



can provide some data d to edablish, for example that it is running in a loop.
Likewise, dlence, as a reply to a question, could represent negative information, eg.
as implicit assent or denid, or it could carry some non-primary informaion m eg. the
person has not heard the question.

Information cannot be datdess. In the smplest case, it can conds of a dSngle
datum (d). A datum is reducible to just a lack of uniformity between two signs. So our
definition of adatum (Dd) is.

Dd)d=(x*y)

where the x and the y are two uninterpreted variables.

The dependence of information on the occurrence of syntacticaly well-formed data,
and of daa on the occurrence of differences varioudy implementable physcdly,
explan why information can be decoupled from its support. Interpretations of this
support-independence vary radicadly because Dd leaves underdetermined not only the
logicd type to which the rdata belong (see TyN), but aso the classification of the
relata (taxonomic neutrality), the kind of support required for the implementation of
their inequdity (ontological neutrality) and the dependence of ther semantics on a
producer (genetic neutrality).

Condder the taxonomic neutrality (TaN) first. A datum is usudly classfied as
the entity exhibiting the anomdy, often because the latter is perceptudly more
congpicuous or less redundant than the background conditions. However, the relaion
of inequdity is binary and symmetric. A white sheet of paper is not just the necessary
background condition for the occurrence of a black dot as a datum, it is a condtitutive
pat of the datum itsdf, together with the fundamental reaion of inequdity that
couples it with the dot. Nothing is a daum per se. Being a daum is an externd
property. GDI endorses the following thess
TaN) adatum isardationd entity.

No data without relata, but GDI is neutra with respect to the identification of data
with specific rdaa In our example, GDI refrains from identifying ether the black
dot or the white sheet of paper as the datum.

Understood as relationd entitiess, data are constraining affordances,
exploitable by a sysem as input of adequate queries that correctly semanticise them to

produce information as output. In short, information as content can aso be described



eroteticaly as data + queries (Horidi, 1999). | shdl return to this definition in section
3.2

Consder now the ontological neutrality (ON). By rgecting the posshility of
dataless information, GDI endorses the following modest thesis
ON) no information without data representation.

Following Landauer and Bennett 1985 and Landauer 1987, 1991 and 1996, ON is
often interpreted maenididicdly, as advocating the imposshility of physcaly
disembodied information, through the equation “representation = physcd
implementation”:

ON.1) no information without physica implementation.

ON.1 B an inevitable assumption when working on the physics of computation, sSnce
computer science must necessarily teke into account the physica properties and limits
of the data carriers. Thus, te debate on ON.1 has flourished especidly in the context
of the philosophy of quantum computing (see Landauer 1991, Deutsch 1985, 1997; Di
Vincenzo and Loss 1998, Steane 1998 provides a review). ON.1 is dso the
ontologicd assumption behind the Physcd Symbol Sysem Hypothess in Al and
Cognitive Science (Newdl and Simon 1976). But ON, and hence GDI, does not
specify whether, ultimately, the occurrence of every discrete state necessarily requires
a material implementation of the data representations. Arguably, environments in
which dl entities, properties and processes are ultimaely noetic (eg. Berkeey,
Spinoza), or in which the materid or extended universe has a noetic or non-extended
matrix as its ontological foundation (eg. Pythagoras, Plato, Descartes, Lebniz,
Fichte, Hegd), seem pefectly cgpable of upholding ON without necessarily
embracing ON.1. The relata in Dd could be monads, for example. Indeed, the classc
realism debate can be reconstructed in terms of the possible interpretations of ON.

All this explains why GDI is dso conggtent with two other popular dogans
this time favourable to the proto-physica nature of information and hence completely
antithetic to ON.1:

ON.2) ‘It from bit. Otherwise put, every “it” Y every paticle, every fied of force,
even the gpace-time continuum itsef¥% derives its function, its meening, its very
exigence entirdy¥ieven if in some contexts indirectly%sfrom the apparatus-dicited
answers to yes-or-no questions, binary choices, bits “It from bit” symbolizes the idea
that every item of the physca world has a bottonm¥aa very deegp bottom, in most



ingances¥san immateria source and explanation; that which we cdl redity arises in
the lagt andyss from the posing of yes-no questions and the registering of equipment-
evoked responses, in short, that al things physcd are information-theoretic in origin
and that thisisa participatory universe.” (Wheeler 1990, 5);

and

ON.3) “[information is] a name for the content of what is exchanged with the outer
world as we adjust to it, and make our adjustment felt upon it.” (Wiener 1954, 17).
“Information is information, not metter or energy. No maeridism which does not
admit this can survive a the present day” (Wiener 1961, 132).

ON.2 endorses an information-theoretic, metaphyscd moniam: the universe's
essentid  nature is digitd, being fundamentdly composed of information as data
intead of matter or energy, with materid objects as a complex secondary
manifedation (a smilar postion has been defended more recently in physics by
Frieden 1998, whose work is based on a Platonist perspective). ON.2 may but does
not have to endorse a computational view of information processes. ON.3 advocates a
more plurdigtic gpproach aong smilar lines. Both are compatible with GDI.

A find comment concerning GDI.3 can be introduced by discussng a fourth
dogan:

ON.4) “In fact, what we mean by information - the dementary unit of informetion - is
adifference which makes adifference’. (Bateson 1973, 428).

