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Abstract. We present an indexed logical system MALLP(I) for Lau-
rent’s multiplicative additive polarized linear logic (MALLP) [14]. The
system is a polarized variant of Bucciarelli-Ehrhard’s indexed system
for multiplicative additive linear logic [4]. Our system is derived from
a web-based instance of Hamano-Scott’s denotational semantics [12] for
MALLP. The instance is given by an adjoint pair of right and left multi-
pointed relations. In the polarized indexed system, subsets of indexes
for I work as syntactical counterparts of families of points in webs. The
rules of MALLP(I) describe (in a proof-theoretical manner) the denota-
tional construction of the corresponding rules of MALLP. We show that
MALLP(I) faithfully describes a denotational model of MALLP by es-
tablishing a correspondence between the provability of indexed formulas
and relations that can be extended to (non-indexed) proof-denotations.

1 Introduction

In their study of logical relations and the denotational completeness of linear
logic (LL), Bucciarelli and Ehrhard [4] introduced an indexed system MALL(I)
for multiplicative additive linear logic (MALL). In their sequel [5], this system was
extended into full fragment LL(I). The status of this indexed syntactical system is
noteworthy as it stems from relational semantics Rel, which is one of the simplest
denotational semantics for LL. Bucciarelli-Ehrhard’s indexed system is designed
so that each formula corresponds to a relation and each logical rule corresponds
to a denotational interpretation of the corresponding rule in LL. The crucial
ingredient for this correspondence is the domains of formulas: Each formula A
of the indexed system is equipped with a domain d(A) which enumerates the
locations of points in the corresponding relation on |A|. Their indexed system
enjoys basic property, which establishes a relationship between the provability of
indexed formulas and the sub-definability of the corresponding relations in the
denotational semantics of LL. Later A. Bruasse-Bac [3] extended the indexed
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system to the second order by adapting relational semantics to Girard’s objects
of variable type.

Another logical framework in which locations play a key role is that of Gi-
rard’s ludics [11]. In ludics one abstracts locations, where syntactical formulas
give its occurrences through construction of proofs. Several similarities (though
not rigorous) have been noticed with the indexed system discussed above. Among
them, one observes a common idea in the underlying hypersequentialized calcu-
lus [10] on which ludics is founded. In the hypersequenatialized calculus, which
is a variant of MALL, each formula is equipped with a coherent space (rather
than the more primitive notion of relation), and each inference rule is defined
in terms of the construction of cliques for the equipped spaces. While sharing
such similar syntactical construction with reflecting semantics, the key ingredi-
ent, peculiar to ludics, is polarity (see [11]). Polarity was introduced by Girard
[8]. Through Laurent’s formalization of polarized linear logic LLP [14], polarity
turns out to be an important parameter controlling linear proof-theory. Most
fundamentally, polarity enables categorization of Andreoli’s [1] dual properties
of focalization and reversibility of connectives for proof-search in LL. In polar-
ized linear logic, reversible and focusing connectives are characterized simply as
negative and positive. As is the case with ludics, polarity is also a crucial tool
for handling locations game-theoretically. Laurent [15] establishes how polarity
dominates game-theoretical computational models arising from LL. Polarity and
locations are becoming a crucial tandem for understanding the computational
meaning of LL.

Given the above, a natural question arises: Is there any polarized variant of
Bucciarelli-Ehrhard’s indexed system that naturally accommodates polarity in
its indexes? The existence of such a system would guarantee that polarity is a
stable core controlling both syntax and semantics uniformly, whose combination
is at the heart of indexed systems. In this paper, we answer this question af-
firmatively by presenting an indexed system MALLP(I) for the multiplicative
additive fragment MALLP [14] of Laurent’s LLP. Our indexed system is de-
signed by means of multi-pointed relational semantics, a web-based instance of
Hamano-Scott’s denotational semantics [12] for MALLP. The cornerstone of our
multi-pointed relational semantics is a pair of contravariant categories PRell
and PRelr. Left (resp. right) multi-pointed relational semantics PRell (resp.
PRelr) consist of multi-pointed sets (i.e., sets with distinguished multi-points)
and of relations preserving the distinguished elements from left (resp. from right).
Polarity shifting operators are then interpreted as a pair of adjoint functors be-
tween the contravariant pair. In addition to the adjunction, the usual relations
provide bimodule R̂el so that it is closed under left (resp. right) compositions
from PRelr (resp. PRell). Being a polarized variant of Rel, our framework
(〈 PRell, PRelr〉, R̂el) provides one of the simplest denotational semantics for
MALLP.

Our MALLP(I), designed from multi-pointed relational semantics, is a polar-
ized variant of Bucciarelli-Ehrhard’s MALL(I): the usual multiplicative additive
rules for the former coincide with those for the latter under the polarity con-
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straint. It is remarkable that in our MALLP(I) there arise, corresponding to ↓,
parameterized ↓K-rules with subsets K’s of I. Each ↓K-rule comes equipped
with a side condition on domains by reflecting the corresponding categorical
adjunction. In MALLP(I) polarity behaves compatibly with indexes since focus-
ing/reversible properties are captured by indexed positive/negative connectives.
MALLP(I) formulas correspond bijectively to relations arising in our relational
denotational semantics. The main goal of this paper is to establish a basic prop-
erty (Theorem 1), that is a polarized version of Bucciarelli-Ehrhard’s property
established in [4]. This basic property states that a family of points is contained
in a (denotation of) MALLP proof if and only if the corresponding MALLP(I)
formula is provable in the indexed system.

2 Multi-pointed relational semantics for MALLP

In this section, we introduce multi-pointed relational semantics, which is a variant
of relational semantics. Multi-pointed relations are shown to provide a simple de-
notational semantics for polarized multiplicative additive linear logic (MALLP).
(See [14] for the syntax of MALLP.) This is a polarized analogy of the category
Rel of relations, which, as is well-known, provides one of the simplest denota-
tional semantics for usual multiplicative additive linear logic (MALL) (see [5,
2] for Rel). Let us begin by defining a pair of categories PRelr and PRell of
right and left multi-pointed relations. The right/left pair corresponds to nega-
tive/positive polarity of MALLP.
Notation: When X and Y are sets, we denote by X × Y the cartesian product
of them; and by X + Y the disjoint union of them, i.e., {1} × X ∪ {2} × Y .

Definition 1 (PRelr and PRell). The categories PRelr of right-multi-
pointed relations and PRell of left-multi-pointed relations are defined as follows:

An object A is a pair (|A|,mp(A)), where |A| is a set called the web of A, and
mp(A) is a finite subset of |A|. Moreover if |A| 6= ∅, then mp(A) 6= ∅. Each
element of mp(A) is called a distinguished element of A.
A morphism from A to B is a relation R ⊆ |A| × |B| which satisfies

mp(A) = R[mp(B)] for PRelr
[mp(A)]R = mp(B) for PRell

where, for sets X ⊆ |A| and Y ⊆ |B|, and for a relation R ⊆ |A| × |B|,

R[Y ] = {a | ∃b ∈ Y, (a, b) ∈ R} and [X]R = {b | ∃a ∈ X, (a, b) ∈ R}.

