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Abstract

This paper presents a polarized phase semantics, with respect to which
the linear fragment of second order polarized linear logic of [Laurent 99]
is complete. This is done by adding a topological structure to Girard’s
phase semantics [Girard 87]. The topological structure results naturally
from the categorical construction developed in [Hamano-Scott 07]. The
polarity shifting operator ↓ (resp. ↑) is interpreted as an interior (resp.
closure) operator in such a manner that positive (resp. negative) formulas
correspond to open (resp. closed) facts. By accommodating the exponen-
tials of linear logic, our model is extended to the polarized fragment of
the second order linear logic. Strong forms of completeness theorems are
given to yield cut-eliminations for the both second order systems. As an
application of our semantics, the first order conservativity of linear logic
is studied over its polarized fragment of [Laurent 02]. Using a counter
model construction, the extension of this conservativity is shown to fail
into the second order, whose solution is posed as an open problem in [Lau-
rent 02]. After this negative result, a second order conservativity theorem
is proved for an eta expanded fragment of the second order linear logic,
which fragment retains a focalized sequent property of [Andreoli 92].
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1 Introduction

Since Laurent’s [1999] introduction of polarized linear logic, the notion of po-
larity of Girard [1991] has turned out to be an important hidden parameter
controlling linear proof-theory. Laurent’s formalization, in effect, provides a
framework for explaining Andreoli’s focusing proofs ([Andreoli 92]) in terms of
the focalized sequent property. Danos-Joinet-Schellinx [1997] also relates polar-
ity and focusing proofs for classical logic. The focalized sequent property of
a logical system, which is not necessarily a polarized system, means that if a
sequent is provable with only polarized formulas, especially in polarized linear
logic, it contains at most one positive formula, in which case we call the sequent
“focalized.” Since the positive formula is always focused, each proof of polarized
linear logic gives a focusing proof in Andreoli’s sense. Laurent [2002] shows a
first order conservativity theorem of linear logic LL over its polarized fragment
LLpol. That is, if a (polarized) focalized sequent is provable in LL, then it is also
in LLpol. Since all the proofs of LLpol are automatically focusing, it follows that
any focalized sequent is provable with a focusing proof in LL. Combined with
the focalized sequent property of LL, the conservativity neatly captures a main
idea underlying polarity in linear logic: the “polarity” restriction on formulas
leads naturally to focusing proofs. Moreover, seen from a logic programming
viewpoint (cf. [Miller 04]), the conservativity is also important since we have
only to work with focusing proofs. In his proof of the first order conservativity,
Laurent made essential use of the subformula property of LL, which ensures that
if a focalized sequent is provable then it is provable with only polarized formu-
las. When we try to extend the conservativity to the second order linear logic
LL2, we immediately encounter a difficulty with the second order ∃-rule, which
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results in the loss of the subformula property. For this reason Laurent [2002] has
left it open whether the conservativity result can be extended to second order.

In order to give an answer to the above question, we introduce a phase se-
mantics for second order polarized linear logic. Phase semantics is introduced
in [Girard 87] for an algebraic semantics of LL, and a noncommutative version
is also studied in [Abrusci 91]. Phase semantics is weaker than either game or
categorical semantics (e.g. [Laurent 02, Melliès 03, Hamano-Scott 07]) in the
sense that only the notion of provability (and not that of proof) is considered.
However, phase semantics has been quite useful to show various results for linear
logic (eg. finite model property [Lafont 97], uniform treatment of cut-elimination
[Okada 99, Terui 07], relationship to denotational model [Ehrhard 04]). In ad-
dition, compared with categorical semantics, phase semantics with its “simpler”
structure is more naturally extendable to second order, as is seen in [Okada 99].
In particular, in the phase semantics of [Okada 99], a strong form of completeness
theorem is given to yield the second order cut-elimination, for which syntactical
methods hardly work. The main feature of our polarized phase semantics is its
employment of a topological structure, which accommodates the two polarities
as openness and closedness. This interpretation is an algebraic instance of the
categorical construction developed in [Hamano-Scott 07] and is based upon the
adjunction between interior and closure operators for the topology. A simi-
lar adjunction has recently been discussed in [Melliès 05] for game semantical
studies of linear logic as well as in [Selinger 01] in his continuation-passing-
style models of λµ-calculus. Most recently after M. Hasegawa’s observation,
Melliès-Tabareau [2007] announce a categorization of phase semantics by using
the continuation monad in their categorical semantics based on the adjunction.
Few attempts have so far been made to clarify the notion of polarity in terms of
topology, although as regards usual linear logic, topolinear spaces are studied
for exponential connectives (e.g., [Girard 87, Sambin 95]). Indeed, to the best
of our knowledge, no formulation of phase semantics for polarized linear logic
has previously appeared in the literature. In the following, we introduce two
kinds of second order topological phase semantics—a polarized phase seman-
tics for multiplicative additive polarized linear logic MALLP2, and an enriched
polarized phase semantics for LLpol2—and prove their strong completeness by
using Okada’s [1999] method, which implies second order cut-eliminations.

Then we first show by using a counter model construction that LL2 is not
conservative over LLpol2 (Proposition 4.2), which is a rather unexpected by-
product of our polarized phase semantics. We next observe that LL2 does not
have the focalized sequent property (Proposition 4.4). With these “negative”
results, it appears that LL2 lacks the central idea of polarity in linear logic
mentioned above, and that it offers no bridge between polarity and focusing. In
order to remedy this shortcoming, we introduce an η-expanded fragment LLη2
of LL2, in which atoms are exponential forms (i.e., !X⊥ (resp. ?X) for a positive
(resp. negative) atom). Such a restriction, which was also adopted in [Laurent
99, 05a], has a natural semantical counterpart in our polarized phase spaces; a
topological structure derived from the exponential connectives of LL coincides
with a topological structure for the polarity. Moreover, syntactically, under the
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restriction, the focalized sequent property is recovered. Accordingly our main
goal in this paper is to establish the conservativity of LLη2 over its polarized
fragment LLη

pol2 (Theorem 4.17). The conservativity follows from our main
proposition (Proposition 4.16) which ensures that if a non polarized sequent
is provable in LLη2, then it is canonically decorated with ! and ? so that the
transformed polarized sequent is provable in LLη

pol2.
The rest of this paper is organized as follows. Section 2 provides a brief

overview of MALLP2. In Section 3, we introduce two kinds of polarized phase
semantics—one for MALLP and one for LLpol—and extend them to second order
so as to yield complete models of MALLP2 and LLpol2, respectively. Section
4 is concerned with conservativity of first and second orders, and there the
main theorem (Theorem 4.17) is established. In Section 5, we remark that
restricted forms of the additives are definable in the second order multiplicative
exponential polarised linear logic MELLpol2.

2 Linear fragment MALLP2 of second order po-
larized linear logic

In this section, we review the second order multiplicative additive polarized
linear logic MALLP2 of [Laurent 02]. In MALLP2, the exponentials ! and ? of
the second order linear logic are replaced by the more primitive polarity shifting
operators ↓ and ↑.

Formulas of MALLP2 are given by the following grammar:

P ::= X | P ⊗ P | P ⊕ P | 1 | 0 | ↓N | ∃X.P

N ::= X⊥ | N
.................................................

............
.................................. N | N & N | ⊥ | ⊤ | ↑P | ∀X.N

Notation: P,Q (with or without subscript) (resp. N,L) denote positive (resp.
negative) formulas; A denotes any (positive or negative) formula. Γ, ∆ denote
multisets of formulas; Q (resp. N ) denotes sequents consisting only of positive
(resp. negative) formulas called positive sequents (resp. negative sequents).

Inference rules of MALLP2 are defined as follows:

⊢ N, N⊥
ax ⊢ Γ, N ⊢ N⊥, ∆

⊢ Γ, ∆
cut

⊢ Γ, N, L

⊢ Γ, N
.................................................

............
.................................. L

.................................................
............
..................................

⊢ Γ, P ⊢ ∆, Q

⊢ Γ, ∆, P ⊗ Q
⊗

⊢ Γ, N ⊢ Γ, L

⊢ Γ, N & L
&

⊢ Γ, P

⊢ Γ, P ⊕ Q
⊕1

⊢ Γ, Q

⊢ Γ, P ⊕ Q
⊕2

⊢ 1
1

⊢ Γ
⊢ Γ,⊥ ⊥ ⊢ Γ,⊤ ⊤

Here Γ contains at most
one positive formula.
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⊢ N ,N

⊢ N , ↓N
↓

⊢ Γ, P

⊢ Γ, ↑P
↑

⊢ Γ, N

⊢ Γ,∀X.N
∀

X does not appear free

in the lower sequent.

⊢ Γ, P [X := Q]

⊢ Γ, ∃X.P
∃

Q denotes a positive formula.

Note that in the ∃-rule the formula Q substituted to X is restricted to a
positive formula.

Polarized linear logic has the following focalized sequent property, which is
an important proof-theoretical property called the positive formula property in
[Laurent 02].

Definition 2.1 (Focalized sequent and FSP) A sequent Γ of polarized for-
mulas is called focalized when it contains at most one positive formula.
A logical system L, which is not necessarily a polarized system, has the focalized
sequent property (FSP) if the following holds: if ⊢ Γ is provable in L with only
polarized formulas and by restricting the ⊤-rule to a focalized sequent, then Γ
is focalized.

Proposition 2.2 [Laurent 02, 99] MALLP2 has FSP.

3 Polarized phase semantics

This section introduces two kinds of topological phase spaces for first order
logics; polarized phase spaces for MALLP in Section 3.2, and enriched polarized
phase spaces for polarized linear logic LLpol in Section 3.5. They are extended to
second order so as to yield complete models of MALLP2 and LLpol2, respectively.

3.1 Phase space for MALL

We first review the phase spaces of [Girard 87], with respect to which multi-
plicative additive linear logic MALL is complete.

Definition 3.1 (Phase space) A phase space is M = (M,⊥) such that

− M is a commutative monoid with · as its monoid operator and ε as its unit
element. The monoid operator · is lifted for subsets α, β ⊆ M as follows:

α · β = {x · y | x ∈ α, y ∈ β}.