ON.4 is one of the earliet and most popular formulations of GDI (see for example
Franklin 1995, 34 and Chadmers 1996, 281; note that the formulation in MacKay
1969, that is “information is a distinction that makes a difference’, predates Bateson's
and, athough less memorable, is more accurate). A “difference” is just a discrete State
(that is a daum), and “meking a differenceg’ smply means that the datum is
“meaningful”, at least potentidly.

Findly, let us consders the semantic nature of the data. How data can come to
have an assgned meaning and function in a semiotic system in the first place is one of
the hardest problems in semantics. Luckily, the point in question here is not how but
whether data condituting information as semantic content can be meaningful
independently of an informee. The genetic neutrality (GeN) supported by GDI states
that:

GeN) d can have a semantics independently of any informee.



Before the discovery of the Rosetta Stone, Egyptian hieroglyphics were dready
regarded as information, even if their semantics was beyond the comprehension of
any interpreter. The discovery of an interface between Greek and Egyptian did not
affect the semantics of the hieroglyphics but only its accesshility. This is the wesk,
conditiona-counterfactual  sense in which GDI.3 spesks of meaningful data being
embedded in information-cariers informee-independently.  GeN  supports  the
posshility of information without an informed subject, to adapt a Popperian phrase.
Meaning is not (at least not only) in the mind of the user. GeN is to be digtinguished
from the sronger, redist thess, supported for example by Dretske (1981), according
to which daa could dso have their own semantics independently of an intdligent
producer/informer. This is adso known as environmental information, and a typica
example given are the concentric rings visble in the wood of a cut tree trunk, which
may be used to estimate the age of the plant.

To summarise, GDI defines information broadly undersood as semantic
content comprised of syntecticdly wdl-formed and meaningful data Its four types of
neutrdity (TyN, TaN, ON and GeN) represent an obvious advantage, as they make
GDI perfectly scdable to more complex cases and reasonably flexible in terms of
aoplicability and compatibility. The next question is whether GDI is satisfactory when
discussng the mog important type of semantic information, namey factud
informetion.

2.2. Semantic infor mation as factual information
We have seen tha semantic information is usudly associated with communicetion.
Within this context, the most important type of semantic information is factual
information, which tells to the informee something about something else, for example
where a place is, what the time is, whether lunch is ready or that penguins are birds.
Factud information has a dedadive (Kant's judicid) nature, is sdisfactorily
interpretable in terms of fird-order, classic predicate logic, is correctly qudifiable
dethicaly and can be gppropriatdly andysed in the following form “a's beng (of
type) F caries the information that b is G” (Dretske 1981, Bawise and Sdigman
1997).

Does GDI provide a definition of factud information? Some philosophers
(Barwise and Sdligman 1997, Dretske 1981, Floridi 2003 and forthcoming a, Grice
1989) have argued that it does not, because otherwise fase information would have to
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count as a type of factud information, and there are no convincing reasons to believe
it does, whilst there are compdlling reasons to believe that it does not (for a detaled
andyss see Horidi forthcoming a). As Dretske and Grice have put it “[...] false
information and mis-information are not kinds of informeation — any more than decoy
ducks and rubber ducks are kinds of ducks’ (Dretske 1981, 45) and “Fase
information is not an inferior kind of information; it just is not information” (Grice
1989, 371). Let us see the problem in more detail.

The difficulty lies here with yet another important neutrdity in GDI. GDI
makes no comment on the truthfulness of data that may comprise information @lethic
neutrality AN):

AN) meaningful and well-formed data qudify as information, no meaiter whether they
represent or convey atruth or afasehood or have no dethic vaue a dl.

Verlane's Song of Autumn counts as information even if it does not make sense to ask
whether it is true or fase, and s0 does every sentence in Old Moore's Almanac, no
maetter how downright fase. Information as purdy semantic content is completdy
decoupled from any aethic consideration (Colburn 2000 and Fox 1983 can be read as
defending this perspective). However, if GDI is teken to define dso factud
information, then

a) fdse information about the world (including contradictions), i.e. misinformation,
becomes a genuine type of factud information;

b) tautologies qudify as factud information;

C) “it is true tha p” where p can be replaced by any instance of genuine factud
information, is no longer a redundant expresson, eg. “it is trug’ in the conjunction
“‘the earth is round qudifies as information and it is trug’ cannot be diminated
without semantic loss; and finally

d) it becomes imposshle to erase factud information semanticaly (we shdl be more
and more informed about x, no matter what the truth value of our data about X is).

None of these consequences is ultimatdy defensble, and their rgection forces a
revison of GDI. “Fdsg’ in “fdse information” is used attributively, not predicatively
As in the cae of a fdse congable, fdse information is not factud information that is
fdse, but not factud information a dl. So “fdse informaion” is like “fdse
evidence’, not an oxymoron, but a way of specifying that the informationa contents
in question do not conform to the Stuation they purport to map, and so fal to qudify
as factud information. Well-formed and meaningful data may be of poor qudity. Data
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that are incorrect (vitisted by errors or inconsgtencies), imprecise (precison is a
measure of the repeatability of the collected data) or inaccurate (accurecy refers to
how close the average data vaue is to the actud vaue) are ill data and may be
recoverable. But, if the are not truthful, they can only amount to semantic content at
best and misnformation at worst.

The specid definition of information (SDI) needs to include a fourth condition
about the positive aethic nature of the dataiin question:
SDI) s isaningance of factud information if and only if:
SDI.1) s consgsof ndata(d), forn3 1,
SDI.2) the data are well-formed (wfd);
SDI.3) the wfd are meaningful (mwfd = d);
SDI.4) the d are truthful.
Factud information encapsulates truthfulness, which does not contingently supervene
on, but is necessxrily embedded in it. And snce informetion is “said primaily in
factud ways’, to put it in Arigoteian terms, fase information can be dismissed as no
factud information a 4dl, dthough it can Hill count as information in the sense of

semantic content.

