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RNA interference

• RNAi (also known as RNA silencing) is a 
mechanism in which short interfering RNA’s 
(siRNA’s)  (21～26 nt’s) directly control gene 
expression.

• RNAi consists of three fundamental biochemical 
processes:
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Then a CGF is a pair (E,P) of a set E of reagents and a initial solution P. A reagent Xi = Mi for nam-
ing a chemical specie and molecules Mi for describing the interaction capabilities of the corresponding
species. Solution is a multiset of variables, which is released by interactions:

(Reagents) E := 0
... X = M,E (Molecule) M := 0

... π.P⊕M (Solution) P := 0
... X

∣∣ P

Computation of CGF is given in terms of Labelled Transition Graph of Definition 3.2. This is deter-
mined by reductions of the two kinds:
(decay of molecule) · · ·⊕ τ(r).Q⊕ · · · −→ Q
(collision of molecules) · · ·⊕?a(r).Q⊕ · · ·

∣∣ · · ·⊕?a(r).R⊕ · · · −→ Q
∣∣ R

Definition 3.2 (Labelled Transition Graph of CGF (Definition 3.2.1 of [3])) Given a CGF (E,P), Next(E,P)
is defined to consist of the following labelled transition, where P† denotes the normalized form of a pro-
cess P where the variables are sorted in lexicographical order.

- ({m.X .i} : P† →r S†) such that P†.m = X and E.X .i = τ(r).Q and S = P†\m
∣∣ Q.

- ({m.X .i,n.Y. j} : P† →r S†) such that P†.m = X and P†.n = Y and m $= n and E.X .i =?a(r).Q and
E.Y. j =!a(r).R and S = P†\m,n

∣∣ Q
∣∣ R.

The labelled transition graph LT G(E,P) of (E,P) is defined as follows:
LT G(E,P) = ∪nΨn with Ψ0 = Next(E,P) and Ψn+1 = ∪{Next(E,Q) | Q is a state of Ψn}
The increment operators on r1 and on r2 are realized by the following chemical reactions, where

mRNAab denotes an aberrant mRNA.
(Polymerization)

RdRp+mRNAab −→ dsRNA for r1

(Transcription)

−→mRNA for r2

After the reactions, we go to the next instruction Ii+1. Hence every increment instruction Ii = Inc(r j) is
formalized directly for j ∈ {1,2} as follows:
(Increment Ii = Inc(r j))

Ii = RdRp
∣∣ τ.Ii+1 j = 1

Ii = mRNA
∣∣ τ.Ii+1 j = 2

The more subtle part is decrement operators. The decrement operators on r1 and on r2 are realized by
the following chemical reactions:
(cleavage)

dsRNA+Dicer −→ siRNA′s for r1 (1)

(degradation)

mRNA+RISC −→ m̃RNA+RISC for r2 (2)

where in (2) m̃RNA denotes either 0 or mRNAab.
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Figure 1: RNA interference

machine) comes equipped with two registers (holding numbers) and a finite number of instructions (in-
crement and decrement/jump) on a certain register [18]. While most biological computational models so
far known are based on the Turing machine model via common analogy of DNA as a single tape [10], our
Minsky machine interpretation presented in this paper is intrinsic to the RNAi mechanism such that RNAs
have both formations of single and double strands. This makes the interference captured by interactions
of multi processes, which single and double stranded RNAs form in various length. We first present a
naive machine model RMRNAi of RNAi so that the two registers are realized respectively by the initiator
(dsRNA) and the target (mRNA) of RNAi. Increment/Decrement instructions on the registers are real-
ized by chemical reactions mediated by enzymes and proteins (e.g., RdRp and transcription/Dicer and
RISC). Second, however the above naive model lacks any rigorous computational language hence needs
giving a syntactical analysis. By virtue of the interactive nature of RNAi and of its machine RMRNAi, we
investigate process calculus interpretations, especially those based on CCS and the π-calculus. Milner’s
π-calculus is a mathematical model of concurrent computation, which is powerful even in comparison to
the lambda calculus (a functional model for computing) and Turing machines [16, 22]. Capturing RNAi
as a computational structure, our interpretation aims to extract the computational meaning of RNAi,
especially its complexity.

Motivated by Zavattaro-Cardelli [26], we describe our machine RMRNAi in the calculus of Chemical
Ground Form (CGF), which is a minimal fragment of CCS equipped with interaction rates for each chan-
nel, hence a subset of the stochastic π-calculus [20]. CGF is introduced by Cardelli [3] and in spite of its
simpleness, CGF sufficiently describes chemical kinetics compositionally by giving correspondence to
a stochastic semantics of continuous time Markov chains. However as computational language without
errors, the primitive description of CGF lacks any direct representation of the zero-tests for the regis-
ters, which causes certain errors of instructions of encoded RMRNAi to allow wrong jumps. To avoid the
wrong probabilistic jump, a kind of inhibitor is necessary for machine instructions. To realize this biolog-
ically we consider recursive RNAi (recRNAi), which is known to be an extension of RNAi [14, 21, 25],
where siRNA produced during RNAi inhibits not only mRNA but also RISC and Dicer. Biologically the
extension is obtained by adding a feedback linkage to RNAi. The recRNAi is directly represented by a
register machine RMrecRNAi, where the interactions of siRNAs are naturally interpreted as the inhibitors
to instructions. We describe the machine in terms of CGF with fixed points. A probabilistic termination
is investigated in the encoded system of recRNAi and Turing completeness up to any degree of precision