− ⊥ is a fixed subset of M . Then we define

α⊥ = {x | x · y ∈ ⊥ for all y ∈ α}.

A fact is a subset α of M such that α = α⊥⊥. We denote the set of facts
of M by DM⊥⊥ or simply by D⊥⊥ when M is clear from the context.
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For any α, β ⊆ M , the following sets and operations are defined:

α ⊗ β = (α · β)⊥⊥ α
.................................................

............
.................................. β = (α⊥ ⊗ β⊥)⊥ = (α⊥ · β⊥)⊥

α ⊕ β = (α ∪ β)⊥⊥ α & β = α ∩ β
1 = ⊥⊥ = {ε}⊥⊥ α −◦ β = α⊥.................................................

............
.................................. β = (α · β⊥)⊥

0 = ⊤⊥ ⊤ = M

See [Girard 87] for several properties which hold in phase spaces.
The set of facts D⊥⊥ forms an algebraic example of ∗-autonomous category

with products, whose objects are facts, and whose morphisms are set-inclusions
among facts.

3.2 Polarized phase space for MALLP

In this subsection, we introduce a polarized phase semantics. Our motivation
for the semantics is a simple question: What is a semantical counterpart of the
syntactical notion of polarity in phase spaces? Our ingredient for the answer
is a topological structure, which accommodates the notion of polarity so that
positive and negative can be captured by the semantical notion of openness and
closedness respectively in the topological structure. Thus the polarity shifting
operator ↓ (dually ↑) is interpreted as an interior (resp. closure) operator.
This interpretation stems from the categorical construction of [Hamano-Scott
07] when applied to phase spaces in particular. Let us start this subsection by
defining our interior operator.

Definition 3.2 (Interior operator) Let M = (M, ·, ε) be a commutative
monoid. An interior ↓ is an operator from the power set P(M) of M to P(M)
which satisfies the following conditions. For any α, β ∈ P(M),

1. (Intensivity) ↓α ⊆ α

2. (Idempotency) ↓α ⊆ ↓↓α
3. (Monotonicity) If α ⊆ β, then ↓α ⊆ ↓β
4. (Openness) ↓α · ↓β ⊆ ↓(α · β)

Remark 3.3 (Interior operator) The usual definition of interior operator is
(1), (2), and ↓(α ∩ β) = ↓α ∩ ↓β, which is stronger than our conditions (1), (2)
and (3). Our condition (3) is enough to guarantee that an infinite union of open
sets is open. See Proposition 3.14 below for a category-theoretical status of the
operator.

Remark 3.4 (Openness of the monoid operator) A map f : M −→ M is
open if f(↓α) ⊆ ↓(f(α)) holds for every α ∈ P(M). Thus a binary map f(x1, x2)
is open if f(↓α, ↓β) ⊆ ↓(f(α, β)) for every α, β ∈ P(M). Hence the above
condition (4) means that the monoid operator · is an open map.

A closure operator is defined, in a phase space, as the de Morgan dual
operator of ↓.
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Definition 3.5 (Closure operator) Let M = (M,⊥) be a phase space, and
let ↓ be an interior operator. A closure ↑ : P(M) −→ P(M) is defined as an
operator which satisfies the following conditions:

↑(α⊥) = (↓α)⊥ and (↑α)⊥ = ↓(α⊥).

We say that a set α is open (or ↓-invariant) if α = ↓α, and α is closed (or
↑-invariant) if α = ↑α.

Lemma 3.6 (Duality) For any fact α ∈ D⊥⊥,

↑α = (↓(α⊥))⊥.

Proof. (↓(α⊥))⊥ = ↑α⊥⊥ = ↑α.

¿From Definition 3.5 and Lemma 3.6 we have the following duality.

Lemma 3.7 α is closed iff α⊥ is open, for any fact α ∈ D⊥⊥.

Since ↓ and ↑ are de Morgan dual with respect to ⊥ to each other, both
operators are shown to preserve ⊥⊥-invariance.

Lemma 3.8 (↓ and ↑ preserve ⊥⊥-invariance) For any fact α ∈ D⊥⊥,

↓α = (↓α)⊥⊥ and ↑α = (↑α)⊥⊥.

Proof. (↓α)⊥⊥ = (↑α⊥)⊥ = ↓α⊥⊥ = ↓α. (↑α)⊥⊥ = (↓α⊥)⊥ = ↑α⊥⊥ = ↑α.

Remark 3.9 (Closure operator of intuitionistic phase spaces and ↑) In
studies of intuitionistic phase spaces, several authors [Abrusci 90, Troelstra 92,
Ono 93, Okada-Terui 99] introduce closure operators by generalizing the ( )⊥⊥-
operator of classical linear logic. Although the de Morgan duals of such closure
operators satisfy (1), (2) and (3) of Definition 3.2, they do not satisfy (4).

A polarized phase space is a phase space augmented with an interior opera-
tor.

Definition 3.10 (Polarized phase space) A polarized phase space is M =
(M,⊥, ↓) such that

− (M,⊥) is a phase space;

− ↓ is an interior operator such that

5. 1 ⊆ ↓1, where 1 = ⊥⊥.

A polarized phase space yields the domains DM+ (or simply D+) of the set
of open facts of M , i.e., {α ∈ DM⊥⊥ | α = ↓α}, and DM− (or D−) of the set of
closed facts i.e., {α ∈ DM⊥⊥ | α = ↑α}, where positive formulas and negative
formulas are interpreted, respectively.
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Proposition 3.11 (Adjunctions)

(Inj+ ⊣ ↓) For any α ∈ D+ and β ∈ D⊥⊥,

α ⊆ β iff α ⊆ ↓β

That is, ↓ : D⊥⊥ −→ D+ is right adjoint to Inj+ : D+ ↪→ D⊥⊥.

(↑ ⊣ Inj−) For any β ∈ D⊥⊥ and γ ∈ D−,

β ⊆ γ iff ↑β ⊆ γ

That is, ↑ : D⊥⊥ −→ D− is left adjoint to Inj− : D− ↪→ D⊥⊥.

Note that the counit of the first adjunction is given by Intensivity (1) of Defini-
tion 3.2. These adjunctions give rise to the following adjunction ⇑ ⊣ ⇓ between
D+ and D−, where ⇓= ↓ ◦ Inj−, and ⇑= ↑ ◦ Inj+:

D+ -
⇑
⊤

¾ ⇓
D−

¡
¡

¡
¡ª

↓
⊤

¡
¡

¡µ
Inj+£¢

D⊥⊥

@
@

@@I Inj−

£¢
⊤@

@
@@R

↑

Alternatively, this diagram says that the full subcategory D− (resp. D+) of
closed (resp. open) facts is a reflective (resp. coreflective) subcategory of the
∗-autonomous category of facts D⊥⊥ with a reflector ↑ (resp. coreflector ↓).

In polarized phase spaces, we have a nice semantical characterization for the
polarity:

Proposition 3.12 (Positives are open; negatives are closed)
α ⊕ β, α ⊗ β are both open for any open facts α, β; and α & β, α

.................................................
............
.................................. β are both

closed for any closed facts α, β. Moreover, 1 = ⊥⊥ and 0 = ⊤⊥ are open, and
⊥ and ⊤ = M are closed. That is, the coreflective (resp. reflective) subcategory
D+ (resp. D−) of D⊥⊥ is closed under positive operations ⊗,⊕, along with their
respective units 1 and 0 (resp. under negative operations .................................................

............
.................................. , &, along with their

respective units ⊥ and ⊤).

Proof. We prove only for ⊗ and ⊕. (Dually for .................................................
............
.................................. and &, and the units are

immediate.)
As for ⊗, by the openness of the monoid operator ·, we have (α · β)⊥⊥ =
(↓α · ↓β)⊥⊥ ⊆ (↓(α · β))⊥⊥ = ↓((α · β)⊥⊥). The other direction is immediate
from the intensivity.
As for ⊕, using the fact α ⊆ (α ∪ β)⊥⊥ and the monotonicity, we have ↓α ⊆
↓((α ∪ β)⊥⊥). Since the same applies to β, we have ↓α ∪ ↓β ⊆ ↓((α ∪ β)⊥⊥).
Thus we have (α ∪ β)⊥⊥ = (↓α ∪ ↓β)⊥⊥ ⊆ (↓((α ∪ β)⊥⊥))⊥⊥ = ↓((α ∪ β)⊥⊥).
The other direction is immediate from the intensivity.

Propositions 3.11 and 3.12 imply that the triple (D⊥⊥,D+,D−) forms an
algebraic example of polarized ∗-autonomous category of [Hamano-Scott 07].
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Remark 3.13 (Polarized ∗-autonomous category) A polarized ∗-autonomous
category C+,− consists of a ∗-autonomous category with products C, and a re-
flective (and a coreflective) full subcategory C− (resp. C+) of C with a reflector
↑ (resp. coreflector ↓). That is, there are distinguished functors ↑ : C −→ C−
and ↓ : C −→ C+ satisfying: ↑ is left adjoint to the inclusion Inj− : C− ↪→ C, and
↓ is right adjoint to the inclusion Inj+ : C+ ↪→ C. (Cf. Proposition 3.11.) The
subcategory C− (and C+) is required to be closed under negative (resp. posi-
tive) operations. (Cf. Proposition 3.12.) See [Hamano-Scott 07] for the detailed
account.

Furthermore, category theory provides a nice characterization of our interior
and closure operators on D⊥⊥.

Proposition 3.14 (Interior as monoidal comonad) Let D⊥⊥ be the ∗-autonomous
category of facts of a polarized phase space M = (M,⊥, ↓). The interior (resp.
closure) operator ↓ (resp. ↑) on D⊥⊥ gives rise to a monoidal comonad (resp.
comonoidal monad) over D⊥⊥, and vice versa.