3. The mathematical theory of communication

Some features of information are intuitively quantitative. Information can be encoded,
stored and transmitted. We aso expect it to be additive and non-negative. Smilar
properties of information ae invedigaed by the mathematical theory of
communication (MTC) with the primary am of devisng efficient ways of encoding
and transferring data.

MTC is not the only successful mathematical gpproach to information theory,
but it certainly is the best and most widely known, and the one that has had the most
profound impact on philosophical andyses. The name for this branch of probability
theory comes from Shannon’'s semind work (Shannon 1948, now Shannon and
Weaver 1998). Shannon pioneered this fidd and obtained many of its principa
results, but he acknowledged the importance of previous work done by other
rescarches a Bell laboratories, most notably Nyquist and Hartley (see Cherry 1978
and Mabon 1975). After Shannon, MTC became known as information theory, an
gopeding but unfortunate label, which continues to cause endless misunderstandings.
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Shannon came to regret its widespread popularity, and we shal avoid using it in this
context.

This section outlines some of the key idess behind MTC, with the am of
understanding the relation between MTC and the philosophy of information. The
reader with no taste for mathematicad formulae may wish to go directly to section 3.2,
where some implications of MTC are discussed. The reader interested in knowing
more can start by reading Weaver 1949 and Shannon 1993b, then Schneider 2000,
Pierce 1980 and Jones 1979 and finaly Cover and Thomas 1991.

3.1. The quantification of raw information
MTC has its origin in the fidd of eectricd communication, as the Sudy of
communication limits. It develops a quantitative approach to information as a means
to answer two fundamenta problems: the ultimate levd of data compresson and the
ultimate rate of data transmisson. The two solutions are the entropy H in equation [9]
and the channe capacity C. The rest of this section illustrates how to get from the
problems to the solutions.

Imagine a very boring device that can produce only one symbol, like Poe's
raven, who can answer only “nevermore’. This is caled a unary device. Even a this

ementary levd, Shannon’s smple modd of communication gpplies (see Fg. 1).

ALPHABET

sentsigna  received signal

INFORMER ENCODING DECODING INFORMEE
information TRANSMITTER RECEIVER » information

“ CHANNEL

NOISE

Information source

message
INFORMANT

Fig.1 Communication mode (adapted from Shannon 1948, 1998)
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The raven is the informer, we are the informee, “nevermore’ is the message (the
informant), there is a coding and decoding procedure through English, a channd of
communication and some possible noise.

Informer and informee share the same background knowledge about the
collection of usable symbols (the alphabet). Given this a priori knowledge, it is
obvious that a unary device produces zero amount of informaion. Smplifying, we
dready know the outcome so our ignorance cannot be decreased. Whatever the
informationd state of the system, asking appropriate questions to the raven does not
make any difference. Note that a unary source answers every question dl the time
with only one symbol, not with slence or symbol, since slence counts as a sgnd, as
wesaw in 2.1. A completely slent source also qualifies as a unary source.

Congider now a binary device that can produce two symboals, like a fair coin A
with its two equiprobable symbols {h, t}; or, as Matthew 5:37 suggests, “Let your
communicetion be Yea, yea, Nay, nay: for whatsoever is more than these cometh of
evil”. Before the coin is bssed, the informee (for example a computer) is in a Sate of
data deficit greater than zero: the informee does not “know” which symbol the device
will actudly produce. Shannon used the technicd term “uncertainty” to refer to data
deficit. In a non-mathemetical context this is a mideading term because of its srongly
semantic connotations. Recdl that the informee con be a very smple machine, and
psychological, mental, doxastic or epistemic dates are clearly irrdlevant. Once the
coin has been tossed, the system produces an amount of raw information that is a
function of the possible outputs, in this case 2 equiprobable symbols, and equd to the
data deficit that it removes.

Let us build a dightly more complex sysem, made of two fair coins A and B.
The AB system can produce 4 ordered outputs. <h, h>, <h, t>, <, h>, <, t>. It
generates a data deficit of 4 units, each couple counting as a symbol in the source
adphabet. In the AB system, the occurrence of each symbol removes a higher data
deficit than the occurrence of a symbal in the A system. In other words, each symbal
contains more raw information. Adding an extra coin would produce a 8 units of data
deficit, further increesng the amount of information caried by esch symbol in the
ABC system, and so on.

We are ready to generdise the examples. Cal the number of possble symbols
N. For N = 1, the amount of information produced by a unary deviceis 0. For N = 2,
by producing an equiprobable symbol, the device ddivers 1 unit of information. And
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for N = 4, by producing an equiprobable symbol the device delivers the sum of the
amount of information provided by coin A plus the amount of information provided
by coin B, that is 2 units of information, dthough the tota number of symbols is
obtained by multiplying A's symbols by B's symbols. Our information measure
should be a continuous and monotonic function of the probability of the symbols. The
mog efficient way of satisfying these requirements is by udng the logarithm to the
base 2 of the number of possible symbols (the logarithm to the base 2 of a number is
the power to which 2 must be raised to give the number, for example log » 8 = 3, since
2° = 8). Logarithms have the ussful property of turning multiplication of symbols into
addition of information units. By taking the logarithm to the base 2 (henceforth log
amply means log 2) we have the further advantage of expressing the units in bits. The
base is partly a matter of convention, like usng centimetres ingtead of inches, partly a
matter of convenience, snce it is ussful when deding with digitd devices that use
binary codes to represent data. Given an dphabet of N equiprobable symbols, we can
rephrase some examples more precisdy (Fig. 2) by usng equation [1]:

log 2 (N) = bits of information per symbol [1]
Device Alphabet Bits of information per symbol
Po€e s raven (unary) 1 symbol log(1) =0
1 coin (binary) 2 equiprobable symbols log(2) =1
2 coins 4 equiprobable symbols log(4) =2
ldie 6 equiprobable symbols log(6) = 2.58
3coins 8 equiprobable symbols log(8) =3
Fig. 2