Compositions for each category are relational so that given R : A → B and
S : B → C, S ◦ R = {(a, c) | ∃b ∈ B, (a, b) ∈ R and (b, c) ∈ S} : A → C. This
composes in each categories because it holds that R[S[mp(C)]] = (S ◦R)[mp(C)]
and [[mp(A)]R]S = [mp(A)](S ◦ R).

There are obviously forgetful functors | | both from PRelr and PRell to
the category Rel of relations.
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The two categories PRell and PRelr are contravariantly equivalent. This
is given by ( )⊥, which leaves the objects invariant but reverses the relations and
compositions:

( )⊥ : ( PRelr)op ' PRell

Starting from the contravariantly equivalent pair, we give a denotational seman-
tics for polarized MALL by the following Definition 2. See Section 3 and Definition
A.1 in Hamano-Scott [12] for the definition of categorical semantics for MALLP.
Note that, in the following, their general framework based on Definition A.1 is
adapted so that bimodules play a role between the two categorical pair. See also
Cockett-Seely [6] for bimodules in polarized category. Our bimodule may be seen
as a concrete instance of Example 3.0.2 of [6].

Definition 2 (Polarity-changing functors and bimodule).

− The functors ↑ and ↓ are defined as follows:

↓ : PRell −→ PRelr (1)
↑ : PRelr −→ PRell (2)

(On objects) |↓A| = |↑A| = {∗} + |A| with mp(↓A) = mp(↑A) = {∗},
(On morphisms) Given a morphism R ⊆ |A| × |B|,

↓R := ↑R := R + {(∗, ∗)},

which are morphisms of ↓A → ↓B and of ↑A → ↑B.

The unique element of mp(↓A) (resp. mp(↑A)) is often denoted by ∗↓ (resp. by
∗↑) to stress that the distinguished point arises to interpret the ↓ (resp. the ↑).
The above definition yields the strict form (↓N)⊥ = ↑N⊥ and (↑P )⊥ = ↓P⊥ of
De Morgan duality between ↓ and ↑.

Note that the functors (1) and (2) factor through | | to Rel by inducing the
functors from Rel respectively to PRelr and to PRell. By abuse of notation,
the induced functors are also denoted by ↓ and ↑, respectively. See the diagram
depicting Lemma 1 below, where the clockwise and the anticlockwise triangles
show the factorizations.

− A bimodule R̂el(P,N) consists of maps of the form P → N for object P ∈
PRelr and N ∈ PRell so that they are closed under left (respectively, right)

composition of morphisms from PRell (respectively from PRelr). A bimodule
is thus characterized by a profunctor:

R̂el(−,−) : ( PRelr)op × PRell → Set

so that each instantiation determines a set of these maps. We define

R̂el(P,N) = Rel(|P |, |N |) (3)
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That is, the maps P → N consist of usual relations of P → N (i.e., of morphism
of Rel).

Then the bimodule obviously satisfies:

R̂el(1, P⊥ × N) ∼= R̂el(P,N)

where 1 is an object of PRelr such that |1| = {∗} and × is the cartesian
product of Rel for objects of PRell.

Finally, the following series of adjunctions are crucial in order to obtain a
polarized category:

Lemma 1 (Adjunctions). The following adjunctions hold:

PRell ¾
↑
>

-↓
PRelr

µ| |
>

ª
↑

Rel

R

↓
>

I
| |

That is, for every object P ∈ PRelr and N ∈ PRell, there are natural iso-
morphisms

PRell(↑P,N) ∼= R̂el(P,N) ∼= PRelr(P, ↓N) (4)

Proof. We show the right-isomorphism (dually for the left). Let R ∈ PRelr(P, ↓N).
Since R is right-multi-pointed, we have mp(P ) = R[mp(↓N)], which implies that
if (a, ∗↓) ∈ R then a ∈ mp(P ) and that ∀p ∈ mp(P ), (p, ∗↓) ∈ R. Hence, R

is written as {(p, ∗↓) | p ∈ mp(P )} ∪ R′ for a unique R′ ∈ R̂el(P,N). The
correspondence from R to R′ is bijective and gives the natural isomorphism.

Proposition 1 (Multi-pointed relational model for MALLP). The pair
〈 PRell, PRelr〉 together with the module R̂el forms a polarized category, and
hence a denotational semantics for MALLP. This polarized category is denoted
by (〈 PRell, PRelr〉, R̂el).

The categorical framework presented so far yields the following interpretation
of formulas and of proofs of MALLP.

Definition 3 (Interpretation of MALLP formulas). Positive (resp. negative)
formulas A of MALLP are interpreted by objects (|A|,mp(A)) in PRelr (resp.
in PRell):

− |1| = {∗}, |⊥| = {∗} and mp(1) = mp(⊥) = {∗}.
− |>| = |0| = ∅ and mp(>) = mp(0) = ∅.
− |P ⊗ Q| = |P | × |Q|, |M .................................................

............
.................................. N | = |M | × |N | and mp(X ⊗ Y ) = mp(X .................................................

............
.................................. Y ) =

mp(X) × mp(Y ).
− |P ⊕Q| = |P |+ |Q|, |M & N | = |M |+ |N | and mp(X ⊕ Y ) = mp(X & Y ) =

mp(X) + mp(Y ).
− |↑P | = {∗} + |P |, |↓N | = {∗} + |N | and mp(↓N) = mp(↑P ) = {∗}.
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Definition 4 (Interpretation of proofs). Every MALLP-proof π is inter-
preted in (〈PRell,PRelr〉, R̂el) by π∗, which is a map either in PRelr or in
R̂el depending on whether the end sequent contains a positive formula or not,
respectively.

Rules for the usual linear logic are the same as [4]. In the following, for a sequence
M of negative formulas N1, . . . , Nn, the sequence M (resp. M⊥) is identified
with the object N1

.................................................
............
.................................. · · · .................................................

............
.................................. Nn of PRell (resp. N⊥

1 ⊗ · · · ⊗ N⊥
n of PRelr).

− When π is ` P⊥, P , we define π∗ = {(a, a) | a ∈ |P |} ∈ PRelr(P, P )

− When π is
π1

` ∆,N
π2

` Λ,N⊥

` ∆,Λ
cut

, we define

π∗ = {(δ, λ) | ∃a, (δ, a) ∈ π∗
1 and (λ, a) ∈ π∗

2}

Since π∗
2 is always a map in PRelr, π∗ is a map either in PRelr or in R̂el,

depending on whether ∆ contains a positive formula or not, respectively.