Step 1 RNAi
 Formation of double stranded RNA (dsRNA)
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machine) comes equipped with two registers (holding numbers) and a finite number of instructions (in-
crement and decrement/jump) on a certain register [18]. While most biological computational models so
far known are based on the Turing machine model via common analogy of DNA as a single tape [10], our
Minsky machine interpretation presented in this paper is intrinsic to the RNAi mechanism such that RNAs
have both formations of single and double strands. This makes the interference captured by interactions
of multi processes, which single and double stranded RNAs form in various length. We first present a
naive machine model RMRNAi of RNAi so that the two registers are realized respectively by the initiator
(dsRNA) and the target (mRNA) of RNAi. Increment/Decrement instructions on the registers are real-
ized by chemical reactions mediated by enzymes and proteins (e.g., RdRp and transcription/Dicer and
RISC). Second, however the above naive model lacks any rigorous computational language hence needs
giving a syntactical analysis. By virtue of the interactive nature of RNAi and of its machine RMRNAi, we
investigate process calculus interpretations, especially those based on CCS and the π-calculus. Milner’s
π-calculus is a mathematical model of concurrent computation, which is powerful even in comparison to
the lambda calculus (a functional model for computing) and Turing machines [16, 22]. Capturing RNAi
as a computational structure, our interpretation aims to extract the computational meaning of RNAi,
especially its complexity.

Motivated by Zavattaro-Cardelli [26], we describe our machine RMRNAi in the calculus of Chemical
Ground Form (CGF), which is a minimal fragment of CCS equipped with interaction rates for each chan-
nel, hence a subset of the stochastic π-calculus [20]. CGF is introduced by Cardelli [3] and in spite of its
simpleness, CGF sufficiently describes chemical kinetics compositionally by giving correspondence to
a stochastic semantics of continuous time Markov chains. However as computational language without
errors, the primitive description of CGF lacks any direct representation of the zero-tests for the regis-
ters, which causes certain errors of instructions of encoded RMRNAi to allow wrong jumps. To avoid the
wrong probabilistic jump, a kind of inhibitor is necessary for machine instructions. To realize this biolog-
ically we consider recursive RNAi (recRNAi), which is known to be an extension of RNAi [14, 21, 25],
where siRNA produced during RNAi inhibits not only mRNA but also RISC and Dicer. Biologically the
extension is obtained by adding a feedback linkage to RNAi. The recRNAi is directly represented by a
register machine RMrecRNAi, where the interactions of siRNAs are naturally interpreted as the inhibitors
to instructions. We describe the machine in terms of CGF with fixed points. A probabilistic termination
is investigated in the encoded system of recRNAi and Turing completeness up to any degree of precision

Step 2 RNAi
Dicer enzyme cleaves dsRNA into siRNA’s:
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machine) comes equipped with two registers (holding numbers) and a finite number of instructions (in-
crement and decrement/jump) on a certain register [18]. While most biological computational models so
far known are based on the Turing machine model via common analogy of DNA as a single tape [10], our
Minsky machine interpretation presented in this paper is intrinsic to the RNAi mechanism such that RNAs
have both formations of single and double strands. This makes the interference captured by interactions
of multi processes, which single and double stranded RNAs form in various length. We first present a
naive machine model RMRNAi of RNAi so that the two registers are realized respectively by the initiator
(dsRNA) and the target (mRNA) of RNAi. Increment/Decrement instructions on the registers are real-
ized by chemical reactions mediated by enzymes and proteins (e.g., RdRp and transcription/Dicer and
RISC). Second, however the above naive model lacks any rigorous computational language hence needs
giving a syntactical analysis. By virtue of the interactive nature of RNAi and of its machine RMRNAi, we
investigate process calculus interpretations, especially those based on CCS and the π-calculus. Milner’s
π-calculus is a mathematical model of concurrent computation, which is powerful even in comparison to
the lambda calculus (a functional model for computing) and Turing machines [16, 22]. Capturing RNAi
as a computational structure, our interpretation aims to extract the computational meaning of RNAi,
especially its complexity.

Motivated by Zavattaro-Cardelli [26], we describe our machine RMRNAi in the calculus of Chemical
Ground Form (CGF), which is a minimal fragment of CCS equipped with interaction rates for each chan-
nel, hence a subset of the stochastic π-calculus [20]. CGF is introduced by Cardelli [3] and in spite of its
simpleness, CGF sufficiently describes chemical kinetics compositionally by giving correspondence to
a stochastic semantics of continuous time Markov chains. However as computational language without
errors, the primitive description of CGF lacks any direct representation of the zero-tests for the regis-
ters, which causes certain errors of instructions of encoded RMRNAi to allow wrong jumps. To avoid the
wrong probabilistic jump, a kind of inhibitor is necessary for machine instructions. To realize this biolog-
ically we consider recursive RNAi (recRNAi), which is known to be an extension of RNAi [14, 21, 25],
where siRNA produced during RNAi inhibits not only mRNA but also RISC and Dicer. Biologically the
extension is obtained by adding a feedback linkage to RNAi. The recRNAi is directly represented by a
register machine RMrecRNAi, where the interactions of siRNAs are naturally interpreted as the inhibitors
to instructions. We describe the machine in terms of CGF with fixed points. A probabilistic termination
is investigated in the encoded system of recRNAi and Turing completeness up to any degree of precision

Step 3 RNAi
Incorporation of siRNA into RNA-induced silencing complex (RISC), targeting 
a long single-stranded mRNA by complementarity.
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machine) comes equipped with two registers (holding numbers) and a finite number of instructions (in-
crement and decrement/jump) on a certain register [18]. While most biological computational models so
far known are based on the Turing machine model via common analogy of DNA as a single tape [10], our
Minsky machine interpretation presented in this paper is intrinsic to the RNAi mechanism such that RNAs
have both formations of single and double strands. This makes the interference captured by interactions
of multi processes, which single and double stranded RNAs form in various length. We first present a
naive machine model RMRNAi of RNAi so that the two registers are realized respectively by the initiator
(dsRNA) and the target (mRNA) of RNAi. Increment/Decrement instructions on the registers are real-
ized by chemical reactions mediated by enzymes and proteins (e.g., RdRp and transcription/Dicer and
RISC). Second, however the above naive model lacks any rigorous computational language hence needs
giving a syntactical analysis. By virtue of the interactive nature of RNAi and of its machine RMRNAi, we
investigate process calculus interpretations, especially those based on CCS and the π-calculus. Milner’s
π-calculus is a mathematical model of concurrent computation, which is powerful even in comparison to
the lambda calculus (a functional model for computing) and Turing machines [16, 22]. Capturing RNAi
as a computational structure, our interpretation aims to extract the computational meaning of RNAi,
especially its complexity.