Proof. We prove for ↓ (dually for ↑). By the equivalence of two concepts of
adjunction and of comonad, the first adjunction (Inj+, ↓, η, ϵ) of Proposition
3.11 gives rise to a comonad ↓ = (↓, δ = η↓, ϵ) over D⊥⊥, and vice versa.
The conditions (1) and (2) of Definition 3.2 correspond to the counit ϵ and the
comultiplication δ of the comonad, respectively. The condition (3) describes the
functoriality of the comonad. Moreover the conditions (4) and (5) correspond
to the following functorial morphisms (4’) and (5’) which describe monoidalness
of the comonad:

4’. mα,β : ↓α ⊗ ↓β
η↓α⊗↓β−−−−−→ ↓(↓α ⊗ ↓β)

↓(ϵα⊗ϵβ)−−−−−−→ ↓(α ⊗ β)

5’. m1 = η1 : 1 −→ ↓1.

We give some examples of polarized phase spaces.

Example 3.15 (Polarized phase space)
1. For a submonoid I of M , by defining

↓α = (α ∩ I)⊥⊥,

we have an interior operator. Note that this construction of an interior opera-
tor is the same as that of the exponential in an enriched phase space without
weakening and contraction. (See Example 3.26 of Section 3.4.)

2. The multiplicative monoid Z3 = Z/Z3 of integers of modulo 3 yields a phase
space (Z3, {1, 2}) where M = Z3 and ⊥ = {1, 2}. Moreover Z3 yields a polarized
phase space: For a submonoid I = {1, 2}, the interior operator ↓ is defined as
↓α = (α ∩ I)⊥⊥. In this polarized phase space, ∅, {1, 2} and {0, 1, 2} are all
facts, where ∅ is open, {1, 2} is clopen and {0, 1, 2} is closed.
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3.3 Second order polarized phase model for MALLP2 and
completeness

In this subsection, we extend our polarized phase spaces of Section 3.2 into sec-
ond order so as to yield a complete semantics for MALLP2. We give a certain
semantical restriction for the usual interpretation of the second order existen-
tial quantifier ∃ of [Okada 99]. Our restriction corresponds to the syntactical
constraint for the ∃-rule in MALLP2, in which rule a formula substituted to
the variable X of ∃X.P is restricted to be positive (rather than arbitrary as in
the case of the second order linear logic LL2). We refer to [Okada 99] for the
definition of second order phase semantics for LL2.

Notation: POS (resp. NEG) denotes the set of second order positive (resp.
negative) formulas. A[X1, . . . , Xn] (or more briefly A[X⃗]) means that the second
order free variables of A are contained in the list X1, . . . , Xn. We write A[X :=
B] for the substitution of B for the free variables X in A, and we abbreviate
A[X1 := B1, . . . , Xn := Bn] by A[X⃗ := B⃗].

In order to interpret second order quantifiers, the following operations are
introduced in the polarized phase spaces. Let D̄+ ⊆ DM+ and D̄− ⊆ DM−.
For any ξ : D̄+ −→ DM⊥⊥,

– ∃X.ξ(X) = (
∪

α∈D̄+
ξ(α))⊥⊥ – ∀X.ξ(X) =

∩
α∈D̄+

ξ(α)

Proposition 3.12 for the first order connectives is extended to the second
order.

Proposition 3.16 (Positives are open; negatives are closed)
∃X.ξ(X) is open for any ξ : D̄+ → D̄+, and ∀X.ξ(X) is closed for any ξ : D̄+ → D̄−.

Proof. From ξ(α) ⊆
∪

β∈D̄+
ξ(β) for any α ∈ D̄+, the adjunction of Proposition

3.11 applies to have ξ(α) ⊆ ↓
∪

β∈D̄+
ξ(β) for any α ∈ D̄+ because ξ(α) ∈

D̄+. Thus we obtain
∪

α∈D̄+
ξ(α) ⊆ ↓

∪
β∈D̄+

ξ(β), which means ∃X.ξ(X) ⊆
↓∃X.ξ(X). Dually for ∀.

Definition 3.17 (Second order phase model for MALLP2) A second order
phase model M = (M,⊥, ↓, D̄+, D̄−, ∗) for MALLP2 consists of

− a polarized phase space (M,⊥, ↓);

− an interpretation function ∗ from the set of atoms of MALLP2 to the set
DM+ of open facts, which is extended to arbitrary formulas in a natural
way;

− a subset D̄+ of DM+ such that P ∗[X⃗ := α⃗] ∈ D̄+ for any P ∈ POS and
for any αi ∈ D̄+;

− a subset D̄− of DM− such that N∗[X⃗ := α⃗] ∈ D̄− for any N ∈ NEG and
for any αi ∈ D̄+.
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Note that, from Propositions 3.12 and 3.16, each positive (resp. negative)
formula is interpreted by an open (resp. closed) fact.

The truth relation of sequents is defined by means of the set-theoretical
inclusion relation between facts of the subdomain D̄+ ∪ {⊥} of DM⊥⊥. This
semantical restriction on the subdomain naturally forces the truth relation of
sequents to be defined only for the focalized sequents of Definition 2.1.

Definition 3.18 (Truth value of sequents)
A sequent Γ[X⃗] is true, denoted |= Γ[X⃗] (or simply |= Γ when there is no need
to indicate second order variables X⃗), if the following holds: For any βi ∈ D̄+,

− N∗⊥
1 [X⃗ := β⃗] · · · · · N∗⊥

n [X⃗ := β⃗] ⊆ ⊥ when Γ is N1, . . . , Nn;
− N∗⊥

1 [X⃗ := β⃗] · · · · · N∗⊥
n [X⃗ := β⃗] ⊆ P ∗[X⃗ := β⃗] when Γ is N1, . . . , Nn, P .

Note that this interpretation of sequents is a restriction of that in phase
semantics for MALL2 such that only focalized sequents are considered.

We have the soundness and the strong completeness theorems of MALLP2,
which together imply the cut-elimination theorem in a way similar to that of
[Okada 99].

Proposition 3.19 (Soundness of MALLP2) If ⊢ Γ is provable in MALLP2,
then |= Γ in any second order phase model for MALLP2.

Proof. By induction on the length of the proof of ⊢ Γ: The ↓-rule is obtained
from the first adjunction of Proposition 3.11. The ↑-rule is obtained from the
de Morgan dual of Intensivity (1) of ↓, which is extensivity of ↑. The other rules
are treated in a way similar to that of [Okada 99].

In order to show the strong completeness theorem, we construct a syntactical
model MS = (MS ,⊥, ↓, D̄+, D̄−, ∗) called a canonical model.

− MS is the monoid of the sequents of MALLP2 formulas, which are not
restricted to focalized. Then MS is a monoid, whose monoid operator is
the concatenation operator between sequents, and the unit is the empty
sequent.

− We define the outer-value [[A]] for each formula A as

[[A]] = {Γ |⊢ Γ, A is cut-free provable }.

− ⊥ := [[⊥]] = {Γ |⊢ Γ,⊥ is cut-free provable } = {Γ |⊢ Γ is cut-free provable }.
− Let I be the submonoid of MS consisting only of negative sequents. Then

we define an interior operator ↓ as in Example 3.15(1):

↓α = (α ∩ I)⊥⊥.

− X∗ = [[X]] for each atom X.

11



− For each positive formula P , let 〈P 〉 be the set of open facts α of MS such
that P⊥ ∈ α ⊆ [[P ]]; and for each negative formula N , let 〈N〉 be the set
of closed facts α such that N⊥ ∈ α ⊆ [[N ]]. Then we define the second
order domains D̄+ by

∪
P∈POS〈P 〉, and D̄− by

∪
N∈NEG〈N〉.

By distinguishing the inner-value A∗, which is the interpretation of A in the
canonical model, and the outer-value [[A]] = {Γ |⊢ Γ, A is cut-free provable },
Okada [1999] proved the strong completeness theorem of LL2, which implies the
cut-elimination theorem. This method is applicable to MALLP2.

Lemma 3.20 (Main lemma for MALLP2)
In MS, for any A[Y⃗ ], for any Q⃗ ∈ POS and for any β⃗ ∈ 〈Q⃗〉, we have

A⊥[Y⃗ := Q⃗] ∈ A∗[Y⃗ := β⃗] ⊆ [[A[Y⃗ := Q⃗]]].

Proof. By induction on the complexity of A as in [Okada 99].

Using the main lemma for MALLP2, we have the following strong complete-
ness theorem.

Proposition 3.21 (Strong completeness of MALLP2) If |= Γ in any sec-
ond order phase model for MALLP2, then ⊢ Γ is provable without the cut-rule
in MALLP2.

Combining this strong completeness theorem and the soundness theorem,
we obtain the cut-elimination theorem for MALLP2.

Corollary 3.22 (Cut-elimination for MALLP2) If ⊢ Γ is provable in MALLP2,
then it is provable without the cut-rule.

3.4 Enriched phase space for LL

In this subsection we review first order enriched phase spaces, with respect to
which LL is complete ([Lafont 97]). Enriched phase spaces are obtained by
augmenting the exponential ! to phase spaces for MALL of Section 3.1. A key
ingredient is the algebraic instance of Seely’s axiomatization of the exponen-
tial in categorical model ([Seely 89]). Similar axiomatizations are found in the
literatures of algebraic semantics [Troelstra 92, Ono 93, Abrusci 90].

Definition 3.23 (Enriched phase space) An enriched phase space M = (M,⊥, !)
is a phase space (M,⊥) together with an exponential operator ! from D⊥⊥ to
D⊥⊥ which satisfies the following conditions: For any α, β ∈ D⊥⊥,

1. (Intensivity) !α ⊆ α

2. (Idempotency) !α ⊆ !!α
3. (Monotonicity) If α ⊆ β, then !α ⊆ !β
6. (Seely axiom 1) !α ⊗ !β = !(α & β)
7. (Seely axiom 2) 1 = !⊤, where ⊤ = M

The dual operator ? of ! is defined as ?α = (!(α⊥))⊥.
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In terms of category theory, our enriched phase spaces are characterized as
follows:

Proposition 3.24 (Enriched phase space as Seely category) Let D⊥⊥ be
the ∗-autonomous category of facts of an enriched phase space M = (M,⊥, !).
The exponential operator ! gives rise to a comonad over D⊥⊥ so that (D⊥⊥, !)
forms a Seely category, and vice versa. In (D⊥⊥, !), for each α ∈ D⊥⊥, !α is
endowed with a comonoid structure, and, moreover, the comonad ! is monoidal.