The basc idea is dl in equaion [1]. Raw information can be quantified in terms of
decrease in data deficit (uncertainty). Unfortunately, red coins are dways biased. To
cdculate how much information they produce one needs to rely on the frequency of
the occurrences of symbols in a finite series of tosses, or on thelr probabilities, if the
tosses are supposed to go on indefinitely. Compared to a fair coin, a dightly biased
coin must produce less than 1 bit of information, but ill more than 0. The raven
produced no information at al because the occurrence of a gring S of “nevermore”’

was not informative (not surprising, to use a more intuitive, but psychologigtic
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vocabulary), and that is because the probability of the occurrence of “nevermore’ was
maximum, o overly predictable. Likewise, the amount of raw information produced
by the biased coin depends on the average informativeness (dso known as average
surprisal, another unfortunate term to refer to the average ddidicd raity) of the
gring Sof h and t produced by the coin. The average informativeness of the resulting
dring S depends on the probability of the occurrence of each symbol. The higher the
frequency of a symbal in S the less raw informétion is being produced by the coin, up
to the point when the coin is s0 biased to produce aways the same symbol and stops
being informative, behaving like the raven. So, to cdculae the average
informativeness of S we need to know how to caculate S and the informativeness of a
i symbol in generdl. This requires understanding what the probability of a i symbol
(P,) to occur is.

The probability P; of the i™ symbol can be “extracted” from equation [1],
where it is embedded in log(N), a specid case in which the symbols are equiprobable.
Using some dementary properties of the logarithmic function we have:

|09(N)=-|09(N'1)=-|09(%)=-|09(P) [2]

The vadue of /N = P can range from 0 to 1. If the raven is our source, the probability
of “good morning” is O. In the case of the coin, P(h) + P(t) = 1, no matter how biased
the coin is. Probability is like a cake that gets diced more and more thinly depending
on the number of guests, but never grows beyond its origina sze. More formdly:

§r=1 3

The dgma notation smply means thet if we add dl probabilities vaues from i =1to i
=N thesumisequa to 1.

We can now be precise about the raven: “nevermore€’ is not informative a dl
because Rievermore = 1. Clearly, the lower the probability o occurrence of a symbol, the
higher is the informativeness of its actud occurrence. The informativeness u of a i
symbol can be expressed by analogy with —log (P) in equation [2]:

u, =- log(R) [4]
Next, we need to cdculate the length of a generd gring S. Suppose that the biased
coin, tossed 10 times, produces the string: <h, h, t, h, h, t, t, h, h, t>. The (length of
the) string S (in our case equd to 10) is equd to the number of times the h type of
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symbol occurs added to the numbers of times the t type of symbol occurs.
Generdising for i types of symbols:

S [5]

SD°Z

S=

i=1
Putting together equations [4] and [5] we see that the average informativeness for a
dring of S symbals is the sum of the informativeness of each symbol divided by the

sum of dl symbols

Su

oz

1
ALY

[6]

Qo
w

,ﬁ

Formula[6] can be amplified thus

éN. [7]

i=1

m|U>

Now S/S is the frequency with which the i symbol occursin Swhen Siis finite. If
the length of Sis left undetermined (as long as one wishes), then the frequency of the
i symbol becomesits probahility P;. So, further generdising formula[7] we have:
N
aru (8]
i=1
Findly, by usng equation [4] we can subgtitute for u; and obtain

N
o

H =-Qq P logP (bits per symbol) [9]
i=1

Equation [9] is Shannon's formula for H = uncertainty, what we have caled data
deficit (actudly, Shannon's origind formula includes a postive constant K which
amounts to a choice of a unit of measure, bits in our case; Shannon sed the letter H
because of RV.L. Hatley's previous work). Equation [9] indicates that the quantity
of raw information produced by a device corresponds to the amount of data deficit
egrased. It is a function of the average informativeness of the (potentially unlimited)
gring of symbols produced by the device. It is easy to prove that, if symbols are
equiprobable, [9] reduces to [1] and that the highest quantity of raw information is
produced by a system whose symbols are equiprobable (compare the fair coin to the

biased one).
To arive a [9] we have used some very smple examples a raven and a

handful of coins. Things in life are far more complex. For example, we have assumed
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that the strings of symbols are ergodic: the probability digtribution for the acurrences
of each symbol is assumed to be dable through time and independently of the
sdection of a cetan dring. Our raven and coins are discrete and zero-memory
sources. The successve symbols they produce are daidicaly independent. But in
red life occurrences of symbols are often interdependent. Sources can be non-ergodic
and have a memory. Symbols can be continuous, and the occurrence of one symbol
may depend upon a finite number n of preceding symbols, in which case the gring is
known as a Markov chain and the source a nth order Markov source. Consider for
example the probability of being sent an “€’ before or after having received the string
“welcom”. And condder the same example through time, in the case of a child
learning how to spdl English words. In brief, MTC develops the previous andyss to
cover a whole variety of more complex cases. We shdl stop here, however, because
in the rest of this section we need to concentrate on other central aspects of MTC.