Motivated by Zavattaro-Cardelli [26], we describe our machine RMRNAi in the calculus of Chemical
Ground Form (CGF), which is a minimal fragment of CCS equipped with interaction rates for each chan-
nel, hence a subset of the stochastic π-calculus [20]. CGF is introduced by Cardelli [3] and in spite of its
simpleness, CGF sufficiently describes chemical kinetics compositionally by giving correspondence to
a stochastic semantics of continuous time Markov chains. However as computational language without
errors, the primitive description of CGF lacks any direct representation of the zero-tests for the regis-
ters, which causes certain errors of instructions of encoded RMRNAi to allow wrong jumps. To avoid the
wrong probabilistic jump, a kind of inhibitor is necessary for machine instructions. To realize this biolog-
ically we consider recursive RNAi (recRNAi), which is known to be an extension of RNAi [14, 21, 25],
where siRNA produced during RNAi inhibits not only mRNA but also RISC and Dicer. Biologically the
extension is obtained by adding a feedback linkage to RNAi. The recRNAi is directly represented by a
register machine RMrecRNAi, where the interactions of siRNAs are naturally interpreted as the inhibitors
to instructions. We describe the machine in terms of CGF with fixed points. A probabilistic termination
is investigated in the encoded system of recRNAi and Turing completeness up to any degree of precision
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machine) comes equipped with two registers (holding numbers) and a finite number of instructions (in-
crement and decrement/jump) on a certain register [18]. While most biological computational models so
far known are based on the Turing machine model via common analogy of DNA as a single tape [10], our
Minsky machine interpretation presented in this paper is intrinsic to the RNAi mechanism such that RNAs
have both formations of single and double strands. This makes the interference captured by interactions
of multi processes, which single and double stranded RNAs form in various length. We first present a
naive machine model RMRNAi of RNAi so that the two registers are realized respectively by the initiator
(dsRNA) and the target (mRNA) of RNAi. Increment/Decrement instructions on the registers are real-
ized by chemical reactions mediated by enzymes and proteins (e.g., RdRp and transcription/Dicer and
RISC). Second, however the above naive model lacks any rigorous computational language hence needs
giving a syntactical analysis. By virtue of the interactive nature of RNAi and of its machine RMRNAi, we
investigate process calculus interpretations, especially those based on CCS and the π-calculus. Milner’s
π-calculus is a mathematical model of concurrent computation, which is powerful even in comparison to
the lambda calculus (a functional model for computing) and Turing machines [16, 22]. Capturing RNAi
as a computational structure, our interpretation aims to extract the computational meaning of RNAi,
especially its complexity.

Motivated by Zavattaro-Cardelli [26], we describe our machine RMRNAi in the calculus of Chemical
Ground Form (CGF), which is a minimal fragment of CCS equipped with interaction rates for each chan-
nel, hence a subset of the stochastic π-calculus [20]. CGF is introduced by Cardelli [3] and in spite of its
simpleness, CGF sufficiently describes chemical kinetics compositionally by giving correspondence to
a stochastic semantics of continuous time Markov chains. However as computational language without
errors, the primitive description of CGF lacks any direct representation of the zero-tests for the regis-
ters, which causes certain errors of instructions of encoded RMRNAi to allow wrong jumps. To avoid the
wrong probabilistic jump, a kind of inhibitor is necessary for machine instructions. To realize this biolog-
ically we consider recursive RNAi (recRNAi), which is known to be an extension of RNAi [14, 21, 25],
where siRNA produced during RNAi inhibits not only mRNA but also RISC and Dicer. Biologically the
extension is obtained by adding a feedback linkage to RNAi. The recRNAi is directly represented by a
register machine RMrecRNAi, where the interactions of siRNAs are naturally interpreted as the inhibitors
to instructions. We describe the machine in terms of CGF with fixed points. A probabilistic termination
is investigated in the encoded system of recRNAi and Turing completeness up to any degree of precision

Finally, RISC degrades mRNA.
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Moreover RNAi has a circularity to synthesize dsRNA
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machine) comes equipped with two registers (holding numbers) and a finite number of instructions (in-
crement and decrement/jump) on a certain register [18]. While most biological computational models so
far known are based on the Turing machine model via common analogy of DNA as a single tape [10], our
Minsky machine interpretation presented in this paper is intrinsic to the RNAi mechanism such that RNAs
have both formations of single and double strands. This makes the interference captured by interactions
of multi processes, which single and double stranded RNAs form in various length. We first present a
naive machine model RMRNAi of RNAi so that the two registers are realized respectively by the initiator
(dsRNA) and the target (mRNA) of RNAi. Increment/Decrement instructions on the registers are real-
ized by chemical reactions mediated by enzymes and proteins (e.g., RdRp and transcription/Dicer and
RISC). Second, however the above naive model lacks any rigorous computational language hence needs
giving a syntactical analysis. By virtue of the interactive nature of RNAi and of its machine RMRNAi, we
investigate process calculus interpretations, especially those based on CCS and the π-calculus. Milner’s
π-calculus is a mathematical model of concurrent computation, which is powerful even in comparison to
the lambda calculus (a functional model for computing) and Turing machines [16, 22]. Capturing RNAi
as a computational structure, our interpretation aims to extract the computational meaning of RNAi,
especially its complexity.