− When π is
π1

` M, N

` M, ↓N
↓ , we define

π∗ = π∗
1 ∪ {(p, ∗↓) | p ∈ mp(M)} ∈ PRelr(M⊥, ↓N)

π∗ is obtained from π∗
1 ∈ R̂el(M⊥, N) by the right adjunction of (4).

− When π is
π1

` M, P

` M, ↑P
↑ , we define π∗ = π∗

1 ∈ R̂el(M⊥, ↑P ).

π∗ is obtained from π∗
1 ∈ PRelr(M⊥, P ) by composing η : P → ↑P , which

is the unit of the left adjunction of (4); i.e., η = {(p, p) | p ∈ |P |}. Note that
the composition of η acts identically on morphisms.

Our simple interpretation above provides a nice framework for discriminating
the two proofs of Example 1 below.

Example 1 (Denotations of proofs in (〈 PRell, PRelr〉, R̂el)). Let us consider
a MALLP-sequent ` ↑↓↑1, ↑↓⊥ and two different proofs π1 and π2 for this:

π1 =

` 1,⊥
` ↑1,⊥

↑

` ↓↑1,⊥
↓

` ↑↓↑1,⊥
↑

` ↑↓↑1, ↓⊥
↓

` ↑↓↑1, ↑↓⊥
↑

{(1, B)}
{(1, B)}

{(↓a, B), (1, B)}
{(↓a, B), (1, B)}

{(↑a, ↓c), (↓a, B), (1, B)}
{(↑a, ↓c), (↓a, B), (1, B)}

π2 =

` 1,⊥
` ↑1,⊥

↑

` ↑1, ↓⊥
↓

` ↑1, ↑↓⊥
↑

` ↓↑1, ↑↓⊥
↓

` ↑↓↑1, ↑↓⊥
↑

{(1, B)}
{(1, B)}

{(↑b, ↓c), (1, B)}
{(↑b, ↓c), (1, B)}

{(↓a, ↑c), (↑b, ↓c), (1, B)}
{(↓a, ↑c), (↑b, ↓c), (1, B)}

The right-hand side of each subproof designates its interpretation, where we
take |↑↓↑1| = {↑a, ↓a, ↑b, 1} and |↑↓⊥| = {↑c, ↓c, B} so that ↓a = ↑c, ↑b = ↓c and
1 = B. As is seen above, the two proofs π1 and π2 are interpreted by different
relations.
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3 Indexed multiplicative additive polarized linear logic
MALLP(I)

In this section, we present an indexed logical system MALLP(I), which is a con-
servative extension of MALLP. The syntactical system MALLP(I) arises from our
multi-pointed relational semantics for MALLP, presented in Section 2. Each rule
of MALLP(I) is designed so that it describes the denotational construction of the
corresponding rule of MALLP in (〈 PRell, PRelr〉, R̂el). Our design is inspired
by Bucciarelli-Ehrhard’s system [4] of MALL(I), just as their system stems from
the denotational semantics Rel for MALL. By reflecting the adjunctions of the
polarized category of Section 2, our polarity shifting rule ↓K for each K ⊆ I is
accompanied by a certain side condition. Let us begin by defining formulas of
MALLP(I).

Let I be an index set which is fixed, once and for all. Each formula A of
MALLP(I) is associated with a set d(A) ⊆ I, called the domain of A.

Definition 5 (Formulas and domains). Positive and negative formulas of do-
main J (denoted simply as PJ and NJ , respectively) are defined by the following
grammar: For any sets J,K,L ⊆ I such that K ∩ L = ∅,

PJ ::= 1J | 0∅ | PJ ⊗ PJ | PK ⊕ PL | ↓KNL (positive formula)
NJ ::= ⊥J | >∅ | NJ

.................................................
............
.................................. NJ | NK & NL | ↑KPL (negative formula)

Note that, in contrast to the MALL connectives ⊗,
.................................................

............
.................................. ,⊕,&, the polarity shifting

connectives ↓K and ↑K are provided for each K to have their own domains. To
be precise, ↓KN and ↑KP are defined as follows (the other connectives are the
same as those in [4]):

- For each K ⊆ I, we introduce two new connectives ↓K and ↑K , both of which
have K as their domains, i.e., d(↓K) = d(↑K) = K.
- For L ⊆ I disjoint with K, if N is a negative formula with d(N) = L, then
↓KN is a positive formula with d(↓KN) = K + L.
- For L ⊆ I disjoint with K, if P is a positive formula with d(P ) = L, then ↑KP
is a negative formula with d(↑KP ) = K + L.

For any MALLP(I)-formula A with d(A) = J , we define its negation A⊥ with
d(A⊥) = J in the usual way, using the De Morgan duality for MALLP-formulas.
A J-sequent is an expression of the shape `J ∆ where ∆ is a (possibly empty)
sequence of MALLP(I)-formulas of domains J (denoted as d(∆) = J).

Definition 6 (Restriction). For a MALLP(I)-formula A with d(A) = J , and
for K ⊆ I, we define the restriction of A by K, denoted by A¹K , which is a
MALLP(I)-formula of domain J ∩ K as follows:

- >∅¹K= >∅ and 0∅¹K= 0∅;
- ⊥J¹K= ⊥J∩K and 1J¹K= 1J∩K ;
- (P ⊗ Q)¹K= P¹K ⊗Q¹K , (N

.................................................
............
.................................. M)¹K= N¹K

.................................................
............
.................................. M¹K , (P ⊕ Q)¹K= P¹K ⊕Q¹K ,

(N & M)¹K= N¹K &M¹K , (↑JP )¹K= ↑J∩KP¹K , and (↓JN)¹K= ↓J∩KN¹K .
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Trivially A⊥¹K= (A¹K)⊥. If ∆ is a sequence of MALLP(I)-formulas A1, . . . , An

of domains J , we define ∆¹K= A1¹K , . . . , An¹K so that d(∆¹K) = d(∆) ∩ K.
In order to introduce polarity shifting rule ↓K for MALLP(I), we give the

following definition:

Definition 7 (d(∂M)). For a sequence M of negative formulas, the domain
d(∂M), which is a subset of d(M), is defined as follows:
First let †1, . . . , †n denote all the outermost ↑’s of M and all the ⊥’s outside any
scope of polarity shifting operators. Then M is written as M[†1P1, . . . , †nPn],
where Pm is a positive formula (empty if †m is ⊥) and M[∗1, . . . , ∗n] is an
expression made from ∗1, . . . , ∗n by applying only negative connectives .................................................

............
.................................. and

&. Note that each comma of M is identified with .................................................
............
.................................. . We define

d(∂M) := |M|[d(†1), . . . , d(†n)],

where |M| is the (set-theoretical) expression resulting from the expression
M[∗1, . . . , ∗n] by replacing .................................................

............
.................................. and & respectively with ∩ and ∪. Obviously

d(∂M) ⊆ d(M) since d(M) = |M|[d(†1P1), . . . , d(†nPn)].