The quantitative gpproach just sketched plays a fundamenta role in coding
theory (hence in cryptography) and in data storage and transmission techniques.
Recdl that MTC is primarily a sudy of the properties of a channd of communication
and of codes tha can efficiently encipher data into recordable and transmittable
ggnds. Since data can be didributed ether in terms of herethere or nowi/then,
diachronic communication and synchronic analyss of a memory can be based on the
same principles and concepts (our coin becomes a bigtable crcuit or flip-flop, for
example), two of which are so important to deserve a brief explanaion: redundancy
and noise.

Condder our AB system. Each symbol occurs with 0.25 probability. A smple
way of encoding its symbolsisto associate each of them with two digits
<h, h> =00

<h,t> =01
<t,h> =10
<t,t> =11

Cdl this Code 1. In Code 1 a message conveys 2 bits of information, as expected. Do
not confuse bits as bi-nary units of information (recdl that we decided to use log, dso
as a matter of convenience) with bits as bi-nary digits, which is what a 2-symbols
system like a CD-ROM uses to encode a message. Suppose now that the AB system is
biased, and that the four symbols occur with the following probabilities:
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<h,h> =05

<h,t> =0.25
<t,h> =0.125
<t,t> =0.125

This system produces less information, so by usng Code 1 we would be wagting
resources. A more efficient Code 2 gdhould take into account the symbols
probakilities, with the following outcomes:

<h,h>=0 0.5" 1binaydigit=.5
<h,t> =10 0.25" 2binary digits=.5
<t,h> =110 0.125" 3binary digits=.375
<t,t> =111 0.125" 3binary digits=.375

In Code 2, known as Fano Code, a message conveys 1.75 bits of information. One can
prove tha, given that probability distribution, no other coding system will do better
than Fano Code. On the other hand, in red life a good codification is dso modestly
redundant. Redundancy refers to the difference between the physical representation of
a message and the mathematical representation of the same message that uses no more
bits than necessary. Compression procedures work by reducing data redundancy, but
redundancy is not aways a bad thing, for it can help to counteract equivocation (data
sent but never received) and noise (received but unwanted data). A message + noise
contans more data than the origind message by itsdf, but the am of a
communication process is fidelity, the accurate trandfer of the origind message from
sender to receiver, not data increase. We are more likely to reconstruct a message
correctly at the end of the transmission if some degree of redundancy counterbalances
the inevitable noiss and equivocation introduced by the physca process of
communication and the environment. Noise extends the informee's freedom of choice
in sdecting a message, but it is an undesrable freedom and some redundancy can
help to limit it. That is why, in a crowded pub, you shout your orders twice and add
some gestures.

We ae now ready to understand Shannon's two fundamenta theorems.
Suppose the 2-coins biased system produces the following message: <t, h> <h, h>
<t,t> <h, t><h, t>. Usng Fano Code we obtain: 11001111010. The next step is to
send this gring through a channd. Channes have different transmisson raes (C),
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cdculated in terms of bits per second (bps). Shannon’'s fundamenta theorem of the
noiseless channd dates that

Let a source have entropy H (bits per symbol) and a channel have a capacity C (bits per second). Then
itispossibleto encode the output of the source in such away asto transmit at the average rate of C/H —
e symbols per second over the channel where eis arbitrarily small. It is not possible to transmit at an
average rate greater than C/H. (Shannon 1998, 59).

In other words, if you devise agood code you can transmit symbols over a noisaess
channd at an average rate as close to C/H as one may wish, but, no matter how clever
the coding is, that average can never exceed C/H. We have aready seen that the task
is made more difficult by the inevitable presence of noise. However, the fundamenta
theorem for a discrete channd with noise comes to our rescue:

Let a discrete channel have the capacity C and a discrete source the entropy per second H. If H £C
there exists a coding system such that the output of the source can be transmitted over the channel with
an arbitrarily small frequency of errors (or an arbitrarily small equivocation). If H > C it is possible to
encode the source so that the equivocation is less than H — C + ewhere eis arbitrarily small. Thereis
no method of encoding which gives an equivocation less than H — C. (Shannon 1998, 71)

Roughly, if the channd can tranamit as much or more information than the source can
produce, then one can devise an efficient way to code and transmit messages with as
smal an eror probability as desred These two fundamental theorems are among
Shannon's greatest achievements. And with our message findly sent, we may cdose
this section.

3.2. Some conceptual implicationsof MTC
For the mathematica theory of communication (MTC) information is only a sdection
of one symbol from a set of possble symbols, so a ample way of grasping how MTC
quantifies raw information is by congdering the number of yesno questions required
to guess what the source is communicating. One quedion is sufficient to guess the
output of a far coin, which therefore produces 1 hit of information. A 2-far-coins
system produces 4 ordered outputs: <h, h>, <h, t>, <t, h>, <t, t> and therefore requires
two questions, each output containing 2 bits of information, and so on. This erotetic
andyss darifies two important points.