Motivated by Zavattaro-Cardelli [26], we describe our machine RMRNAi in the calculus of Chemical
Ground Form (CGF), which is a minimal fragment of CCS equipped with interaction rates for each chan-
nel, hence a subset of the stochastic π-calculus [20]. CGF is introduced by Cardelli [3] and in spite of its
simpleness, CGF sufficiently describes chemical kinetics compositionally by giving correspondence to
a stochastic semantics of continuous time Markov chains. However as computational language without
errors, the primitive description of CGF lacks any direct representation of the zero-tests for the regis-
ters, which causes certain errors of instructions of encoded RMRNAi to allow wrong jumps. To avoid the
wrong probabilistic jump, a kind of inhibitor is necessary for machine instructions. To realize this biolog-
ically we consider recursive RNAi (recRNAi), which is known to be an extension of RNAi [14, 21, 25],
where siRNA produced during RNAi inhibits not only mRNA but also RISC and Dicer. Biologically the
extension is obtained by adding a feedback linkage to RNAi. The recRNAi is directly represented by a
register machine RMrecRNAi, where the interactions of siRNAs are naturally interpreted as the inhibitors
to instructions. We describe the machine in terms of CGF with fixed points. A probabilistic termination
is investigated in the encoded system of recRNAi and Turing completeness up to any degree of precision

circularity

This is realized by 
                 polymerization
of aberrant mRNA caused by RISC degradation
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machine) comes equipped with two registers (holding numbers) and a finite number of instructions (in-
crement and decrement/jump) on a certain register [18]. While most biological computational models so
far known are based on the Turing machine model via common analogy of DNA as a single tape [10], our
Minsky machine interpretation presented in this paper is intrinsic to the RNAi mechanism such that RNAs
have both formations of single and double strands. This makes the interference captured by interactions
of multi processes, which single and double stranded RNAs form in various length. We first present a
naive machine model RMRNAi of RNAi so that the two registers are realized respectively by the initiator
(dsRNA) and the target (mRNA) of RNAi. Increment/Decrement instructions on the registers are real-
ized by chemical reactions mediated by enzymes and proteins (e.g., RdRp and transcription/Dicer and
RISC). Second, however the above naive model lacks any rigorous computational language hence needs
giving a syntactical analysis. By virtue of the interactive nature of RNAi and of its machine RMRNAi, we
investigate process calculus interpretations, especially those based on CCS and the π-calculus. Milner’s
π-calculus is a mathematical model of concurrent computation, which is powerful even in comparison to
the lambda calculus (a functional model for computing) and Turing machines [16, 22]. Capturing RNAi
as a computational structure, our interpretation aims to extract the computational meaning of RNAi,
especially its complexity.

Motivated by Zavattaro-Cardelli [26], we describe our machine RMRNAi in the calculus of Chemical
Ground Form (CGF), which is a minimal fragment of CCS equipped with interaction rates for each chan-
nel, hence a subset of the stochastic π-calculus [20]. CGF is introduced by Cardelli [3] and in spite of its
simpleness, CGF sufficiently describes chemical kinetics compositionally by giving correspondence to
a stochastic semantics of continuous time Markov chains. However as computational language without
errors, the primitive description of CGF lacks any direct representation of the zero-tests for the regis-
ters, which causes certain errors of instructions of encoded RMRNAi to allow wrong jumps. To avoid the
wrong probabilistic jump, a kind of inhibitor is necessary for machine instructions. To realize this biolog-
ically we consider recursive RNAi (recRNAi), which is known to be an extension of RNAi [14, 21, 25],
where siRNA produced during RNAi inhibits not only mRNA but also RISC and Dicer. Biologically the
extension is obtained by adding a feedback linkage to RNAi. The recRNAi is directly represented by a
register machine RMrecRNAi, where the interactions of siRNAs are naturally interpreted as the inhibitors
to instructions. We describe the machine in terms of CGF with fixed points. A probabilistic termination
is investigated in the encoded system of recRNAi and Turing completeness up to any degree of precision
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machine) comes equipped with two registers (holding numbers) and a finite number of instructions (in-
crement and decrement/jump) on a certain register [18]. While most biological computational models so
far known are based on the Turing machine model via common analogy of DNA as a single tape [10], our
Minsky machine interpretation presented in this paper is intrinsic to the RNAi mechanism such that RNAs
have both formations of single and double strands. This makes the interference captured by interactions
of multi processes, which single and double stranded RNAs form in various length. We first present a
naive machine model RMRNAi of RNAi so that the two registers are realized respectively by the initiator
(dsRNA) and the target (mRNA) of RNAi. Increment/Decrement instructions on the registers are real-
ized by chemical reactions mediated by enzymes and proteins (e.g., RdRp and transcription/Dicer and
RISC). Second, however the above naive model lacks any rigorous computational language hence needs
giving a syntactical analysis. By virtue of the interactive nature of RNAi and of its machine RMRNAi, we
investigate process calculus interpretations, especially those based on CCS and the π-calculus. Milner’s
π-calculus is a mathematical model of concurrent computation, which is powerful even in comparison to
the lambda calculus (a functional model for computing) and Turing machines [16, 22]. Capturing RNAi
as a computational structure, our interpretation aims to extract the computational meaning of RNAi,
especially its complexity.