Proof. By the condition (3), the exponential gives rise to a functor ! from D⊥⊥
to D⊥⊥. Then natural transformations ϵ : ! −→ IdD⊥⊥ and δ : ! −→ ! ◦ ! are
given by (1) and (2), respectively. Thus we obtain a comonad ! = (!, δ, ϵ) over
D⊥⊥. (6) and (7) correspond to the Seely’s natural isomorphisms.

The following morphisms (8) and (9) are derivable for each α ∈ D⊥⊥, which
show that (!α, dα, eα) is a comonoid in D⊥⊥:

8. (Contraction) dα : !α
!〈id,id〉−−−−→ !(α & α) = !α ⊗ !α

9. (Weakening) eα : !α !∗α−−→ !⊤ = 1,
where ∗α : α −→ ⊤ is the unique map to the terminal object ⊤ of the
posetal D⊥⊥.

In addition, the following morphisms are derivable, which describe monoidal-
ness of the comonad !: For any α, β ∈ D⊥⊥,

4’. mα,β : !α ⊗ !β = !(α & β) δ−→ !!(α & β) = !(!α ⊗ !β)
!(ϵ⊗ϵ)−−−−→ !(α ⊗ β)

5. m1 : 1 = !⊤ δ−→ !!⊤ = !1

The conditions (1), (2), (3), (4’), and (5) indicate that the exponential !
induces an interior operator on D⊥⊥. However to avoid the confusion, we do
not call ! an interior operator, because in this paper we do not consider any
topological structure derived from ! except those for which ! coincides with ↓
(cf. Definition 4.8 in Section 4.3).

Remark 3.25 (Seely axioms) Under the conditions (1), (2), and (3) of Defi-
nition 3.23, the Seely axioms (6) and (7) are equivalent to (4’), (5), (8) and (9).
(Cf. [Ono 93].)

Example 3.26 (Example of an enriched phase space) Let J = {x ∈ 1 |
x · x = x} a submonoid of the domain M . If we define !α = (α∩ J)⊥⊥, then we
have an enriched phase space. This definition of ! is due to [Lafont 97].

3.5 Enriched polarized phase space for LLpol

In this subsection, we first review first order polarized linear logic LLpol. Then
we introduce enriched polarized phase spaces, with respect to which LLpol is
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complete.

Formulas of LLpol of [Laurent 02] are obtained by imposing the following po-
larity restriction on formulas of LL:

P ::= X | P ⊗ P | P ⊕ P | 1 | 0 | !N

N ::= X⊥ | N
.................................................

............
.................................. N | N & N | ⊥ | ⊤ | ?P

Inference rules of LLpol is the polarized fragment of LL where the ⊤-rule is
restricted to a focalized sequent.
We write ?Q for a negative sequent obtained from a positive sequent Q by
putting ? to each formula of Q.

⊢ N, N⊥
ax ⊢ Γ, N ⊢ N⊥, ∆

⊢ Γ, ∆
cut

⊢ Γ, N, L

⊢ Γ, N
.................................................

............
.................................. L

.................................................
............
..................................

⊢ Γ, P ⊢ ∆, Q

⊢ Γ, ∆, P ⊗ Q
⊗

⊢ Γ, N ⊢ Γ, L

⊢ Γ, N & L
&

⊢ Γ, P

⊢ Γ, P ⊕ Q
⊕1

⊢ Γ, Q

⊢ Γ, P ⊕ Q
⊕2

⊢ 1
1

⊢ Γ
⊢ Γ,⊥ ⊥ ⊢ Γ,⊤ ⊤

Here Γ contains at most
one positive formula.

⊢ ?Q, N

⊢ ?Q, !N
!

⊢ Γ, P

⊢ Γ, ?P
?

⊢ Γ
⊢ Γ, ?P

?w
⊢ Γ, ?P, ?P

⊢ Γ, ?P
?c

We now introduce enriched polarized phase spaces, with respect to which
LLpol is complete.

Definition 3.27 (Enriched polarized phase space) An enriched polarized
phase space is M = (M,⊥, !, ↓) such that

− (M,⊥, !) is an enriched phase space;

− (M,⊥, ↓) is a polarized phase space;

− !α ⊆ ↓α for any fact α ∈ D⊥⊥.

Note that the topological structure considered in M is that derived from ↓
(not from !).

Remark 3.28 (Two modalities ↓ and !) In enriched polarized phase spaces,
the interior operator ↓ does not necessarily coincide with !. If it does, X∗ ⊆ !?X∗

holds for a positive atom X, which, however, happens to be a valid interpreta-
tion of an unprovable sequent ⊢ X⊥, !?X in LLpol. (Cf. Definition 3.17.)
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Example 3.29 (Enriched polarized phase space) Let I and J be the sub-
monoids of Example 3.15(1) and Example 3.26, respectively, and let ↓ be as in
Example 3.15(1). Then by defining

!α = (α ∩ J ∩ I)⊥⊥,

we have an enriched polarized phase space. This essentially corresponds to the
decomposition of the exponentials of [Girard 01]:

!α = ↓♯α and ?α = ↑♭α.

Note that ♯α is defined as α ∩ J , and then !α is defined as the interior of ♯α by
Example 3.15(1). I.e., !α = ↓♯α = (α∩ J ∩ I)⊥⊥. J ∩ I ⊆ I yields the condition
!α ⊆ ↓α. Note that ♯α is not necessarily a fact, hence its meaning is only given
under the connective ↓. (Cf. [Laurent 05b].)

Proposition 3.12 for MALLP connectives can be extended to LLpol connec-
tives: i.e., we have the following Proposition 3.30 for the positive connective !
and the negative connective ?.

Proposition 3.30 (Positives are open; negatives are closed)
!α is open (i.e., ↓-invariant) and ?α is closed (i.e., ↑-invariant) for any fact α.

Proof. We show !α is open, i.e., !α = ↓!α. We have !α ⊆ !!α ⊆ ↓!α by Idem-
potency of ! and the definition !α ⊆ ↓α. The other direction is immediate from
the intensivity of ↓. Dually for ?.

This proposition says that the topology derived from ! is coarser than that from
↓. I.e., the set of !-invariant facts is a subset of ↓-invariant facts in the phase
space (M,⊥).

3.6 Second order polarized phase model for LLpol2 and
completeness

In this subsection, we extend our enriched polarized phase spaces of Section
3.5 into second order so as to yield a complete semantics for the second order
extension LLpol2 of LLpol.

The syntax of LLpol2 of [Laurent 02] is obtained by adding the following rules
for negative formulas ∀X.N and for positive formulas ∃X.P to LLpol:

⊢ Γ, N

⊢ Γ, ∀X.N
∀

X does not appear free

in the lower sequent.

⊢ Γ, P [X := Q]

⊢ Γ, ∃X.P
∃

Q denotes a positive formula.

Definition 3.31 (Second order phase model for LLpol2) A second order phase
model M = (M,⊥, !, ↓, D̄+, D̄−, ∗) for LLpol2 consists of
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− an enriched polarized phase space (M,⊥, !, ↓);
− an interpretation function ∗ from the set of atoms of LLpol2 to the set

DM+ of open facts ;
− the second order domains D̄+ and D̄− which are defined in the same way

as for MALLP2. (See Definition 3.17.)

We have the soundness and the strong completeness theorems of LLpol2,
which together imply the cut-elimination theorem in a way similar to that of
[Okada 99].

Proposition 3.32 (Soundness of LLpol2) If ⊢ Γ is provable in LLpol2, then
|= Γ in any second order phase model for LLpol2.

In order to show the completeness theorem, we construct the canonical model
MS = (MS ,⊥, !, ↓, D̄+, D̄−, ∗) by adding the following definition of ! to the
canonical model for MALLP2 of Section 3.3.

− Let J be the submonoid of MS which consists only of negative sequents of
the form ?Q. Here we identify more than one ?Q’s with one ?Q in MS and
J ; for instance we identify ?Q, ?Q with ?Q. Then we define !α = (α∩J)⊥⊥

for α ⊆ MS .
Since ?Q is a negative sequent, we have J ⊆ I, which implies !α ⊆ ↓α.

The strong completeness theorem which implies the cut-elimination theorem
is shown by using the same form of the lemma (Lemma 3.20) as for MALLP2.

Lemma 3.33 (Main lemma for LLpol2)
In MS, for any A[Y⃗ ], for any Q⃗ ∈ POS and for any β⃗ ∈ 〈Q⃗〉, we have

A⊥[Y⃗ := Q⃗] ∈ A∗[Y⃗ := β⃗] ⊆ [[A[Y⃗ := Q⃗]]].

Proposition 3.34 (Strong completeness of LLpol2) If |= Γ in any second
order phase model for LLpol2, then ⊢ Γ is provable without the cut-rule in LLpol2.

Corollary 3.35 (Cut-elimination for LLpol2) If ⊢ Γ is provable in LLpol2,
then it is provable without the cut-rule.

Remark 3.36 Let us consider an operator !−, which satisfies (1), (2), (3) of
Definition 3.23 and (4’), (5) of Proposition 3.24. Then we can consider a com-
plete subsystem LL−

pol2 which is the fragment of LLpol2 without the weakening
and contraction rules. (Cf. Remark 4.18 of Section 4.7.)

4 Second order conservativity

This section is concerned with conservativity of linear logic. We briefly show
the first order conservativity of LL over LLpol with a summary of four kinds
of phase spaces. Then we consider a second order conservativity. In Section
4.3, we introduce a fragment LLη2 of LL2, then we prove our main technical
proposition (Proposition 4.16) to obtain the main theorem (Theorem 4.17) of
this paper: LLη2 is conservative over its polarized fragment LLη

pol2.
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4.1 First order conservativity

Let us start by summarizing the four kinds of phase spaces for first order logics
introduced so far (Figure 1). In the following figure, on the top of the most
primitive phase spaces, three kinds of phase spaces are obtained, where a vertical
(resp. horizontal) line designates the augmentation of the interior ↓ (resp. the
exponential !). A symbol ⊂ designates a subsystem relation: I.e., LLpol and
MALL are subsystems of LL.