Remark 1 ( d(∂M) for distributed M). By distributing .................................................
............
.................................. over &, every M is

rewritten as M1 & · · · & Mn so that each Mi is .................................................
............
.................................. (†ijPij). Then we can more

directly define d(∂M) =
⋂

j d(†1j) + · · · +
⋂

j d(†nj).

We introduce the inference rules of MALLP(I), which consist of the polar-
ity shifting rules on top of Bucciarelli-Ehrhard’s rules [4] of MALL(I) with the
polarity constraint.

Definition 8 (Inference rules of MALLP(I)). Inference rules of MALLP(I)
are defined as follows (the exchange rule is left implicit):
Axioms3 and cut:

`J 1J `∅ ∆,>∅

`J ∆,N `J Λ, N⊥

`J ∆,Λ
cut

For >-axiom `∅ ∆,>∅, its context ∆ contains at most one positive formula.
Multiplicative rules:

`J ∆

`J ∆,⊥J
⊥J

`J ∆,P `J Λ,Q

`J ∆,Λ, P ⊗ Q
⊗

`J ∆,N,M

`J ∆,N
.................................................

............
.................................. M

.................................................
............
..................................

Additive rules:
`J ∆,P

`J ∆, P ⊕ Q
⊕1

`J ∆,P

`J ∆,Q ⊕ P
⊕2

`J ∆¹J , N `K ∆¹K ,M

`J+K ∆,N & M
&

For ⊕1-,⊕2-rules, observe that Q has to have the empty domain.
For &-rule, it is assumed that d(N) = J and d(M) = K with J ∩ K = ∅, and
that d(∆) = J + K.
3 MALLP(I) has no propositional variables, and every formula consists of constants.

Hence, the usual identity axiom is derivable in Lemma 2.
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Polarity shifting rules:
(↑-rule)

`J ∆,P

`J ∆, ↑∅P
↑

(↓K-rule) For every K ⊆ I such that J ∩ K = ∅,

`J M¹J , N

`K+J M, ↓KN
↓K with K ⊆ d(∂M) (5)

↓K-rule is applicable only when the side condition is satisfied. This condition is
a syntactical description of the adjunctions (4) of Section 2. (See Proposition 2
bellow.)

Remark 2 (MALLP ≺ MALLP(I)). For each inference rule of MALLP(I), if the
conclusion sequent is of the domain ∅, then so is the premise sequent(s). Thus,
the rules for sequents of the empty domain are identified with the standard rules
of MALLP. Moreover, every MALLP(I)-proof σ for `∅ ∆ contains only sequents
of the empty domain. Hence σ is considered as a MALLP-proof for ` ∆. Thus
MALLP(I) is a conservative extension of MALLP.

The following lemmas hold in the same way as in [4].

Lemma 2 (Identity). `J A,A⊥ is provable for any MALLP(I)-formula A of
domain J .

Lemma 3 (Restriction). If `J ∆ is provable, then so is `J∩K ∆¹K for any
K ⊆ I.

In Laurent’s original polarized linear logic MALLP [14], positive/negative
polarities classify the dual proof-theoretical properties for connectives: reversible
connectives .................................................

............
.................................. ,&, ↓ for negative formulas and focusing connectives ⊗,⊕, ↑ for

positive formulas. Our MALLP(I) retains the dual properties, as expected.

Lemma 4 (Focalized sequent property). If `J ∆ is provable in MALLP(I),
then ∆ contains at most one positive formula.

Lemma 5 (Reversibility). {.................................................
............
.................................. ,&, ↓K}-rule is reversible. That is, if the con-

clusion sequent of {.................................................
............
.................................. ,&, ↓K}-rule is provable, then so is the premise sequent.

Proof. We prove ↓K-rule. (The other rules are immediate.) Suppose `K+J M, ↓KN
is provable. Then Lemma 3, by restricting the domain of the sequent to (K +
J) ∩ J , implies that `J M¹J , ↓∅N is provable. On the other hand, `J N⊥, N is
provable by Lemma 2. Thus we have the following proof of `J M¹J , N :

`J M¹J , ↓∅N

`J N⊥, N

`J ↑∅N⊥, N
↑

`J M¹J , N
cut
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Let us see, by the following example, how the side condition of ↓K-rule is
applied. For its denotational characterization, see Proposition 2.

Example 2 (↓K-rule and the side condition). Let us consider the following prov-
able sequent of domain {1, 2, 3, 4}:

` ↑{1}1{2} & ↑{3}1{4} , ↓{1,3}⊥{2,4}

Let us search for a proof of the sequent. It is possible to apply ↓{1,3}-rule because
the side condition is satisfied: d(↓{1,3}) ⊆ d(∂(↑{1}1{2} & ↑{3}1{4})) = {1}∪{3}.
Then we obtain ` (↑{1}1{2} & ↑{3}1{4})¹{2,4} , ⊥{2,4}, which coincides with
` ↑∅1{2} &↑∅1{4} , ⊥{2,4}. Then by applying a &-rule and then ↑-rules, we have
the following proof σ (the braces {, } of domains are omitted for simplicity):

σ =

` 12 , ⊥2

` ↑∅12 , ⊥2
↑

` 14 , ⊥4

` ↑∅14 , ⊥4
↑

` ↑∅12 & ↑∅14 , ⊥2,4
&

` ↑112 & ↑314 , ↓1,3⊥2,4

↓1,3

Let us consider another example by modifying the domains of the above
example: ` ↑{1}1∅ & ↑∅1{2} , ↓{1,2}⊥∅. This sequent is shown to be unprovable
by the cut-elimination (Corollary 1): first, ↓{1,2}-rule is not applicable since the
sequent fails to satisfy the side condition: d(↓{1,2}) 6⊆ d(∂(↑{1}1∅ & ↑∅1{2})) =
{1} ∪ ∅. Therefore, the last rule must be:

` ↑11∅ , ↓1⊥∅ ` ↑∅12 , ↓2⊥∅

` ↑11∅ & ↑∅12 , ↓1,2⊥∅
&

Although the left premise sequent is provable, the right premise sequent is not:
By Lemma 4 the last rule must be ↓{2}-rule, which is not applicable because of
the violation of the side condition: d(↓{2}) 6⊆ d(∂(↑∅1{2})) = ∅.

The formulas of indexed system MALLP(I) are designed so that the domain
of each formula indicates (syntactically) a family of points, thus a relation, in the
multi-pointed relational semantics of Section 2. Hence, there is a bijective corre-
spondence between MALLP(I)-formulas and families of points in the webs for the
corresponding MALLP-formulas. Let us describe this correspondence precisely.

Notation: For a ∈ XJ and j ∈ J , aj denotes the j-th element of a. For a ∈ XJ

and b ∈ Y J , we denote by a×b the element of (X×Y )J given by (a×b)j = (aj , bj)
for each j ∈ J . If K,L ⊆ I are disjoint and if a ∈ XK and b ∈ Y L, we denote by
a + b the element of (X + Y )K+L defined by case; (a + b)k = ak if k ∈ K; and
(a + b)l = bl if l ∈ L. For J ⊆ I, we denote by (c)J the J-indexed family of the
constant c, i.e., the unique element of {c}J .