Firg¢, MTC is not a theory of information in the ordinary sense of the word.
The expresson “raw information” has been used to dress the fact that in MTC
information has an entirdy technicd meaning. Condder some examples. Two
equiprobable “yes’ contain the same quantity of raw information, no matter whether

their corresponding questions are “would you like some tea?’ or “would you marry
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me?’. If we knew that a device could send us with equa probabilities either the movie
Fahrenheit 451 or this whole Guide, by recelving one or the other we would receive
many bytes of data but only one bit of raw information. On June 1 1944, the BBC
broadcasted a line from Verlangs Song of Autumn: “Les sanglots longs des violons
de Autumne’. The message contained amos 1 bit of information, an increesngly
likely “yes’ to the question whether the DDay invason was imminent. The BBC then
broadcasted the second line “Blessent mon coeur d'une longueur monotone’. Another
damos meaningless dring of letters but dmogt another bit of information, since it
was the other long-expected “yes’ to the question whether the invason was to teke
place immediady. Geman intdligence knew about the code, intercepted those
messages and even notified Berlin, but the high command falled to dert the Seventh
Army Corps dationed in Normandy. Hitler had dl the information in Shannon's sense
of the word, but failed to understand the rea meaning and importance of those two
gmal bits of data As for oursdves, we were not surprised to conclude that the
maximum amount of raw information is produced by a text where each character is
equaly distributed, that is by a perfectly random sequence.

Second, snce MTC is a theory of information without meaning, and
information — meaning = data, mathematical theory of data communication is a far
more appropriate description than information theory. In section 2.1 we saw that
information as semantic content can aso be described eroteticaly as data + queries.
Imagine a piece of information such as “the earth has only one moon”. It is easy to
polaise dmog dl its semantic content by tranforming it into a query + binary
answer: “does the earth have only one moon? + yes’. Subtract the “yes’ and you are
left with virtudly dl the semantic content, fully de-dethicised (the query is neither
true nor fase). The datum “yes’ works as a key to unlock the information contained
in the query. MTC sudies the codification and transmisson of raw information by
tregting it as data keys, as the amount of detals in a sgnd or message or memory
gpace necessary to unlock the informee's knowledge. As Weaver (1949, 12) remarked
“the word information relates not so much to what you do say, as to what you could
say. MTC deds with the cariers of information, symbols and sgnds, not with
information itsdf. That is information is the measure of your freedom of choice when
you select amessage’.

Since MTC deds not with information itsdf but with the cariers of
information, that is messages condituted by uninterpreted symbols encoded in wel-

20



formed srings of dgnds, it is commonly described as a sudy of information at the
gyntactic leve. MTC can be successfully goplied in ICT (informaion and
communication technologies) because computers ae syntecticad devices What
remansto be clarified ishow H in equation [9] should be interpreted.

Assuming the ided case of a noisdess channd of communicaion, H is a
measure of three equivaent quantities:

a) theaverage amount of raw information per symbol produced by the informer, or

b) the corresponding average amount of data deficit (Shannon’'s “uncertainty”) that
the informee has before the ingpection of the output of the informer, or

c) the corresponding informationa potentidity of the same source, that is its
informational entropy.

H can equdly indicate (8) or (b) because, by sdecting a particular aphabet, the

informer automaticaly crestes a data deficit (uncertainty) in the informee, which then

can be satisfied (resolved) in various degrees by the informant. Recall the erotetic

gare If you use a gngle far coin, | immediady find mysdf in a 1 bit defict

predicament. Use two far coins and my deficit doubles, but use the raven, and my

deficit becomes null. My empty glass is an exact measure of your capecity to fill it. Of

course, it makes sense to tak of raw information as quantified by H only if one can

specify the probability distribution.

Regarding (c), MTC treats raw information like a physca quantity, such as
mass or energy, and the closeness between equation [9] and the formulation of the
concept of entropy in datisticadl mechanics was dready discussed by Shannon. The
informationd and the thermodynamic concept of entropy are relaed through the
concepts of probability and randomness (“randomness’ is better than “disorder” since
the former is a syntactical concept whereas the latter has a srongly semantic vaue),
entropy being a measure of the amount of “mixedupness’ in processes and systems
bearing energy or information. Entropy can dso be seen as an indicator of
revershility: if there is no change of entropy then the process is reversble. A highly
dructured, perfectly organised message contans a lower degree of entropy or
randomness, less raw information and causes a smdler data deficit, condder the
raven. The higher the potentid randomness of the symbols in the aphabet, the more
bits of information can be produced by the device. Entropy assumes its maximum
vaue in the extreme case of uniform didribution. Which is to say that a glass of water

with a cube of ice contains less entropy than the glass of water once the cube has
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melted, and a biased coin has less entropy than a far coin. In thermodynamics, we
know that the gregter the entropy, the less avallable the energy. This means that high
entropy corresponds to high energy deficit, but so does entropy in MTC: higher vaues
of H correspond to higher quantities of data deficit.

4. Some philosophical approachesto semantic information

The mahematical theory of communication gpproaches information as a physcd
phenomenon. Its centra question is whether and how much uninterpreted data can be
encoded and transmitted efficiently by means of a given dphabet and through a given
channd. MTC is not interested in the meaning, aboutness, relevance, usefulness or
interpretation of information, but only in the level of detal and frequency in the
uninterpreted data, being these symbols, dgnas or messages. On the other hand,
philosophical gpproaches seek to give an account of information as semantic content,
investigating quedtions like “how can something count as information? and why?’,
“how can something carry information about something dse?’, “how is information
related to eror, truth and knowledge?’, “when is information useful?’. Philosohers
usudly adopt a propodtiond orientation and an episemic outlook, endorsing, often
implicitly, the prevadence of the factud (they andyse examples like “The Bodlean
library isin Oxford”). How relevant isMTC to Smilar analyses?