MALLP LLpol

£¢
LL¤£MALL

(M,⊥, ↓)
polarized

phase space

-
! (M,⊥, ↓, !)

enriched polarized

phase space

?

↓

(M,⊥, !)
enriched

phase space

-!(M,⊥)
phase space

?

↓

Figure 1

The conservativity theorem of first order LL over LLpol was first obtained
by Laurent [2002 (p.50)] with a proof-theoretical argument. We have a simple
semantical proof of the theorem as a corollary of the completeness theorem of
LLpol. The proof is direct by virtue of the canonical forgetting ↓ map from the
bottom to the top on the right vertical relation of Figure 1.

Corollary 4.1 (LL ≻ LLpol [Laurent 02]) LL is conservative over LLpol: For
any focalized sequent Γ, if ⊢ Γ is provable in LL, then it is provable in LLpol.

Proof. Let Γ be a focalized sequent which is provable in LL, and let M =
(M,⊥, !, ↓) be an arbitrary enriched polarized phase space. Then from the
soundness theorem of LL, |= Γ in the phase model (M,⊥, !) for LL. Since Γ is
polarized, it is also true in the polarized phase model M for LLpol. Therefore,
from the completeness theorem of LLpol, which is obtained as a corollary of the
strong completeness and the cut-elimination theorems of LLpol2, we have ⊢ Γ is
provable in LLpol.

4.2 LL2 is not conservative over LLpol2

In this subsection, we show that Corollary 4.1 does not extend to LL2. The
semantic argument of Corollary 4.1 does not work for the second order LL2,
because |= ∃X.P in LL2 does not necessarily imply the same in LLpol2. Note
that |= ∃X.P means 1 ⊆ P ∗[X := α] for some α ∈ D⊥⊥ in LL2, but LLpol2 has
the constraint that α ranges only over a subset D̄+ of D⊥⊥.

Proposition 4.2 (LL2 ̸≻ LLpol2) LL2 is not conservative over LLpol2.
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Proof. We show that a focalized sequent ⊢ Y, ?∃X.X is provable in LL2, but
not in LLpol2: The following is an LL2 poof of the sequent.

⊢ Y, Y ⊥
ax

⊢ Y, ∃X.X
∃(X := Y ⊥)

⊢ Y, ?∃X.X
?

This LL2 proof is not an LLpol2 proof, since, in the application of the ∃-rule, the
negative formula Y ⊥ is substituted to X. Note that this ∃-rule makes the LL2
provable sequent non focalized (⊢ Y, ∃X.X).

In order to show the sequent is not provable in LLpol2, we construct a counter
model for ⊢ Y, ?∃X.X. Let Z3 be the enriched polarized phase space of Example
3.15(2) where ! = ↓; and the second order domain D̄+ is the set of open facts
{∅, {1, 2}}. Let Y ∗ be the open fact ∅. Then Y ⊥∗ is the closed fact {0, 1, 2}.
On the other hand, because ∃X.X∗ = (

∪
α∈D̄+

α)⊥⊥, we have ?∃X.X∗ = {1, 2}.
Hence, we have {0, 1, 2} = Y ⊥∗ ̸⊆ ?∃X.X∗ = {1, 2} in this model. Therefore,
we have ̸|= Y, ?∃X.X, and hence from the soundness theorem, we conclude that
⊢ Y, ?∃X.X is not provable in LLpol2.

Remark 4.3 A direct syntactical proof of the unprovability of the sequent of
Proposition 4.2 is also possible with the help of the second order cut-elimination
theorem of LLpol2 (Corollary 3.35), which follows from our strong completeness
theorem.

As seen in the LL2 proof of ⊢ Y, ?∃X.X of Proposition 4.2, a non focalized
sequent ⊢ Y, ∃X.X is provable in LL2 with only polarized formulas. Thus we
also do not have the focalized sequent property (FSP) in LL2.

Proposition 4.4 The focalized sequent property fails in LL2.

4.3 Second order η-expanded system LLη2

In order to remedy the shortcoming of LL2 in the previous section, we introduce
a fragment LLη2, where atoms are restricted to exponential forms (i.e., of the
form !X⊥ (resp. ?X) for a positive (resp. negative) atom). Such a restriction
of atoms is also adopted in [Laurent 99, 05a] for the first order LLpol.

Definition 4.5 (LLη2) The syntax of LLη2 is defined as follows.

Formulas of LLη2 are given by the following grammar.

A ::= !X⊥ | A ⊗ A | A ⊕ A | 1 | 0 | !A | ∃X.A
?X | A

.................................................
............
.................................. A | A & A | ⊥ | ⊤ | ?A | ∀X.A

We refer to connectives {⊗,⊕, !,∃,1,0} (resp. {.................................................
............
.................................. , &, ?,∀,⊥,⊤}) as positive

(resp. negative) connectives.
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The substitution of B for the free occurrences of X in A (denoted A[X := B])
is defined as usual for any LLη2 formulas A and B. Note that a substitution
such as X[X := !Y ⊥] is not allowed in LLη2 because X is not an LLη2 formula.

Inference rules of LLη2 are obtained from those of LL2 by replacing the usual
axiom of the form ⊢ X,X⊥ with the form ⊢ ?X, !X⊥.

The restriction will be crucial in proving Lemma 4.11 of the next subsection.

Example 4.6 (A proof in LLη2) The following is an LLη2 proof.

⊢ ?X, !X⊥
ax

⊢ ?X, ?!X⊥ ?

⊢ ?X
.................................................

............
.................................. ?!X⊥

.................................................
............
..................................

⊢ !(?X
.................................................

............
.................................. ?!X⊥)

!

⊢ ∃Y.!Y ⊥ ∃(Y := (?X
.................................................

............
.................................. ?!X⊥)⊥)

Since an application of the ∃-rule as in the proof of Proposition 4.2 is not
allowed in LLη2, the focalized sequent property (FSP) for LLη2 follows naturally.

Lemma 4.7 LLη2 has the focalized sequent property (FSP).

Proof. We prove this by induction on the given proof of LLη2. Other than ∃-rule,
the assertion is straightforward by the induction hypothesis. Let us consider a
sequent ⊢ ∃X.P , Γ which is derived from a focalized sequent ⊢ P [X := A] ,Γ
via ∃-rule. We show that the formula P [X := A] is positive. This is because (i)
if P is atomic, it is of the form !X⊥ in LLη2, hence !X⊥[X := A] is positive; (ii)
otherwise it is clear because the sequent ⊢ P [X := A] , Γ is focalized. Thus we
conclude that Γ is negative, and hence the ∃-rule preserves FSP.

LLη
pol2 denotes the polarized fragment of LLη2. Then a phase model for LLη

pol2
is defined as follows.

Definition 4.8 (Second order phase model for LLη
pol2) A second order phase

model M = (M,⊥, !, ↓, D̄+, D̄−, ∗) for LLη
pol2 is a second order phase model for

LLpol2 where

− ↓ coincides with !;

− an interpretation function is defined from the set of LLη
pol2-atoms of the

form ?X to the set of negative facts of the form ?α for α ∈ D⊥⊥.

Since two modalities ↓ and ! coincide, LLη
pol2 is natural from our topological

semantic viewpoint.
We have completeness of LLη

pol2 in a way similar to that of LLpol2.

Proposition 4.9 (Strong completeness of LLη
pol2) If |= Γ in any phase model

for LLη
pol2, then ⊢ Γ is provable without the cut-rule in LLη

pol2.
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Remark 4.10 (LLη
pol2 is equivalent to LLPη2) LLP2 of [Laurent 02] is ob-

tained by adding the following rules to LLpol2:

⊢ N , N

⊢ N , !N N ! ⊢ Γ
⊢ Γ, N

Nw
⊢ Γ, N,N

⊢ Γ, N
Nc.

LLP2 is not a subsystem of LL2 because the above N !-, Nw- and Nc-rules strictly
generalize the !-, ?w- and ?c-rules of LLpol2 respectively. These rules of LLpol2
are restrictions of the above LLP2 rules in the sense that negative formulas
explicitly designated in the conclusions are of particular forms ?P . However
when we consider η-expanded systems LLPη2 and LLη

pol2, the above rules are
shown to be derivable in LLη

pol2, and hence LLPη2 is equivalent to LLη
pol2.

4.4 Main proposition for LLη2: Polarization

This subsection is devoted to proving Proposition 4.16, which is our main tech-
nical result in this paper. It is introduced to overcome the difficulty, remarked
in [Laurent 02] (p. 51), with the following form of ∃-rule of LLη2:

⊢LLη2 N , P [X := A]

⊢LLη2 N , ∃X.P
∃(X := A)

.

Although the lower sequent is focalized, the upper sequent is no longer a polar-
ized sequent because the formula A is arbitrary. Our Proposition 4.16 ensures
that the arbitrary A is appropriately decorated with ! and ? to a positive formula
Q so that ⊢ N , P [X := Q] is provable in LLη

pol2.
Throughout the proof of Proposition 4.16, we use the proof net representa-

tion of the proofs for the sake of simplicity. Since we do not use any particular
properties of proof net in the following proof, we only indicate the links for
LLη2 proof net (without units) here. The details can be found in [Laurent
99,02, Laurent-Tortora 04].

!X⊥ ?X
ax i&@@· · · ·¡¡

A1

&

. . .