Definition 9 (Translation of MALLP-formulas). To any MALLP-formula A,
and any family a ∈ |A|J , we associate a MALLP(I)-formula A〈a〉 of domain J
inductively as follows:

10



We here treat only ↓N and ↑P . (The other connectives are the same as in [4] .)
− If A ≡ ↓N , then a = (∗↓)K + b with the family (∗↓)K ∈ {∗↓}K and b ∈ |N |L
such that K+L = J . Then we set A〈a〉 = ↓KN〈b〉, which is a MALLP(I)-formula
of domain J .
− If A ≡ ↑P , then a = (∗↑)K + b with the family (∗↑)K ∈ {∗↑}K and b ∈ |P |L
such that K+L = J . Then we set A〈a〉 = ↑KP 〈b〉, which is a MALLP(I)-formula
of domain J .

If ∆ = A1, . . . , An is a sequence of MALLP-formulas, we define |∆| = |A1| ×
· · ·×|An|. If γ ∈ |∆|J , then, using our usual notational conventions, we can write
γ = γ1 × · · · × γn with γm ∈ |Am|J , and we set ∆〈γ〉 = A1〈γ1〉, . . . , An〈γn〉.

We have the following lemma, which will be used to prove Proposition 3.

Lemma 6. Let ` ∆ be a sequent in MALLP and let γ ∈ |∆|J . Let K ⊂ I. Let
γ¹J∩K be the restriction of γ to J ∩ K. Then ∆〈γ¹J∩K〉 = ∆〈γ〉¹K .

The following Lemma 7 ensures that the correspondence given in Definition
9 is bijective to the MALLP(I)-formulas:

Lemma 7. If A is a MALLP(I)-formula of domain J and A¹∅ is the correspond-
ing MALLP-formula, there is a unique family a ∈ |A¹∅ |J such that A = A¹∅ 〈a〉.

For a typographical convenience, a MALLP-formula A¹∅ and a sequent M¹∅
are sometimes denoted by A and M, respectively.

We see the above bijective correspondence by the following example.

Example 3 (MALLP(I)-formula as a relation). Let us consider the MALLP(I)-
sequent ` ↑{1}1{2}&↑{3}1{4} , ↓{1,3}⊥{2,4} of Example 2. We determine the cor-
responding family γ ∈ |↑1& ↑1, ↓⊥|{1,2,3,4} as follows: Let us represent the webs
|↑1 & ↑1| = {↑a, 1a, ↑b, 1b} and |↓⊥| = {↓c, Bc}. The representation designates
the correspondence between components of formulas and points. We determine
γ1 as follows: Since it is the domains of ↑{1} and ↓{1,3} that contain the index 1,
γ1 is a pair (↑a, ↓c) of the corresponding points to ↑{1} and ↓{1,3}. Similar calcula-
tions for γ2, γ3, γ4 yield γ1 = (↑a, ↓c), γ2 = (1a, Bc), γ3 = (↑b, ↓c), γ4 = (1b, Bc).
In fact, γ happens to be the denotation of the MALLP-proof, which is obtained
from MALLP(I)-proof σ of Example 2 by forgetting all the domain symbols.

By means of the above bijective correspondence, the side condition of ↓K-rule
turns out to be a syntactic counterpart of multi-pointedness of relations:

Proposition 2 (Semantical characterization of the side condition of
↓K-rule). Let J and K be disjoint subsets of I. Let M be a sequence of negative
formulas of domain K + J , and N be a formula of domain J in MALLP(I). Let
γ × a ∈ |(M, ↓N)|K+J be the family of points associated with (M, ↓KN). Then
the following two conditions are equivalent:

1. K ⊆ d(∂M)
2. γ × a is right-multi-pointed, that is, for any index i ∈ K, γi ∈ mp(M).

Proof. By induction on the number of & in M[∗1, . . . , ∗n].
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Example 4 (A non-↑-soft sequent of MALLP(I)). Let us consider the sequent
` ↑{1}1{2} , ↑{1}↓∅⊥{2}, which is not provable in MALLP(I). By the cut-elimination
theorem of MALLP(I) (Corollary 1 below), the last rule should be a ↑-rule. How-
ever, it is impossible to apply the rule because both the outermost ↑’s have the
non-empty domain {1}. The unprovability corresponds, by virtue of Theorem 1
bellow, to the non-↑-softness of the corresponding relation γ ⊆ |↑1, ↑↓⊥| such
that γ1 = (∗↑, ∗↑). Note that if a relation is not ↑-soft (i.e., does not factor
through any outermost ↑), it cannot be contained in any denotations of MALLP-
proofs since MALLP syntax is ↑-soft. See Section 7.1.1 of [12] for the ↑-softness.

4 A correspondence between MALLP(I)-provability and
denotations of MALLP-proofs

This section is devoted to proving the basic property of MALLP(I), which is the
main theorem of this paper. The property, named after Bucciarelli-Ehrhard [4],
characterizes a relationship between provability of formulas of MALLP(I) and
denotations of proofs of MALLP. The characterization is a polarized version of
Bucciarelli-Ehrhard’s Proposition 20 of [4]. As a corollary of the basic property,
the cut-elimination theorem of MALLP(I) is obtained.

Theorem 1 (Basic property of MALLP(I)). Let ∆ be a sequence of formulas
of MALLP, and let γ ∈ |∆|J . The following two statements are equivalent.

i) There exists a proof π of ∆ in MALLP such that γ ∈ (π∗)J .
ii) The sequent `J ∆〈γ〉 is provable in MALLP(I).

The theorem is proved by the following Proposition 3 and Proposition 4,
which are converse to each other: Proposition 3 shows an implication from (i)
to (ii) and conversely for Proposition 4. In the following proofs, we sometimes
denote by AJ a MALLP(I)-formula A with domain J . We first show the following:

Proposition 3. Let ∆ be a sequent in MALLP and let π be a proof (resp. cut-
free proof) of ` ∆ in MALLP. Let γ ∈ (π∗)J (for some J ⊆ I). Then the sequent
`J ∆〈γ〉 has a proof (resp. cut-free proof) σ in MALLP(I) such that σ¹∅= π.

Proof. By induction on the MALLP-proof π. We consider only the polarity shift-
ing rules (the other rules are the same as Lemma 18 of Bucciarelli-Ehrhard [4]).