In the past, some research programs tried to eaborate information theories
alternative to MTC, with the am of incorporating the semantic dimension. Dondd M.
MacKay (1969) proposed a quantitative theory of quditative information that has
interesting connections with dtuation logic (see below), whereas Doede Nauta (1972)
developed a semiotic-cybernetic approach. Nowadays, few philosophers follow these
lines of research. The mgority agrees that MTC provides a rigorous congraint to any
further theoriang on dl the semantic and pragmaic aspects of information. The
disagreement concerns the crucid issue of the strength of the condraint. At one
extreme of the spectrum, a theory of semantic information is supposed to be very
strongly condrained, perhaps even overdetermined, by MTC, somewhat like
mechanicd engineering is by Newtonian physcs. Weaver's interpretation  of
Shannon’s work is a typical example. At the other extreme, a theory is supposed to be
only weakly congrained, perhaps even completely underdetermined, by MTC,
somewhat like tennis is condrained by Newtonian physics that is in the most

uninteresting, inconsequentia and hence disregardable sense (see for example Soman
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1978 and Thagard 1990). The emergence of MTC in the fifties generated earlier
philosophicd enthusasm that has gradudly cooled down through the decades.
Higoricdly, philosophicad theories of semantic information have moved from “very
strongly condrained” to “only weskly condraned’, becoming increasingly
autonomous from MTC (for areview, see Horidi forthcoming b).

Popper (1935) is often credited as the first philosopher to have advocated the
inverse relation between the probability of p and the amount of semantic information
caried by p. However, sysematic attempts to develop a forma cdculus were made
only after Shannon's breskthrough. MTC defines information in terms of probability
goace didribution. Along smilar lines, the probabilistic approach to semantic
informetion defines the semantic information in p in terms of logica probability space
and the inverse rdaion between information and the probability of p. This gpproach
was initidly suggested by Ba-Hilld and Cangp (Bar-Hilld and Carngp 1953, Bar-
Hilld 1964) and further developed by Hintikka (especiadly Hintikka and Suppes
1970) and Dretske 1981 (on Dretske's gpproach see also chapters 17 and 18). The
detalls are complex but the origind idea is Smple. The semantic cortent (CONT) in p
is measured as the complement of the apriori probability of p:

CONT(p) =1- P(p) [10]
CONT does not satisfy the two requirements of additivity and conditiondization, which
are satisfied by another measure, the informativeness (INF) of p, which is caculated,
following equations [9] and [10], as the reciproca of P(p), expressed in bits, where
P(p) = 1 —CONT(p) :

INF(p) = Iogﬁ:- log P(p) [11]

Things are complicated by the fact that the concept of probability employed in
equations [10] and [11] is subject to different interpretations. In Bar-Hilld and Carnap
the probability digribution is the outcome of a logica condruction of aomic
datements according to a chosen forma language. This introduces a problematic
reiance on a dgrict correspondence between observationd and formd language. In
Dretske, the solution is to make probability vaues refer to dates of affairs €) of the
world observed:

I(s) =—log P(9) [12]
The modal approach modifies the probabilistic approach by defining semantic
information in terms of moda space and incongstency. The information conveyed by

23



p becomes the st of al possble worlds or (more cauttioudy) the st of dl the
descriptions of the relevant possble states of the universe that are excluded by p. The
systemic approach, developed especidly in Stuation logic (Barwise and Perry 1983,
Isradl and Perry 1990, Devlin 1991; Barwise and Sdligman 1997 provide a foundation
for a generd theory of information flow) dso defines information in terms of dates
gace and condgency. However, is less ontologicaly demanding than the moda
goproach, dnce it assumes a dealy limited doman of application, and it is
compatible with Dretske's probabilistic gpproach, dthough it does not require a
probability measure on sets of dates. The informational content of p is not determined
a priori, through a cadculus of posshle gstates dlowed by a representationa language,
but in teems of factua content that p caries with respect to a given dtuation.
Information tracks possble trandtions in a sysem’'s dates space under norma
conditions. Both Dretske and gStuation theories require some presence of information
dreedy immanent in the environment (environmental information), as nomic
regularities or congdraints. This “semantic externdism” can be controversd both
epigemologicadly and ontologicdly. Findly, the inferential approach defines
information in terms of entalment space information depends on vadid inference
relative to a person’ s theory or epistemic State.

Mogt approaches close to MTC assume the principle of alethic neutrality, and
run into the difficulties outlined in 2.2 (Dretske and Barwise are important exceptions,
Devlin rgects truthfulness as a necessary condition). As a resut, the semantic
approach (Forid 2003 and forthcoming & adopts SDI and defines factud
information in terms of data space.

Suppose there will be exactly three guests for dinner tonight. This is our
gtuation w. Imagine that you are told that
T) there may or may not be some guests for dinner tonight; or
V) there will be some guests tonight; or
P) there will be three guests tonight.

The degree of informativeness of T is zero because, as atautology, T applies both to w
and to - w. V peforms better, and P has the maximum degree of informativeness
because, as a fully accurate, precise and contingent truth, it “zeros in” on its target w.
Generdligng, the more digant a true s is from its target w, the larger is the number of

gtuations to which it gpplies, the lower its degree of informativeness becomes. A
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tautology is atrue s that is most “digant” from the world. Let us use the letter J to
refer to the distance between atrue s and w. Using the more precise vocabulary of
gtuation logic, J indicates the degree of support offered by w to s. We can now map
on the x axis the vdues of J given a spedific s and a corresponding target w. In our
example, we know that J(T) = 1 and J(P) = 0. For the sske of amplicity, let us
assume that J(V) = 0.25 (see Horidi 2003 on how to cdculates J vaues). We now
need a formula to caculate the degree of informativeness i of s in rdaionto J(s). It
can be shown that the mogt degant solution is provided by the complement of the
square value of J (s), that isy = 1- x2. Using our symbols we have:

i(s)=1-J(s)? [13]
Fig. 3 shows the graph generated by equation [13] when we include aso negative
vaues of digancefor fses (J rangesfrom —1 = contradiction to 1 = tautology).