&

An

A1 An i⊗@@· · · ·¡¡

A1 ⊗ · · · ⊗ An

A1 An i∀
∀X.A

A i∃
∃X.A

A[X := B]

i!
!A

A

?A1· · · ?An

i?
?A

A j?w

?A

i?c
@@ ¡¡

?A

?A ?A i& eC eC
A & B A1· · · An

® ©ª
Q

QQ
b

b
bb

® ©ª!!! £
£ i⊕i

A1 ⊕ A2

Ai i ∈ {1, 2}

In the &-box, C⃝’s are additive contraction nodes. We consider the .................................................
............
.................................. and ⊗

connectives as n-ary connectives for an appropriate n.
For the sake of simplicity of the argument, we do not consider any units

(1,0,⊥,⊤) in the following proof.
We prepare some lemmas by recalling the following notions on proof nets.
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Splitting link: A terminal link l of a proof net π splits, if l is removable to
obtain proof nets which are premises of the corresponding rule to l. A formula
A in a conclusion of π splits, if the corresponding terminal link of the outermost
connective of A splits. See [Andreoli-Maieli 99].

Andreoli’s focusing property: Andreoli’s focusing property says that a split-
ting conclusion A can be chosen in such a way that each premises of A, if its
outermost connective is positive, is again a splitting conclusion for the resulting
proof nets after the splitting of A. I.e., whenever we write A as φ[B1, . . . , Bn]
by means of a cluster φ of positive connectives ⊗,⊕,∃, !, then the corresponding
links to the connectives successively split until reaching Bi’s. Note that the
crucial case is that outermost connectives of Bi’s are no longer positive. See
[Andreoli-Maieli 99, Andreoli 92, Laurent 05b].

By virtue of Andreoli’s focusing property, we have the following lemma in
LLη2.

Lemma 4.11 (Context lemma for a splitting ?-link) Let A be an LLη2 for-
mula, and ?Q be an LLη

pol2 sequent. For any LLη2 proof net of conclusions A, ?Q,
if A does not split and a ?-link of some formula in ?Q splits, then A is of the
form ?B.

Proof. Assume ?Q = ?P, ?Q1 so that, after the splitting of ?P , the positive P
splits. We consider the following cases according to the form of P :
(i) If P ≡!B1, the assertion is direct since the !-link of !B1 splits by the as-
sumption. This means that A lies on one of the auxiliary doors of the !-box as
follows:

A

?P

i?!B1

i!B1

?Q1

Hence A is of the form ?B.
(ii) If P ≡ B1 ⊗ B2, B1 ⊕ B2 or ∃X.B1, then P splits to yield proof nets of
conclusions A,Bi[X := C], ?Q′

i with ?Q′
i ⊆ ?Q1. We observe that the outermost

connective of Bi[X := C] is either {⊗,⊕,∃, !}; If Bi[X] is non atomic, then the
observation is clear because it is a subformula of P . If Bi[X] is atomic, then
it is of the form !X⊥, hence the observation holds. From the observation, we
consider the following two cases.
(ii − a) If the outermost connective of Bi[X := C] is !, then, since the !-link
splits from Andreoli’s focusing property, the assertion holds from (i).
(ii−b) If the outermost connective of Bi[X := C] is ⊗,⊕ or ∃, after successively
applying this case (ii) using Andreoli’s focusing property, we finally obtain a
proof net of conclusions A, !D, ?Q′′

i with ?Q′′
i ⊆ ?Q1. Thus the assertion follows

from (i).
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Remark 4.12 Lemma 4.11 does not hold in (non η-expanded) LL2. The LL2
sequent ⊢ Y, ?∃X.X in the proof of Proposition 4.2 gives a counterexample.

In what follows, we make the following syntactical convention.

Convention: !P = P and ?N = N for any positive formula P and for any
negative formula N .

The convention is semantically valid in every polarized phase model of LLη
pol2.

This convention makes it possible to define uniformly the following canonical
decoration σ.

Definition 4.13 (Canonical decoration) A canonical decoration σ of LLη2
formulas is defined inductively as follows, where σ(A) is an LLη

pol2 formula from
the above convention.

σ(?X) = ?X σ(!X⊥) = !X⊥

σ(A.................................................
............
.................................. B) = ?σ(A).................................................

............
.................................. ?σ(B) σ(A ⊗ B) = !σ(A) ⊗ !σ(B)

σ(?A) = ?!σ(A) σ(!A) = !?σ(A)
σ(∀X.A) = ∀X.?σ(A) σ(∃X.A) = ∃X.!σ(A)
σ(A & B) = ?σ(A) & ?σ(B) σ(A ⊕ B) = !σ(A) ⊕ !σ(B)

This decoration is the identity map on the class of polarized formulas in that
σ(A) = A for each polarized LLη

pol2 formula A.
We have the following lemma on the canonical decoration σ.

Lemma 4.14 (Substitution) Let A and B be LLη2 formulas. In LLη
pol2, we

have
σ(A[X := B]) ≡ σ(A)[X := !σ(B)].

Note that, in the above lemma, the substituted formula B is decorated by
σ into a positive formula !σ(B), which serves to overcome the difficulty of the
second order ∃-rule of LLη2 mentioned in the beginning of this subsection.

Next we present the following lemma in preparation for the proof of Propo-
sition 4.16. 1

Lemma 4.15 For any LLη2 formula A, and for any positive formulas P and
Q, the following sequents are provable in LLη

pol2:

1. !?σ(A) ⊢ ?!σ(A).

2. ?P [X := Q] ⊢ ?∃X.P .

3. ?Pi ⊢ ?(P1 ⊕ P2) for i = 1, 2.

Proof. (1) If σ(A) is positive, we have !?σ(A) ⊢ ?σ(A) = ?!σ(A). If σ(A) is
negative, we have !?σ(A) = !σ(A) ⊢ ?!σ(A). (2) and (3) are straightforward.

Now we are ready to prove the main technical proposition of this paper:
1The lemma is used in the induction step for n > 1 of Proposition 4.16: (1) for the case of

?B, (2) for the case of ∃X.B, and (3) for the case of B1 ⊕ B2.
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Proposition 4.16 (Polarization) Let A1, . . . , An be LLη2 formulas, and let
?Q be an LLη

pol2 sequent of the form ?Q1, . . . , ?Qm with m ≥ 0 (when m = 0,
?Q is empty). If ⊢ A1, . . . , An, ?Q is provable in LLη2, then, in LLη

pol2,

⊢ σ(A), ?Q is provable if n = 1; and
⊢ ?σ(A1), . . . , ?σ(An), ?Q is provable if n > 1.

Proof. In the following proof, ⊢ Γ means that there is an LLη
pol2 proof net of

the conclusion Γ (i.e., the sequent ⊢ Γ is provable in LLη
pol2).

We prove the proposition by induction on the size of a cut-free proof net of
conclusions A1, . . . , An, ?Q. In order to make the proof easy to read, all the
steps for the additive rules and for the weakening and the contraction rules are
separately moved to the next sections (Section 4.5 and Section 4.6, respectively).
As demonstrated there, to accommodate with these rules is straightforward.
Before the proof, we recall that any terminal {.................................................

............
.................................. ,∀,&}-link always splits to

yield a proof net of smaller size.

Base step for n = 1:
This step is an axiom of the form !X⊥ ?X

ax
so that A ≡ !X⊥ and Q ≡ X. In

this case the assertion is clear since σ(!X⊥) = !X⊥.
Base step for n > 1:
This step is the axiom of the form !X⊥ ?X

ax
so that A1 ≡ !X⊥, A2 ≡ ?X and

?Q is empty. We have ⊢ ?!X⊥, ?X where ?!X⊥ = ?σ(!X⊥), and ?X = ?σ(?X).

Induction step for n = 1:
We divide the following into two cases depending whether A splits or not.
(Case 1) When A splits, this case is divided according to the outermost con-
nective of A.
If A ≡ B1

.................................................
............
.................................. · · · .................................................

............
.................................. Bn, after removing the .................................................

............
.................................. -link, we have ⊢ ?σ(B1), · · · , ?σ(Bn), ?Q

by the induction hypothesis (I.H.). Then by the .................................................
............
.................................. -rules we have the as-

sertion since ?σ(B1)
.................................................

............
.................................. · · · .................................................

............
.................................. ?σ(Bn) = σ(B1

.................................................
............
.................................. · · · .................................................

............
.................................. Bn).

If A ≡ ∀X.B, after removing the ∀-link, we obtain ⊢ σ(B), ?Q by I.H. Then
we have ⊢ ∀X.?σ(B), ?Q by the ?-rule followed by the ∀-rule. This is the
assertion since ∀X.?σ(B) = σ(∀X.B).

If A ≡ ?B, each case is considered depending on the (kind of) splitting link of
?B.

If the splitting link of ?B is the ?-link, after removing the ?-link, we have
⊢ σ(B), ?Q by I.H. Then we have ⊢ ?!σ(B), ?Q by the !-rule followed by
the ?-rule. Since ?!σ(B) = σ(?B), we obtain ⊢ σ(?B), ?Q.

If A ≡ !B, after removing the !-link, we have ⊢ σ(B), ?Q by I.H. Then we obtain
⊢ !?σ(B), ?Q by the ?-rule followed by the !-rule. Since !?σ(B) = σ(!B),
we obtain ⊢ σ(!B), ?Q.

If A ≡ ∃X.B, after removing the ∃-link, we obtain ⊢ σ(B[X := C]), ?Q by
I.H. Using the substitution lemma (Lemma 4.14), we have ⊢ σ(B)[X :=
!σ(C)], ?Q, and hence we obtain ⊢ ∃X.!σ(B), ?Q by the !-rule followed by
the ∃-rule. Since ∃X.!σ(B) = σ(∃X.B), we obtain ⊢ σ(∃X.B), ?Q.
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If A ≡ B1 ⊗ · · · ⊗ Bn, after removing the ⊗-link, we have ⊢ σ(Bi), ?Qi for all
1 ≤ i ≤ n by I.H. Then we have ⊢ !σ(Bi), ?Qi by the !-rule, and hence
we have ⊢ !σ(B1) ⊗ · · · ⊗ !σ(Bn), ?Q by the ⊗-rules. Since !σ(B1) ⊗ · · · ⊗
!σ(Bn) = σ(B1 ⊗ · · · ⊗ Bn), we obtain ⊢ σ(B1 ⊗ · · · ⊗ Bn), ?Q.