Motivated by Zavattaro-Cardelli [26], we describe our machine RMRNAi in the calculus of Chemical
Ground Form (CGF), which is a minimal fragment of CCS equipped with interaction rates for each chan-
nel, hence a subset of the stochastic π-calculus [20]. CGF is introduced by Cardelli [3] and in spite of its
simpleness, CGF sufficiently describes chemical kinetics compositionally by giving correspondence to
a stochastic semantics of continuous time Markov chains. However as computational language without
errors, the primitive description of CGF lacks any direct representation of the zero-tests for the regis-
ters, which causes certain errors of instructions of encoded RMRNAi to allow wrong jumps. To avoid the
wrong probabilistic jump, a kind of inhibitor is necessary for machine instructions. To realize this biolog-
ically we consider recursive RNAi (recRNAi), which is known to be an extension of RNAi [14, 21, 25],
where siRNA produced during RNAi inhibits not only mRNA but also RISC and Dicer. Biologically the
extension is obtained by adding a feedback linkage to RNAi. The recRNAi is directly represented by a
register machine RMrecRNAi, where the interactions of siRNAs are naturally interpreted as the inhibitors
to instructions. We describe the machine in terms of CGF with fixed points. A probabilistic termination
is investigated in the encoded system of recRNAi and Turing completeness up to any degree of precision
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machine) comes equipped with two registers (holding numbers) and a finite number of instructions (in-
crement and decrement/jump) on a certain register [18]. While most biological computational models so
far known are based on the Turing machine model via common analogy of DNA as a single tape [10], our
Minsky machine interpretation presented in this paper is intrinsic to the RNAi mechanism such that RNAs
have both formations of single and double strands. This makes the interference captured by interactions
of multi processes, which single and double stranded RNAs form in various length. We first present a
naive machine model RMRNAi of RNAi so that the two registers are realized respectively by the initiator
(dsRNA) and the target (mRNA) of RNAi. Increment/Decrement instructions on the registers are real-
ized by chemical reactions mediated by enzymes and proteins (e.g., RdRp and transcription/Dicer and
RISC). Second, however the above naive model lacks any rigorous computational language hence needs
giving a syntactical analysis. By virtue of the interactive nature of RNAi and of its machine RMRNAi, we
investigate process calculus interpretations, especially those based on CCS and the π-calculus. Milner’s
π-calculus is a mathematical model of concurrent computation, which is powerful even in comparison to
the lambda calculus (a functional model for computing) and Turing machines [16, 22]. Capturing RNAi
as a computational structure, our interpretation aims to extract the computational meaning of RNAi,
especially its complexity.

Motivated by Zavattaro-Cardelli [26], we describe our machine RMRNAi in the calculus of Chemical
Ground Form (CGF), which is a minimal fragment of CCS equipped with interaction rates for each chan-
nel, hence a subset of the stochastic π-calculus [20]. CGF is introduced by Cardelli [3] and in spite of its
simpleness, CGF sufficiently describes chemical kinetics compositionally by giving correspondence to
a stochastic semantics of continuous time Markov chains. However as computational language without
errors, the primitive description of CGF lacks any direct representation of the zero-tests for the regis-
ters, which causes certain errors of instructions of encoded RMRNAi to allow wrong jumps. To avoid the
wrong probabilistic jump, a kind of inhibitor is necessary for machine instructions. To realize this biolog-
ically we consider recursive RNAi (recRNAi), which is known to be an extension of RNAi [14, 21, 25],
where siRNA produced during RNAi inhibits not only mRNA but also RISC and Dicer. Biologically the
extension is obtained by adding a feedback linkage to RNAi. The recRNAi is directly represented by a
register machine RMrecRNAi, where the interactions of siRNAs are naturally interpreted as the inhibitors
to instructions. We describe the machine in terms of CGF with fixed points. A probabilistic termination
is investigated in the encoded system of recRNAi and Turing completeness up to any degree of precision
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machine) comes equipped with two registers (holding numbers) and a finite number of instructions (in-
crement and decrement/jump) on a certain register [18]. While most biological computational models so
far known are based on the Turing machine model via common analogy of DNA as a single tape [10], our
Minsky machine interpretation presented in this paper is intrinsic to the RNAi mechanism such that RNAs
have both formations of single and double strands. This makes the interference captured by interactions
of multi processes, which single and double stranded RNAs form in various length. We first present a
naive machine model RMRNAi of RNAi so that the two registers are realized respectively by the initiator
(dsRNA) and the target (mRNA) of RNAi. Increment/Decrement instructions on the registers are real-
ized by chemical reactions mediated by enzymes and proteins (e.g., RdRp and transcription/Dicer and
RISC). Second, however the above naive model lacks any rigorous computational language hence needs
giving a syntactical analysis. By virtue of the interactive nature of RNAi and of its machine RMRNAi, we
investigate process calculus interpretations, especially those based on CCS and the π-calculus. Milner’s
π-calculus is a mathematical model of concurrent computation, which is powerful even in comparison to
the lambda calculus (a functional model for computing) and Turing machines [16, 22]. Capturing RNAi
as a computational structure, our interpretation aims to extract the computational meaning of RNAi,
especially its complexity.

Motivated by Zavattaro-Cardelli [26], we describe our machine RMRNAi in the calculus of Chemical
Ground Form (CGF), which is a minimal fragment of CCS equipped with interaction rates for each chan-
nel, hence a subset of the stochastic π-calculus [20]. CGF is introduced by Cardelli [3] and in spite of its
simpleness, CGF sufficiently describes chemical kinetics compositionally by giving correspondence to
a stochastic semantics of continuous time Markov chains. However as computational language without
errors, the primitive description of CGF lacks any direct representation of the zero-tests for the regis-
ters, which causes certain errors of instructions of encoded RMRNAi to allow wrong jumps. To avoid the
wrong probabilistic jump, a kind of inhibitor is necessary for machine instructions. To realize this biolog-
ically we consider recursive RNAi (recRNAi), which is known to be an extension of RNAi [14, 21, 25],
where siRNA produced during RNAi inhibits not only mRNA but also RISC and Dicer. Biologically the
extension is obtained by adding a feedback linkage to RNAi. The recRNAi is directly represented by a
register machine RMrecRNAi, where the interactions of siRNAs are naturally interpreted as the inhibitors
to instructions. We describe the machine in terms of CGF with fixed points. A probabilistic termination
is investigated in the encoded system of recRNAi and Turing completeness up to any degree of precision
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machine) comes equipped with two registers (holding numbers) and a finite number of instructions (in-
crement and decrement/jump) on a certain register [18]. While most biological computational models so
far known are based on the Turing machine model via common analogy of DNA as a single tape [10], our
Minsky machine interpretation presented in this paper is intrinsic to the RNAi mechanism such that RNAs
have both formations of single and double strands. This makes the interference captured by interactions
of multi processes, which single and double stranded RNAs form in various length. We first present a
naive machine model RMRNAi of RNAi so that the two registers are realized respectively by the initiator
(dsRNA) and the target (mRNA) of RNAi. Increment/Decrement instructions on the registers are real-
ized by chemical reactions mediated by enzymes and proteins (e.g., RdRp and transcription/Dicer and
RISC). Second, however the above naive model lacks any rigorous computational language hence needs
giving a syntactical analysis. By virtue of the interactive nature of RNAi and of its machine RMRNAi, we
investigate process calculus interpretations, especially those based on CCS and the π-calculus. Milner’s
π-calculus is a mathematical model of concurrent computation, which is powerful even in comparison to
the lambda calculus (a functional model for computing) and Turing machines [16, 22]. Capturing RNAi
as a computational structure, our interpretation aims to extract the computational meaning of RNAi,
especially its complexity.