Fig. 3 T
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If s has a very high degree of informativeness i (very low J) we want to be able to
sy that it contains a large quantity of semantic information and, vice versa, the lower
the degree of informativeness of s is, the smdler the quantity of semantic information
conveyed by s should be. To cdculate the quantity of semantic information contained
in s relatve to i(s) we need to caculate the area ddimited by equation [13], that is

25




the definite integrd of the function i(s) on the intervd [0, 1]. As we know, the
maximum quantity of semantic information (cdl it a) is caried by P, whose J = 0.
This is equivdent to the whole area ddimited by the curve. Generdisng to s we
have:

< _._2
Qf (s)dx-a—3 [14]

Fig. 4 shows the graph generated by equation [14]. The shaded area s the maximum

amount of semantic information a carried by s.

Fig. 4
i(s)=1-J(s)?
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Aninteresting property of equation [14] isthat, if we expressit in bits, we have
Iog% =log 2- log3=1bhit - 1trit =1 it [15]

A trit is one base-3 digit and represents the amount of information conveyed by a
sdection among one of three equiprobable outcomes. It is linearly equivalent to log 3.
The term shit (semantic bit) indicates our unit of maximum semantic information a,
concerning agiven Stuation w, that can be conveyed by s with J = 0.

Consder now V, “there will be some guedts tonight”. V can be andysed as a
(reasonably finite) gtring of digunctions, that is V = [‘there will be one guest tonight”
or “there will be two gueds tonight” or ... “there will be n gueds tonight’], where n is
the reasonable limit we wish to consider (things are more complex than this, but here
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we only need to grasp the generd principle). Only one of the descriptions inV will be
fully accurate. This means that V adso contains some (perhaps much) information thet
is amply irrdevant or redundant. We shdl refer to this “informationd was€’ in V as
to the vacuous information in V. The amount of vacuous information (cal it b) in V is

also afunction of the disance J of V from w, or more generaly

(‘j i s)dx=b [16]
Since J (V) = 0.25, we have
&ﬁiNMM:QMMQ [17]

Fig. 5 shows the graph generated by equation [17]. The shaded area is the amount of
vacuous informaion b in V. Clearly, the amount of semantic information in V is
amply the difference between a (the maximum amount of information that can be
carried in prindple by s) and b (the amount of vacuous information actudly carried
by s), tha is the clear area in the graph of Fig. 5. More generdly, and expressed in
bits, the amount of semantic informationgins is.

o(s) =log (a - b) [18]
Note the dmilaity between [14] and [16]. When J(s) = 1, that is, when the distance
between s and w is maximum, then a = b and g(s) = 0. This iswhat happens when
we condder T. T is s0 digant from w to contan only vacuous information In other
words, T contans as much vacuous information as P contains relevant information,
namdy 1 shit.
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A find comment, before closng this section. Each of the previous extentiondist
aoproaches can be given an intentiondist interpretation by conddering the relevant
pace as a doxadtic space, in which information is seen as a reduction in the degree of
persond uncertainty given a state of knowledge of the informee.

5. Conclusion

In this chepter we have been dble to vidt only a few interesing places. The
connoisseur might be disgppointed and the supporter of some local interests gppalled.
To try to appease both and to whet the appetite of the beginner here is a list of some
very important concepts of information that have not been discussed:

informational complexity (Kolmogorov and Chaitin, anong others), a measure of the
complexity of a dring of data defined in terms of the length of the shortest binary
program required to compute that string. Note that Shannon's H can be considered a
gpecid case of Kolmogorov complexity K, since H » K if the sequence is drawn at
random from a probability distribution with entropy = H;

instructional information (imagine a recipe, an dgorithm or an order), a crucid
concept in fidds like computer science, genetics, biochemidry, neuroscience,
cognitive science and Al (chapters 2 and 3);

pragmatic information, centra in any theory addressng the question of how much
information a certain informant carries for an informee in a given doxadic sate and
within a specific informationd environment. This incdludes useful information, a key
concept in economics, information management theory and decison theory, where
characteridtics such as rdevance, timdiness, updatedness, usefulness, cog,
sgnificance and so forth are crucia (chapter 23);

valuable information in ethical contexts (see chapter 6 and Horidi, forthcoming d);
environmental information, tha is the possble location and nature of informetion in
the world (Dretske 1981 and chapters 12-14);

physical information and the relation between being and information (see Leff and
Rex 1990 and chapters 12-14);

biological information (see chapter 16). The biologicdly minded reader will notice
that the 4 symbols in the AB system we built in section 3.1 could be adenine, guanine,
cytosne and thymine, the four bases whose order in the molecular chain of DNA or
RNA codes genetic information.
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The nature of these and other information concepts, the anadyds of ther
interrelations and of their possble dependence on MTC, and the investigation of thelr
usefulness and influence in the discusson of philosophicd problems are some of the
crucid issues that a philosophy of information needs to address. There is clearly
plenty of very interesting and important work to do.
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