− When π is
π1

` M, P

` M, ↑P
↑

since γ ∈ (π∗)J = (π∗
1)J ⊆ |M, P |J by the interpretation of ↑-rule, γ is of the

form δ × a with δ ∈ |M|J and a ∈ |P |J . Thus by the induction hypothesis,
the MALLP(I)-sequent `J M〈δ〉, P 〈a〉 has a proof σ1 such that σ1¹∅= π1. By
applying ↑-rule to σ1, we obtain the following proof σ of `J (M, ↑P )〈γ〉 so that
σ¹∅= π:

σ1

`J M〈δ〉, P 〈a〉
`J M〈δ〉, ↑∅P 〈a〉

↑

12



− When π is
π1

` N ,M

` N , ↓M
↓

since γ ∈ (π∗)J =
(
{(p, ∗↓) | p ∈ mp(N )} ∪ π∗

1

)J ⊆ |N , ↓M |J by the interpre-
tation of ↓-rule, γ is of the form δ × a with δ ∈ |N |J and a ∈ |↓M |J . Since
|↓M |J = ({∗↓} + |M |)J , there are two uniquely defined disjoint sets K and L

such that K + L = J , and a is of the form (∗↓)K + b with (∗↓)K ∈ {∗↓}K and
b ∈ |M |L. According to this decomposition of J , δ is also written as δ¹K +δ¹L

with δ¹K∈ |N |K and δ¹L∈ |N |L. Note that we have δ¹K∈ mp(N ) by the inter-
pretation of ↓-rule in the multi-pointed relational semantics. Thus γ is written
as the disjoint union γ = (δ¹K ×(∗↓)K) + (δ¹L ×b), where δ¹K ×(∗↓)K ∈
{(p, ∗↓) | p ∈ mp(N )}K and δ¹L ×b ∈ (π∗

1)L. By the induction hypothesis for
π1, the MALLP(I)-sequent `L N〈δ¹L〉,M〈b〉 has a proof σ1 such that σ1¹∅= π1.
Since N〈δ¹L〉 = N〈δ〉¹L by Lemma 6, we apply ↓K-rule to σ1 in order to obtain
the following proof σ of `J (N , ↓M)〈γ〉 such that σ¹∅= π:

σ1

`L N〈δ〉¹L , M〈b〉
`K+L N〈δ〉 , (↓M)〈(∗↓)K + b〉

↓K

The side condition for ↓K-rule is satisfied since γ is of the form (δ¹K ×(∗↓)K) +
(δ¹L ×b) with δ¹K∈ mp(N )K (see Proposition 2).

Next, we show the converse of Proposition 3:

Proposition 4. Let ∆ be a sequent in MALLP. Let γ ∈ |∆|J (for some J ⊆ I),
and let σ be a proof of `J ∆〈γ〉 in MALLP(I). Then γ ∈ (σ¹∅ ∗)J .

Proof. By induction on the MALLP(I)-proof σ. We consider the polarity shifting
rules since the other rules are the same as those in Lemma 19 of [4]. In the
following proof, a MALLP-formula A¹∅ and a sequent ∆¹∅ are denoted by A and
∆, respectively.

− When σ is
σ1

`J ∆,P

`J ∆, ↑∅P
↑

there is, by Lemma 7, γ = δ × a ∈ |∆, ↑P|J such that ∆J , ↑∅PJ = (∆, ↑P)〈γ〉.
Note first that a ∈ |P|J holds since the domain of the outermost ↑ of ↑∅PJ =
(↑P)〈a〉 is empty. Thus `J ∆,P coincides with `J ∆〈δ〉,P〈a〉, and hence we
have δ × a ∈ (σ1¹∅ ∗)J by the induction hypothesis. Then, by the denotational
interpretation of ↑-rule of MALLP, we conclude:

γ = δ × a ∈ (σ1¹∅ ∗)J = (σ¹∅ ∗)J .

− When σ is
σ1

`L M¹L, N

`K+L M, ↓KN
↓K

with K ⊆ d(∂M),

there is, by Lemma 7, γ ∈ |M, ↓N|K+L such that MK+L, ↓KNL = (M, ↓N)〈γ〉.
Because K and L are disjoint, γ is written as the following disjoint union:

γ = (δ¹K ×(∗↓)K) + (δ¹L ×b) ∈ |M, ↓N|K+L,
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where δ¹K ×(∗↓)K ∈ |M|K × {∗↓}K and δ¹L ×b ∈ |M|L × |N|L. Since
`L M¹L, N coincides with `L M〈δ¹L〉,N〈b〉, we have δ¹L ×b ∈ (σ1¹∅ ∗)L by the
induction hypothesis. Since the side condition of ↓K-rule implies δ¹K∈ mp(M)K

(see Proposition 2), we obtain:

(δ¹K ×(∗↓)K) + (δ¹L ×b) ∈
(
{(p, ∗↓) | p ∈ mp(M)} ∪ σ1¹∅ ∗)K+L

.

Thus, by the interpretation of ↓-rule of MALLP, we conclude γ ∈ (σ¹∅ ∗)K+L.
As a corollary, we have the following semantical cut-elimination à la Bucciarelli-

Ehrhard [5].

Corollary 1 (Cut-elimination of MALLP(I)). The sequent calculus system
MALLP(I) enjoys cut-elimination. That is, if a sequent is provable, then it is
provable without using cut-rule.

Proof. Assume `J ∆ is provable with a MALLP(I)-proof σ. By Lemma 7, ∆ is
of the form ∆〈γ〉 for a sequence ∆ of MALLP-formulas and γ ∈ |∆|J . Then by
Proposition 4, γ ∈ (σ¹∅ ∗)J . Since σ¹∅ is a MALLP-proof of ` ∆, there exists a
cut-free MALLP-proof π for the sequent by the cut-elimination of MALLP. Since
σ¹∅ ∗ = π∗ by Proposition 1, we have γ ∈ (π∗)J . Then, by Proposition 3, there
exists a cut-free MALLP(I)-proof ρ of `J ∆〈γ〉, which sequent is `J ∆.

5 Discussions and Future work

Let us discuss several comparisons of our polarity shifting operators with Bucciarelli-
Ehrhard’s exponentials of [5]. First, our multi-pointed relational interpretation
of ↓A and ↑A is seen as a restriction of their interpretation of !A and ?A (pg.212
of [5]) to the multisets of cardinality at most one (i.e., |↑A| = |↓A| = {[a] | a ∈
|A|} ∪ {[ ]}). Note that the empty multiset [ ] corresponds to our distinguished
element ∗. Due to this restriction, the contraction rule is absent in our interpre-
tation. On the other hand, the interpretation of the promotion rule of LL (pg.240
of [5]) simulates ours of the ↓-rule for MLLP (without additives) by restricting
the cardinality n for the index of the family to either 0 or 1. Second, our indexed
↓KN and ↑KP of Definition 5 coincide with Bucciarelli-Ehrhard’s !uN and ?uP
when u is the injection from L to L + K. Then our translation of Definition 9
corresponds to theirs (pg.213 of [5]).

As another comparison, it is straightforward to generalize our construction of
this paper into a polarized variant of LL(I) of [5] with exponentials. By weakening
the bijective correspondence of Lemma 7 into surjective one, the construction
yields an indexed system for Laurent’s LLpol augmented with polarity shifting
operators ↑ and ↓.