Motivated by Zavattaro-Cardelli [26], we describe our machine RMRNAi in the calculus of Chemical
Ground Form (CGF), which is a minimal fragment of CCS equipped with interaction rates for each chan-
nel, hence a subset of the stochastic π-calculus [20]. CGF is introduced by Cardelli [3] and in spite of its
simpleness, CGF sufficiently describes chemical kinetics compositionally by giving correspondence to
a stochastic semantics of continuous time Markov chains. However as computational language without
errors, the primitive description of CGF lacks any direct representation of the zero-tests for the regis-
ters, which causes certain errors of instructions of encoded RMRNAi to allow wrong jumps. To avoid the
wrong probabilistic jump, a kind of inhibitor is necessary for machine instructions. To realize this biolog-
ically we consider recursive RNAi (recRNAi), which is known to be an extension of RNAi [14, 21, 25],
where siRNA produced during RNAi inhibits not only mRNA but also RISC and Dicer. Biologically the
extension is obtained by adding a feedback linkage to RNAi. The recRNAi is directly represented by a
register machine RMrecRNAi, where the interactions of siRNAs are naturally interpreted as the inhibitors
to instructions. We describe the machine in terms of CGF with fixed points. A probabilistic termination
is investigated in the encoded system of recRNAi and Turing completeness up to any degree of precision
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machine) comes equipped with two registers (holding numbers) and a finite number of instructions (in-
crement and decrement/jump) on a certain register [18]. While most biological computational models so
far known are based on the Turing machine model via common analogy of DNA as a single tape [10], our
Minsky machine interpretation presented in this paper is intrinsic to the RNAi mechanism such that RNAs
have both formations of single and double strands. This makes the interference captured by interactions
of multi processes, which single and double stranded RNAs form in various length. We first present a
naive machine model RMRNAi of RNAi so that the two registers are realized respectively by the initiator
(dsRNA) and the target (mRNA) of RNAi. Increment/Decrement instructions on the registers are real-
ized by chemical reactions mediated by enzymes and proteins (e.g., RdRp and transcription/Dicer and
RISC). Second, however the above naive model lacks any rigorous computational language hence needs
giving a syntactical analysis. By virtue of the interactive nature of RNAi and of its machine RMRNAi, we
investigate process calculus interpretations, especially those based on CCS and the π-calculus. Milner’s
π-calculus is a mathematical model of concurrent computation, which is powerful even in comparison to
the lambda calculus (a functional model for computing) and Turing machines [16, 22]. Capturing RNAi
as a computational structure, our interpretation aims to extract the computational meaning of RNAi,
especially its complexity.

Motivated by Zavattaro-Cardelli [26], we describe our machine RMRNAi in the calculus of Chemical
Ground Form (CGF), which is a minimal fragment of CCS equipped with interaction rates for each chan-
nel, hence a subset of the stochastic π-calculus [20]. CGF is introduced by Cardelli [3] and in spite of its
simpleness, CGF sufficiently describes chemical kinetics compositionally by giving correspondence to
a stochastic semantics of continuous time Markov chains. However as computational language without
errors, the primitive description of CGF lacks any direct representation of the zero-tests for the regis-
ters, which causes certain errors of instructions of encoded RMRNAi to allow wrong jumps. To avoid the
wrong probabilistic jump, a kind of inhibitor is necessary for machine instructions. To realize this biolog-
ically we consider recursive RNAi (recRNAi), which is known to be an extension of RNAi [14, 21, 25],
where siRNA produced during RNAi inhibits not only mRNA but also RISC and Dicer. Biologically the
extension is obtained by adding a feedback linkage to RNAi. The recRNAi is directly represented by a
register machine RMrecRNAi, where the interactions of siRNAs are naturally interpreted as the inhibitors
to instructions. We describe the machine in terms of CGF with fixed points. A probabilistic termination
is investigated in the encoded system of recRNAi and Turing completeness up to any degree of precision
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machine) comes equipped with two registers (holding numbers) and a finite number of instructions (in-
crement and decrement/jump) on a certain register [18]. While most biological computational models so
far known are based on the Turing machine model via common analogy of DNA as a single tape [10], our
Minsky machine interpretation presented in this paper is intrinsic to the RNAi mechanism such that RNAs
have both formations of single and double strands. This makes the interference captured by interactions
of multi processes, which single and double stranded RNAs form in various length. We first present a
naive machine model RMRNAi of RNAi so that the two registers are realized respectively by the initiator
(dsRNA) and the target (mRNA) of RNAi. Increment/Decrement instructions on the registers are real-
ized by chemical reactions mediated by enzymes and proteins (e.g., RdRp and transcription/Dicer and
RISC). Second, however the above naive model lacks any rigorous computational language hence needs
giving a syntactical analysis. By virtue of the interactive nature of RNAi and of its machine RMRNAi, we
investigate process calculus interpretations, especially those based on CCS and the π-calculus. Milner’s
π-calculus is a mathematical model of concurrent computation, which is powerful even in comparison to
the lambda calculus (a functional model for computing) and Turing machines [16, 22]. Capturing RNAi
as a computational structure, our interpretation aims to extract the computational meaning of RNAi,
especially its complexity.