(Case 2) When A does not split, then ?P of ?Q splits. This case is divided
depending on the (kind of) splitting link of ?P .

If the ?-link of ?P splits, 2 note first that, in this case, by Lemma 4.11, A is of
the form ?B, and the conclusions of the given LLη2 proof net are written by
?B, ?P, ?Q′. Then, after removing the ?-link, we have ⊢ ?σ(?B), ?σ(P ), ?Q′

by I.H. for the case n > 1. Since ?σ(P ) is ?P , and ?σ(?B) is σ(?B), we
obtain ⊢ σ(?B), ?P, ?Q′.

Induction step for n > 1:
We divide the following into two main cases depending on whether A1, . . . , An

contains a splitting formula or not.

(Case 1) When there is no splitting formula among A1, . . . , An, then ?P in
?Q splits. This case is divided depending on the (kind of) splitting link of ?P .

If the ?-link of ?P splits, after removing the ?-link, we have ⊢ ?σ(A1), . . . , ?σ(An),
?σ(P ), ?Q by I.H. Since ?σ(P ) = ?P , we obtain ⊢ ?σ(A1), . . . , ?σ(An), ?P, ?Q.

(Case 2) When there is a splitting formula among A1, . . . , An, we further
divide the following into two cases depending whether or not there is a terminal
{.................................................

............
.................................. ,∀, &}-link in A1, . . . , An. In the following proof, A denotes a certain Ai by

omitting its subscript, and Γ denotes the sequence of other Aj ’s with i ̸= j.

− When there is a terminal {.................................................
............
.................................. ,∀, &}-link in A1, . . . , An, note that such a

negative terminal link always splits.

If A ≡ B1
.................................................

............
.................................. · · · .................................................

............
.................................. Bn, then after removing the .................................................

............
.................................. -link, we have

⊢ ?σ(B1), . . . , ?σ(Bn), ?σ(Γ), ?Q by I.H. Since ?σ(B1)
.................................................

............
.................................. · · · .................................................

............
.................................. ?σ(Bn) =

?σ(B1
.................................................

............
.................................. · · · .................................................

............
.................................. Bn), by the .................................................

............
.................................. -rules we obtain ⊢ ?σ(B1

.................................................
............
.................................. · · · .................................................

............
.................................. Bn), ?σ(Γ), ?Q.

If A ≡ ∀X.B, then after removing the ∀-link, we have ⊢ ?σ(B), ?σ(Γ), ?Q by
I.H. Then by the ∀-rule, we have ⊢ ∀X.?σ(B), ?σ(Γ), ?Q. Since ∀X.?σ(B) =
?σ(∀X.B), we obtain ⊢ ?σ(∀X.B), ?σ(Γ), ?Q.

− Otherwise we choose a splitting A of A1, . . . , An since such A exists by the
assumption. We consider each case according to the splitting link of A.

If A ≡ ?B splits, each case is considered depending on the (kind of) splitting
link of ?B.

If the ?-link of ?B splits, after removing the ?-link, we obtain ⊢ ?σ(B), ?σ(Γ), ?Q
by I.H. Then we have ⊢ !?σ(B), ?σ(Γ), ?Q by the !-rule. By composing
this with !?σ(B) ⊢ ?!σ(B) of Lemma 4.15(1) by the cut-rule, we have
⊢ ?!σ(B), ?σ(Γ), ?Q. Thus ⊢ ?σ(?B), ?σ(Γ), ?Q since ?!σ(B) = ?σ(?B).

2This case is the case where Lemma 4.11 is used.
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If A ≡ !B splits, after removing the !-link, we have ⊢ ?σ(B), ?σ(Γ), ?Q by I.H.
Then we have ⊢ ?!?σ(B), ?σ(Γ), ?Q by the !-rule followed by the ?-rule.
Since ?!?σ(B) = ?σ(!B), we obtain ⊢ ?σ(!B), ?σ(Γ), ?Q.

If A ≡ ∃X.B splits, after removing the ∃-link, we obtain ⊢ ?σ(B[X := C]), ?σ(Γ), ?Q
by I.H. Then we further divide the following into two cases according to
the polarity of σ(B[X := C]):

(i). If σ(B[X := C]) is negative, we have ⊢ σ(B[X := C]), ?σ(Γ), ?Q.
Using the substitution lemma, we have ⊢ σ(B)[X := !σ(C)], ?σ(Γ), ?Q,
and hence ⊢ !σ(B)[X := !σ(C)], ?σ(Γ), ?Q by the !-rule. Then, by the
∃-rule followed by the ?-rule, we have ⊢ ?∃X.!σ(B), ?σ(Γ), ?Q. Since
?∃X.!σ(B) = ?σ(∃X.B), we obtain ⊢ ?σ(∃X.B), ?σ(Γ), ?Q.

(ii). If σ(B[X := C]) is positive, using the substitution lemma, we have
⊢ ?σ(B)[X := !σ(C)], ?σ(Γ), ?Q. By composing this with ?σ(B)[X :=
!σ(C)] ⊢ ?∃X.σ(B) of Lemma 4.15(2) by the cut-rule, we have ⊢ ?∃X.σ(B), ?σ(Γ), ?Q.
Since ?∃X.σ(B) = ?σ(∃X.B), we obtain ⊢ ?σ(∃X.B), ?σ(Γ), ?Q.

If A ≡ B1 ⊗ · · · ⊗Bn splits, we divide the following into two cases according to
the polarities of each σ(Bi) for 1 ≤ i ≤ n:

(i). If all σ(B1), . . . , σ(Bn) are negative, after removing the ⊗-link, we have
⊢ σ(Bi), ?σ(Γi), ?Qi for each 1 ≤ i ≤ n by I.H. Then by the !-rule we have
⊢ !σ(Bi), ?σ(Γi), ?Qi. By applying the ⊗-rules followed by the ?-rule, we
have ⊢ ?(!σ(B1)⊗· · ·⊗!σ(Bn)), ?σ(Γ), ?Q. Since ?(!σ(B1)⊗· · ·⊗!σ(Bn)) =
?σ(B1 ⊗ · · · ⊗ Bn), we obtain ⊢ ?σ(B1 ⊗ · · · ⊗ Bn), ?σ(Γ), ?Q.

(ii). If some σ(Bi) is positive, then Bi is either ∃X.C, !C or C1 ⊕ C2. We
show only the case of ∃X.C, and merely note that the other cases are
similar.

If Bi is ∃X.C, then from Andreoli’s focusing property of LLη2, this ∃X.C
splits to obtain the LLη2 proof net of conclusions C[X := D],Γi, ?Qi.
Then by applying ⊗-rules to this proof net and to the other (n− 1)-proof
nets containing Bj (j ̸= i) having been obtained by the ⊗ splitting of
this case, we obtain the following proof net in LLη2 (i.e., the proof net is
obtained from the original one by skipping the ∃-link):

h⊗HH
B1

C[X: =D]

©©
Bn

Γ ?Q

The size of this LLη2 proof net is smaller than that of the original one,
hence we have ⊢ ?σ(B1 ⊗ · · · ⊗ C[X := D] ⊗ · · · ⊗ Bn), ?σ(Γ), ?Q by I.H.
On the other hand, using the substitution lemma, we have !σ(C[X :=
D]) = !σ(C)[X := !σ(D)] ⊢ ∃X.!σ(C). Hence we have ⊢ ?(!σ(B1) ⊗ · · · ⊗
∃X.!σ(C) ⊗ · · · ⊗ !σ(Bn)), ?σ(Γ), ?Q by the cut-rule. Since ∃X.!σ(C) =
!σ(∃X.C), we finally obtain ⊢ ?σ(B1 ⊗ · · · ⊗ ∃X.C ⊗ · · · ⊗Bn), ?σ(Γ), ?Q.
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4.5 Additives

For the additive connectives & and ⊕, we add the following cases to the previous
proof of Proposition 4.16.

Induction step for n = 1:
(Case 1)
If A ≡ B1 & B2, after removing the &-link, we obtain ⊢ σ(B1), ?Q and

⊢ σ(B2), ?Q by I.H. Then by the ?-rule followed by the &-rule, we have
⊢ ?σ(B1)&?σ(B2), ?Q. Thus we have the assertion since ?σ(B1)&?σ(B2) =
σ(B1 & B2).

If A ≡ B1 ⊕ B2, after removing the ⊕i-link, we obtain ⊢ σ(Bi), ?Q for i = 1 or
i = 2 by I.H. By the !-rule, we have ⊢ !σ(Bi), ?Q, and hence we obtain
⊢ !σ(B1)⊕ !σ(B2), ?Q. Thus we have the assertion since !σ(B1)⊕ !σ(B2) =
σ(B1 ⊕ B2).

Induction step for n > 1:
(Case 2)
If A ≡ B1 & B2, then the &-link is always splitting. Thus after removing the

&-link, we obtain ⊢ ?σ(B1), ?σ(Γ), ?Q and ⊢ ?σ(B2), ?σ(Γ), ?Q by I.H.
Hence we obtain ⊢ ?σ(B1)&?σ(B2), ?σ(Γ), ?Q by the &-rule, which is the
assertion since ?σ(B1) & ?σ(B2) = ?σ(B1 & B2).

If A ≡ B1 ⊕ B2 splits, after removing the ⊕i-link for i = 1 or 2, we obtain
⊢ ?σ(Bi), ?σ(Γ), ?Q by I.H. We assume i = 1 without loss of generality.
Then we further divide the following two cases according to the polarity
of σ(B1).

(i). If σ(B1) is negative, we have ⊢ σ(B1), ?σ(Γ), ?Q. By the !-rule followed
by the ⊕1-rule, we have ⊢ !σ(B1) ⊕ !σ(B2), ?σ(Γ), ?Q. Thus we obtain
⊢ ?(!σ(B1)⊕ !σ(B2)), ?σ(Γ), ?Q, which is the assertion since ?(!σ(B1)⊕ !σ(B2))
= ?σ(B1 ⊕ B2).