Regarding future works, a phase semantics for MALLP(I) should be exam-
ined. Phase semantics is a standard truth-value semantics for linear logic. Such
a semantics for MALLP(I) is obtained by a generalization of our polarized phase
semantics [13] for MALLP. In [13] a topological structure was given to a phase
space by interpreting ↓ and ↑ as interior and closure operators, respectively.
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For the generalization, an I-product phase spaces become crucial analogously
to Bucciarelli-Ehrhard [4, 5] and Ehrhard [7]. In our polarized setting the prod-
uct topology on this phase space is important to understand parameterized ↓K

connectives for MALLP(I). A phase semantics for MALLP(I) yields, by virtue of
Theorem 1, a new denotational semantics for MALLP. Moreover a truth valued
completeness of such a phase semantics leads naturally to a weak denotational
completeness in the sense of Girard [9] and Bucciarelli-Ehrhard. In particular,
such a denotational completeness explicates an I-indexed topological logical re-
lations for polarized linear logic.
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A Multiplicative additive polarized linear logic MALLP

Formulas of MALLP are given by the following grammar:

P ::= X | P ⊗ P | P ⊕ P | 1 | 0 | ↓N
N ::= X⊥ | N

.................................................
............
.................................. N | N & N | ⊥ | > | ↑P

Notation: P,Q (with or without subscript) (resp. N,M) denote positive (resp.
negative) formulas. ∆, Λ denotes multisets of formulas; N ,M denotes sequents
consist only of negative formulas, called negative sequents.

Inference rules of MALLP are defined as follows:

` N, N⊥ ` 1
` ∆,>

Here ∆ contains at most
one positive formula.

` ∆, N ` N⊥, Λ

` ∆, Λ
cut

` ∆
` ∆,⊥ ⊥

` ∆, N, M

` ∆, N
.................................................

............
.................................. M

.................................................
............
..................................

` ∆, P ` Λ, Q

` ∆, Λ, P ⊗ Q
⊗

` ∆, N ` ∆, M

` ∆, N & M
&

` ∆, P

` ∆, P ⊕ Q
⊕1

` ∆, Q

` ∆, P ⊕ Q
⊕2

` M,N

` M, ↓N
↓

` ∆, P

` ∆, ↑P
↑

B Multi-pointed relational interpretation of MALLP-proofs

Definition 4 (Interpretation of proofs in (〈 PRell, PRelr〉, R̂el))

When π is ` 1 , we define

π∗ = {∗1} ∈ PRelr

When π is
π1

` ∆
` ∆,⊥ ⊥ , we define

π∗ = {(δ, ∗⊥) | δ ∈ π∗
1}

When π is
π1

` ∆, N,M

` ∆,N
.................................................

............
.................................. M

.................................................
............
.................................. , we define

π∗ = {(δ, (a, b)) | (δ, a, b) ∈ π∗
1}

When π is
π1

` ∆,P
π2

` Λ,Q

` ∆,Λ, P ⊗ Q
⊗ , we define

π∗ = {(δ, λ, (a, b)) | (δ, a) ∈ π∗
1 and (λ, b) ∈ π∗

2} ∈ PRelr(∆⊥ ⊗ Λ⊥, P ⊗ Q)
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When π is
π1

` ∆,N
π2

` ∆,M

` ∆,N & M
& , we define

π∗ = {(δ, (1, a)) | (δ, a) ∈ π∗
1} ∪ {(δ, (2, b)) | (δ, b) ∈ π∗

2}

When π is
π1

` ∆,P

` ∆,P ⊕ Q
⊕1

, we define

π∗ = {(δ, (1, a)) | (δ, a) ∈ π∗
1} ∈ PRelr(∆⊥, P ⊕ Q)

Similar for ⊕2.
When π is ` ∆,> we define

π∗ = ∅

When π is ` P⊥, P , we define

π∗ = {(a, a) | a ∈ |P |} ∈ PRelr(P, P )

When π is
π1

` ∆,N
π2

` Λ,N⊥

` ∆,Λ
cut

, we define

π∗ = {(δ, λ) | ∃a, (δ, a) ∈ π∗
1 and (λ, a) ∈ π∗

2}

Note that π∗
2 is always a map in PRelr. Hence π∗ is a map either in

PRelr or in R̂el depending whether ∆ contains a positive formula or not,
respectively.

When π is
π1

` M, N

` M, ↓N
↓ , we define

π∗ = π∗
1 ∪ {(p, ∗↓) | p ∈ mp(M)} ∈ PRelr(M⊥, ↓N)

π∗ is obtained from π∗
1 ∈ R̂el(M⊥, N) by the right adjunction of (4).

When π is
π1

` M, P

` M, ↑P
↑ , we define

π∗ = π∗
1 ∈ R̂el(M⊥, ↑P ).

π∗ is obtained from π∗
1 ∈ PRelr(M⊥, P ) by composing η : P → ↑P which

is the unit of the left adjunction of (4); i.e., η = {(p, p) | p ∈ |P |}. Note that
the composition of η acts identically on morphisms.

In the above rules for negative formulas, π∗ is a map either in PRelr or in R̂el
depending whether ∆ contains a positive formula or not, respectively.
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C Complete definitions

Definition 5 (Domains of formulas) Formulas and their domains of MALLP(I)
are defined as follows:

- 0 and > are two constants, both having empty domain.
- For each J ⊆ I, we introduce two new constants ⊥J and 1J , both of which

have J as their domains; i.e., d(1J) = d(⊥J) = J .
- For each J ⊆ I,

if P and Q are positive formulas such that d(P ) = d(Q) = J , then P ⊗Q is
a positive formula with d(P ⊗ Q) = J .
if N and M are negative formulas such that d(N) = d(M) = J , then N

.................................................
............
.................................. M

is a negative formula with d(N .................................................
............
.................................. M) = J .

- For J,K ⊆ I, with J ∩ K = ∅,
if P and Q are positive formulas with d(P ) = J and d(Q) = K, then P ⊕Q
is a positive formula with d(P ⊕ Q) = J + K.
if N and M are negative formulas with d(N) = J and d(M) = K, then
N & M is a negative formula with d(N & M) = J + K.

Definition 9 (Translation of MALLP-formulas) To any formula A of MALLP,
and any family a ∈ |A|J , we associate a formula A〈a〉 of MALLP(I) of domain J
as follows:

- For A ≡ 0 or A ≡ >, if J 6= ∅ then, since |A|J = ∅ in that case, A〈a〉 is
undefined. If J = ∅, then |A|J has exactly one element, namely the empty
family ∅, and we set 0〈∅〉 = 0 and >〈∅〉 = >.

- If A ≡ 1 or A ≡ ⊥, then a is the constant family (∗)J , and we set 1〈(∗)J〉 =
1J and ⊥〈(∗)J〉 = ⊥J .