Motivated by Zavattaro-Cardelli [26], we describe our machine RMRNAi in the calculus of Chemical
Ground Form (CGF), which is a minimal fragment of CCS equipped with interaction rates for each chan-
nel, hence a subset of the stochastic π-calculus [20]. CGF is introduced by Cardelli [3] and in spite of its
simpleness, CGF sufficiently describes chemical kinetics compositionally by giving correspondence to
a stochastic semantics of continuous time Markov chains. However as computational language without
errors, the primitive description of CGF lacks any direct representation of the zero-tests for the regis-
ters, which causes certain errors of instructions of encoded RMRNAi to allow wrong jumps. To avoid the
wrong probabilistic jump, a kind of inhibitor is necessary for machine instructions. To realize this biolog-
ically we consider recursive RNAi (recRNAi), which is known to be an extension of RNAi [14, 21, 25],
where siRNA produced during RNAi inhibits not only mRNA but also RISC and Dicer. Biologically the
extension is obtained by adding a feedback linkage to RNAi. The recRNAi is directly represented by a
register machine RMrecRNAi, where the interactions of siRNAs are naturally interpreted as the inhibitors
to instructions. We describe the machine in terms of CGF with fixed points. A probabilistic termination
is investigated in the encoded system of recRNAi and Turing completeness up to any degree of precision
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realised by transcription. The decrement on r1 is realized by the enzyme Dicer which cleaves dsRNA
into siRNAs and that on the r2 is realized by RISC’s complementary degradation of mRNA.

register values increment/decrement

r1

m1︷ ︸︸ ︷
dsRNA | · · · | dsRNA Inc(r1) := RdRp | ||||||||||||||||||||||||||||||||

RdRp
!!

Dec(r1) := Dicer
||||||||||||||

||||||||||||||

||||||||||||||

||||||||||||||

(a) register r1

register values increment/decrement

r2

m2︷ ︸︸ ︷
mRNA | · · · |mRNA Inc(r2) := transcription | ||||||||||||||||||||||||||||||||||||||||||||||||

Dec(r2) := RISC !
||||||||

| ||||||||||||||||||||||||||||||||||||||||||||||||

(b) register r2

Figure 2: Register Machine RMRNAi

Remark 2.3 (Restriction to primer-independent synthesis of dsRNA) In order to realize the register
machine interpretation of Definition 2.2, this paper assumes that the two species of dsRNA and mRNA
have no connections so that the decrement and increment of the both species are independently done
without affecting each other. The assumption corresponds to a biological restriction such that the synthe-
sis of dsRNA considered in this paper is only primer-independent so that dsRNA is directly duplicated
without any primer, as defined for the increment of the register r1 of dsRNA. The another biological
known synthesis of primer-dependent one violates the disconnection of the two species, in which syn-
thesis siRNA triggers polymerization, hence enables RdRp to copy a normal mRNA on the register r2.
That is, the register r2 may decrease in order to increase the register r1. Our assumption is biologically
appropriate since the two syntheses of dsRNA are investigated among experimental biologists from the
standpoint that the two syntheses could explain difference of RNAi between plants and animals. See
[2, 9] for the two syntheses of dsRNA.

3 RNAi as Chemical Reaction and Register Machines

In this section, we describe the register machine RMRNAi in Section 2 in terms of a rigorous computa-
tional language of stochastic process algebra. Chemical Ground Form (CGF) is introduced by Cardelli
[3] as a subset of π-calculus and of CCS [16] enriched with transition rates to channels. CGF models
collision between molecules by complementary synchronous interactions (input ? and output !) by with

channels with stochastic rates. The formal definition of CGF is as follows, where the notation
... separates

syntactical lists.
Definition 3.1 (Chemical Ground Form [3])
(Interaction Prefix )

π := τ(r)
... ?a(r)

... !a(r)
where τ for molecular decay and complementary ?a and !a for molecular inaction. The parenthesized
subscript (r) denotes reaction rate of the channel.
(parallel composition) ∣∣

(choice)
⊕

Parrnell composition
∣∣ models concurrent activities of events and choice ⊕ models race between events.
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machine) comes equipped with two registers (holding numbers) and a finite number of instructions (in-
crement and decrement/jump) on a certain register [18]. While most biological computational models so
far known are based on the Turing machine model via common analogy of DNA as a single tape [10], our
Minsky machine interpretation presented in this paper is intrinsic to the RNAi mechanism such that RNAs
have both formations of single and double strands. This makes the interference captured by interactions
of multi processes, which single and double stranded RNAs form in various length. We first present a
naive machine model RMRNAi of RNAi so that the two registers are realized respectively by the initiator
(dsRNA) and the target (mRNA) of RNAi. Increment/Decrement instructions on the registers are real-
ized by chemical reactions mediated by enzymes and proteins (e.g., RdRp and transcription/Dicer and
RISC). Second, however the above naive model lacks any rigorous computational language hence needs
giving a syntactical analysis. By virtue of the interactive nature of RNAi and of its machine RMRNAi, we
investigate process calculus interpretations, especially those based on CCS and the π-calculus. Milner’s
π-calculus is a mathematical model of concurrent computation, which is powerful even in comparison to
the lambda calculus (a functional model for computing) and Turing machines [16, 22]. Capturing RNAi
as a computational structure, our interpretation aims to extract the computational meaning of RNAi,
especially its complexity.