(ii). If σ(B1) is positive, we obtain ⊢ ?σ(B1), ?σ(Γ), ?Q. By composing
this to ?σ(B1) ⊢ ?(σ(B1) ⊕ !σ(B2)) of Lemma 4.15(3) by the cut-rule, we
obtain ⊢ ?(σ(B1) ⊕ !σ(B2)), ?σ(Γ), ?Q. Thus we have the assertion since
?(σ(B1) ⊕ !σ(B2)) = ?σ(B1 ⊕ B2) in this case.

4.6 Weakening and contraction

In order to deal with the weakening and the contraction rules, we add the
following cases to the previous proof of Proposition 4.16 in Section 4.4.

Induction step for n = 1:
(Case 1)
A ≡ ?B.

If the splitting link of ?B is the ?w-link, after removing the link, we obtain
a proof net of conclusion ?Q in LLη2. Note that ?Q is not empty, because
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of the consistency of LLη2 which is a consequence of the cut-elimination
of LLη2 (cf. [Okada 99]). Thus by I.H. we have ⊢ ?Q. Hence we have
⊢ ?!σ(B), ?Q where ?!σ(B) = σ(?B).

If the splitting link of ?B is the ?c-link, after removing the link, we obtain
⊢ ?σ(?B), ?σ(?B), ?Q by I.H. for the case of n > 1. Thus we obtain
⊢ ?σ(?B), ?Q, and hence we have ⊢ σ(?B), ?Q since ?σ(?B) = σ(?B).

(Case 2)
If the ?w-link of ?P splits, after removing the link, we obtain ⊢ σ(A), ?Q by

I.H. Thus we obtain ⊢ σ(A), ?P, ?Q by the ?w-rule.

If the ?c-link of ?P splits, after removing the link, we obtain ⊢ σ(A), ?P, ?P, ?Q
by I.H. Thus we obtain ⊢ σ(A), ?P, ?Q by the ?c-rule.

Induction step for n > 1:
(Case 1)
If the ?w-link of ?P splits, we have the assertion by the same way as the induc-

tion step for n = 1.

If the ?c-link of ?P splits, we have the assertion by the same way as the induction
step for n = 1.

(Case 2)
A ≡ ?B.

If the ?w-link of ?B splits, after removing the link, we obtain ⊢ ?σ(Γ), ?Q
by I.H. Hence we obtain ⊢ ?!σ(B), ?σ(Γ), ?Q where ?!σ(B) = ?σ(?B).

If the ?c-link of ?B splits, after removing the link, we obtain ⊢ ?σ(?B), ?σ(?B), ?σ(Γ), ?Q
by I.H. Hence we obtain ⊢ ?σ(?B), ?σ(Γ), ?Q.

4.7 LLη2 is conservative over LLη
pol2

Using Proposition 4.16, we show the main theorem of this paper.

Theorem 4.17 (LLη2 ≻ LLη
pol2) LLη2 is conservative over LLη

pol2. That is, for
any focalized sequent Γ, if ⊢ Γ is provable in LLη2, then it is provable in LLη

pol2.

Proof. We prove the theorem by induction on the length of a given proof π of
⊢ Γ. If the last rule of π is other than the ∃-rule, the assertion is straightforward
from the induction hypothesis because the premises of the rules are focalized.
So we consider the case where a focalized sequent ⊢ ∃X.P , Γ is provable from
⊢ P [X := A] , Γ via the ∃-rule. Since ∃X.P is positive, Γ is a negative sequent.
Since negative connectives .................................................

............
.................................. ,∀ and & are reversible, we may assume without

loss of generality that Γ is of the form ?Q. Then using Proposition 4.16 (when
n = 1), ⊢ σ(P [X := A]), Γ is provable in LLη

pol2. Since σ(P [X := A]) = P [X :=
!σ(A)] by the substitution lemma (Lemma 4.14), ⊢ ∃X.P , Γ is provable by the
∃-rule of LLη

pol2.
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Remark 4.18 (Theorem 4.17 without weakening and contraction) A vari-
ation of Theorem 4.17 is also valid when the two systems are restricted to the
fragments without weakening and contraction: I.e., let LLη−2 be the fragment
of LLη2 without the weakening and the contraction rules. Then the variation
states that LLη−2 is conservative over its polarized fragment LLη−

pol2. This varia-
tion is obtained because Proposition 4.16 holds for the fragment LLη−2 by virtue
of our proof method (see the first paragraph of the proof of the proposition).

4.8 Some syntactical properties derived from Theorem
4.17

In this subsection, as a consequence of Theorem 4.17, LLη2 is shown to sat-
isfy a stronger property than FSP (cf. Definition 2.1), which property we call
the focalized proof property (FPP). This property explains a contrast between
LL2 and LLη2, which we have also seen in conservativities over their polarized
fragments.

Definition 4.19 (Focalized proof property (FPP)) If a focalized sequent
⊢ Γ is provable in a logical system L by restricting ⊤-rules to focalized sequents,
then there is a proof π of ⊢ Γ which consists only of focalized sequents.

Remark 4.20 FPP is both FSP of Definition 2.1 and its reverse. The reverse
property states as follows: If a focalized sequent ⊢ Γ is provable in L by re-
stricting ⊤-rules to focalized sequents, then there exists a proof π of ⊢ Γ which
consists only of polarized formulas.

Combining Theorem 4.17 and FSP of LLη2 (cf. Lemma 4.7), we have:

Corollary 4.21 LLη2 has focalized proof property (FPP).

Proof. It suffices to show that LLη2 has a property of Remark 4.20. Let ⊢ Γ
be a focalized sequent which is provable in LLη2. Then by the conservativity
theorem (Theorem 4.17), ⊢ Γ is provable in LLη

pol2, where proofs consist only of
polarized formulas.

As shown in Proposition 4.4, LL2 does not have FSP, hence neither FPP.
Let us summarize the states of these properties by the following table:

LL
(η)
pol2 LL LL2 LLη2

FSP Yes Yes No Yes
(Prop 4.4) (Lem 4.7)

FPP Yes Yes No Yes
(Cor 4.21)

Conservativity − Yes No Yes
over pol frag. (Cor 4.1) (Prop 4.2) (Thm 4.17)

Table 1
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Note that the left-most column of the table for LL
(η)
pol2 is automatic. The col-

umn for LL is essentially due to [Laurent 02] and its FPP is obtained since the
property of Remark 4.20 holds by virtue of the subformula property of the first
order LL.

5 Second order definability of restricted addi-
tives in polarized linear logic

In the polarized fragment MELLpol2 of the second order multiplicative expo-
nential linear logic, only restricted forms of additives are definable. Hence in
Section 4 it is impossible to make additive connectives redundant.

By linearizing Prawitz’s definition for the second order classical logic ([Prawitz
65]), the additive connectives are known to be definable in MELL2 by the fol-
lowing and by its De Morgan dual:

A ⊕ B := ∀X.!(A −◦ X⊥) −◦ !(B −◦ X⊥) −◦ X⊥

A & B := ∃X.!(A.................................................
............
.................................. X⊥) ⊗ !(B.................................................

............
.................................. X⊥) ⊗ X.

By canonically polarizing these formulas, we define

P ⊕̂Q := !∀X.?(P ⊗ X).................................................
............
.................................. ?(Q ⊗ X).................................................

............
.................................. X⊥

N&̂M := ?∃X.!(N .................................................
............
.................................. X⊥) ⊗ !(M .................................................

............
.................................. X⊥) ⊗ X.

These then simulate the following restricted form of additive rules in MELLpol2:

⊢ Γ, Pi

⊢ Γ, P1 ⊕̂ P2
⊕̂i

i = 1, 2

⊢ N , N ⊢ N , L

⊢ N , N &̂ L
&̂

I.e., in terms of categorical logic &̂ (resp. ⊕̂) is a restriction of the usual (weaker)
product (resp. coproduct) in D+,− in the following sense: For N,M ∈ D−,
N&̂M is a triple (N&̂M, N&̂M

proj1−−−→ N, N&̂M
proj2−−−→ M) such that the usual

(weaker) universal mapping property for the product holds for an arbitrarily
given triple (P, P −→ N,P −→ M) for P ∈ D+. Note that the given triples are
restrictions of the usual ones since P ranges only in D+ but not in D−.

It is impossible to extend the &̂-rule for a general context Γ (not only N
but also) containing at most one positive formula. This is because, the simula-
tion of the &-rule violates the focalized proof property of Definition 4.19, which
MELLpol2 retains (cf. Table 1 of Section 4.8).

The definability of the restricted additives ⊕̂ and &̂ also works in MELLη
pol2

if X and X⊥ are replaced by !X⊥ and ?X, respectively.
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Future work

A promising future work is to give a truth-valued semantics for the indexed
logical system MALLP(I) of [Hamano-Takemura 08] by employing our polar-
ized phase spaces. The syntactical system MALLP(I) is a polarized extension
of [Bucciarelli-Ehrhard 00]’s indexed system and arises from multi-pointed re-
lations, which form an web-based instance of the MALLP categorical model of
[Hamano-Scott 07]. For this work an I-product polarized phase spaces are im-
portant analogously to [Ehrhard 04]. A product topology on the spaces is a key
ingredient to accommodate the polarities to the indexed system.

As seen unexpectedly in Section 4, the second order syntaxes contrast with
the first order ones in terms of conservativity and focalized sequent property.
To understand this contrast, it is important to extend [Hamano-Scott 07]’s cat-
egorical semantics into second order MALLP2. A categorical model, which is
stronger in modeling proofs, may explain this contrast observed in the weaker
standpoint of provability, which conservativity as well as FSP concerns. Po-
larized dinatural transformation of [Hamano-Scott 07] is appropriate to model
second order variable. It is also anticipated that incorporating second order
in the categorical model provides a better understanding of focalization, whose
semantical counter part is not yet clear.

The logical system MALLP2, which is complete with respect to our polarized
phase spaces, is considered as the basic syntax of Girard’s theory of ludics
(without weakening). We intend to study a semantical strong normalization
theorem for the L-nets of [Curien-Faggian 05] for ludics by using our polarized
phase spaces.
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