- If A ≡ P ⊗ Q, then a = b × c with b ∈ |P |J and c ∈ |Q|J , and we set
A〈a〉 = P 〈b〉 ⊗ Q〈c〉 which is a well-formed formula of MALLP(I) of domain
J .
Similarly for A ≡ N

.................................................
............
.................................. M , we set A〈a〉 = N〈b〉................................................................

............................... M〈c〉.
- If A ≡ P ⊕ Q, then a = b + c with b ∈ |P |K and c ∈ |Q|L and K + L = J .

Then we set A〈a〉 = P 〈b〉⊕Q〈c〉 which is a well-formed formula of MALLP(I)
of domain J .
Similarly for A ≡ N & M , we set A〈a〉 = N〈b〉 & M〈c〉.

D Omitted proofs

Proof of Lemma 2 . By induction on A. We show the particular case where
A ≡ ↓KN with d(N) = L such that K + L = J . Other cases are shown by the
same way as [4]. Since `L N,N⊥ is provable by the induction hypothesis, we
have the following proof:

`L N,N⊥

`L N, ↑∅N⊥ ↑

`K+L ↓KN, ↑KN⊥
↓K
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Proof of Lemma 3. By induction on the proof of `J ∆.

When the last rule of the proof is
`J M¹J , N

`L+J M, ↓LN
↓L, by the induction hypothesis,

`J∩K M¹J∩K , N¹K is provable. Then we have the following proof:

`J∩K M¹J∩K , N¹K

`(L∩K)+(J∩K) M, ↓L∩K(N¹K)
↓L∩K

where (L ∩ K) + (J ∩ K) = (L + J) ∩ K and ↓L∩K(N¹K) = (↓LN)¹K .

Proof of Lemma 4. Straightforward by induction on the construction of proof
of `J ∆ as in [14].

Proof of Lemma 5. .................................................
............
.................................. -rule is immediate. For &-rule, assume that `K+L

M, N & M is provable, where d(N) = K and d(M) = L with K ∩ L = ∅.
We show that the left premise sequent of &-rule is provable. The same applies
to the right premise sequent. Lemma 3, by restricting the domain of the sequent
to (K + L)∩K, implies that `K M¹K , (N & M)¹K is provable. Note that d(M)
is ∅ in (N & M)¹K because K and L are disjoint. On the other hand, `K N⊥, N
is provable by Lemma 2. Thus we have the following proof of `K M¹K , N :

`K M¹K , (N & M)¹K

`K N⊥, N

`K N⊥ ⊕ M⊥, N
⊕1

`K M¹K , N
cut

Proof of Lemma 7. By induction on A. In particular, when A ≡ ↓KNL, by
the induction hypothesis, there is unique a ∈ |NL¹∅ |L such that NL = NL¹∅ 〈a〉.
By taking (∗↓)K ∈ {∗↓}K , we have (↓KNL) = (↓KNL)¹∅ 〈(∗↓)K + a〉.

Proof of Proposition 2. By induction on the number of & in M[∗1, . . . , ∗n].
(Base case) By identifying .................................................

............
.................................. ’s with commas, M is of the form †1P1, . . . , †nPn.

Then the side condition is written as K ⊆
⋂

†m∈∂M d(†m). The given γ is of the
form δ × b such that δ ∈ (|†1P1| × · · · × |†nPn|)K+J and b ∈ |↓M |K+J . Note
that b¹K , the restriction of J-indexed family b to K, is a constant family (∗↓)K .
Then the side condition equivalently says that, δ¹K= ((∗†1 , . . . , ∗†n

))K where
(∗†1 , . . . , ∗†n

) ∈ mp(M). This is equivalent that γ is right-multi-pointed: When
(x, ∗↓) ∈ γ, we have (x, ∗↓) ∈ γ¹K= δ¹K ×b¹K , which means x ∈ mp(M).
(Induction case) We assume, without loss of generality, that M is of the form
L, B1 & B2. Let d(B1) = K1 + J1 and d(B2) = K2 + J2 such that K = K1 + K2

and J = J1 + J2.
Since & is reversible, from the premise sequent `J (L, B1 & B2)¹J , N of given
↓K-rule, we obtain

`J1 L¹J1 , B1¹J1 , N¹J1 `J2 L¹J2 , B2¹J2 , N¹J2

`J L¹J , B1¹J1 &B2¹J2 , N
&
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Then by applying ↓Ki
-rule (i = 1, 2) for each premise sequent, we have

`Ji L¹Ji , Bi¹Ji , N¹Ji

`Ki+Ji L¹Ki+Ji , Bi, ↓Ki
(N¹Ji

)
↓Ki

where ↓Ki(N¹Ji) = (↓KN)¹Ki+Ji . Note that the side conditions Ki ⊆ d(∂(L¹Ki+Ji

, Bi)) for the ↓Ki-rules (i = 1, 2) are equivalent to the condition K ⊆ d(∂M) for
the ↓K-rule because

d(∂M) = d(∂(L, B1 & B2)) = d(∂(L¹K1+J1 , B1)) + d(∂(L¹K2+J2 , B2))

On the other hand, γ ∈ |L,B1 & B2, ↓N|K+J is written as

γ = γ1 + γ2 ∈ |L,B1, ↓N|K1+J1 + |L,B2, ↓N|K2+J2 .

Thus, by the induction hypothesis, for each i = 1, 2, the side condition for the
above ↓Ki

-rule is, in effects, states that γi is right-multi-pointed. Since the right-
multi-pointedness of γ is equivalent to the right-multi-pointedness of both γi,
we have obtained what we wanted to prove.

Proof of Proposition 4.

− When σ is
σ1

`J ∆,N
σ2

`J Λ,N⊥

`J ∆,Λ
cut

there is, by Lemma 7, γ ∈ |∆,Λ|J such that ∆J , ΛJ = (∆,Λ)〈γ〉. So γ is of
the form δ × λ such that ∆J = ∆〈δ〉 and ΛJ = Λ〈λ〉. For the left-upper sequent
`J ∆, N , there is a pair of MALLP-formula N and J-indexed family a ∈ |N|J such
that ∆J , NJ = ∆〈δ〉,N〈a〉. Hence δ × a ∈ (σ1¹∅ ∗)J holds by the induction hy-
pothesis. For the right-upper sequent `J Λ,N⊥, note first that NJ = N〈a〉 yields
N⊥

J = (N〈a〉)⊥ = N⊥〈a〉. Thus the sequence ΛJ , N⊥
J is of the form Λ〈λ〉,N⊥〈a〉,

hence λ× a ∈ (σ2¹∅ ∗)J holds by the induction hypothesis. To sum up, we have
γ = δ × λ ∈ |∆,Λ|J with

δ × a ∈ (σ1¹∅ ∗)J and λ × a ∈ (σ2¹∅ ∗)J .

By the relational composition to interpret cut-rule, we conclude γ ∈ (σ¹∅ ∗)J .

20