Motivated by Zavattaro-Cardelli [26], we describe our machine RMRNAi in the calculus of Chemical
Ground Form (CGF), which is a minimal fragment of CCS equipped with interaction rates for each chan-
nel, hence a subset of the stochastic π-calculus [20]. CGF is introduced by Cardelli [3] and in spite of its
simpleness, CGF sufficiently describes chemical kinetics compositionally by giving correspondence to
a stochastic semantics of continuous time Markov chains. However as computational language without
errors, the primitive description of CGF lacks any direct representation of the zero-tests for the regis-
ters, which causes certain errors of instructions of encoded RMRNAi to allow wrong jumps. To avoid the
wrong probabilistic jump, a kind of inhibitor is necessary for machine instructions. To realize this biolog-
ically we consider recursive RNAi (recRNAi), which is known to be an extension of RNAi [14, 21, 25],
where siRNA produced during RNAi inhibits not only mRNA but also RISC and Dicer. Biologically the
extension is obtained by adding a feedback linkage to RNAi. The recRNAi is directly represented by a
register machine RMrecRNAi, where the interactions of siRNAs are naturally interpreted as the inhibitors
to instructions. We describe the machine in terms of CGF with fixed points. A probabilistic termination
is investigated in the encoded system of recRNAi and Turing completeness up to any degree of precision
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machine) comes equipped with two registers (holding numbers) and a finite number of instructions (in-
crement and decrement/jump) on a certain register [18]. While most biological computational models so
far known are based on the Turing machine model via common analogy of DNA as a single tape [10], our
Minsky machine interpretation presented in this paper is intrinsic to the RNAi mechanism such that RNAs
have both formations of single and double strands. This makes the interference captured by interactions
of multi processes, which single and double stranded RNAs form in various length. We first present a
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Figure 2: Register Machine RMRNAi

Remark 2.3 (Restriction to primer-independent synthesis of dsRNA) In order to realize the register
machine interpretation of Definition 2.2, this paper assumes that the two species of dsRNA and mRNA
have no connections so that the decrement and increment of the both species are independently done
without affecting each other. The assumption corresponds to a biological restriction such that the synthe-
sis of dsRNA considered in this paper is only primer-independent so that dsRNA is directly duplicated
without any primer, as defined for the increment of the register r1 of dsRNA. The another biological
known synthesis of primer-dependent one violates the disconnection of the two species, in which syn-
thesis siRNA triggers polymerization, hence enables RdRp to copy a normal mRNA on the register r2.
That is, the register r2 may decrease in order to increase the register r1. Our assumption is biologically
appropriate since the two syntheses of dsRNA are investigated among experimental biologists from the
standpoint that the two syntheses could explain difference of RNAi between plants and animals. See
[2, 9] for the two syntheses of dsRNA.

3 RNAi as Chemical Reaction and Register Machines

In this section, we describe the register machine RMRNAi in Section 2 in terms of a rigorous computa-
tional language of stochastic process algebra. Chemical Ground Form (CGF) is introduced by Cardelli
[3] as a subset of π-calculus and of CCS [16] enriched with transition rates to channels. CGF models
collision between molecules by complementary synchronous interactions (input ? and output !) by with

channels with stochastic rates. The formal definition of CGF is as follows, where the notation
... separates

syntactical lists.
Definition 3.1 (Chemical Ground Form [3])
(Interaction Prefix )

π := τ(r)
... ?a(r)

... !a(r)
where τ for molecular decay and complementary ?a and !a for molecular inaction. The parenthesized
subscript (r) denotes reaction rate of the channel.
(parallel composition) ∣∣

(choice)
⊕

Parrnell composition
∣∣ models concurrent activities of events and choice ⊕ models race between events.
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Then a CGF is a pair (E,P) of a set E of reagents and a initial solution P. A reagent Xi = Mi for nam-
ing a chemical specie and molecules Mi for describing the interaction capabilities of the corresponding
species. Solution is a multiset of variables, which is released by interactions:

(Reagents) E := 0
... X = M,E (Molecule) M := 0

... π.P⊕M (Solution) P := 0
... X

∣∣ P

Computation of CGF is given in terms of Labelled Transition Graph of Definition 3.2. This is deter-
mined by reductions of the two kinds:
(decay of molecule) · · ·⊕ τ(r).Q⊕ · · · −→ Q
(collision of molecules) · · ·⊕?a(r).Q⊕ · · ·

∣∣ · · ·⊕?a(r).R⊕ · · · −→ Q
∣∣ R

Definition 3.2 (Labelled Transition Graph of CGF (Definition 3.2.1 of [3])) Given a CGF (E,P), Next(E,P)
is defined to consist of the following labelled transition, where P† denotes the normalized form of a pro-
cess P where the variables are sorted in lexicographical order.

- ({m.X .i} : P† →r S†) such that P†.m = X and E.X .i = τ(r).Q and S = P†\m
∣∣ Q.

- ({m.X .i,n.Y. j} : P† →r S†) such that P†.m = X and P†.n = Y and m $= n and E.X .i =?a(r).Q and
E.Y. j =!a(r).R and S = P†\m,n

∣∣ Q
∣∣ R.

The labelled transition graph LT G(E,P) of (E,P) is defined as follows:
LT G(E,P) = ∪nΨn with Ψ0 = Next(E,P) and Ψn+1 = ∪{Next(E,Q) | Q is a state of Ψn}
The increment operators on r1 and on r2 are realized by the following chemical reactions, where

mRNAab denotes an aberrant mRNA.
(Polymerization)

RdRp+mRNAab −→ dsRNA for r1

(Transcription)

−→mRNA for r2

After the reactions, we go to the next instruction Ii+1. Hence every increment instruction Ii = Inc(r j) is
formalized directly for j ∈ {1,2} as follows:
(Increment Ii = Inc(r j))

Ii = RdRp
∣∣ τ.Ii+1 j = 1

Ii = mRNA
∣∣ τ.Ii+1 j = 2

The more subtle part is decrement operators. The decrement operators on r1 and on r2 are realized by
the following chemical reactions:
(cleavage)

dsRNA+Dicer −→ siRNA′s for r1 (1)

(degradation)

mRNA+RISC −→ m̃RNA+RISC for r2 (2)

where in (2) m̃RNA denotes either 0 or mRNAab.
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Ii = RdRp
∣∣ τ.Ii+1 j = 1

Ii = mRNA
∣∣ τ.Ii+1 j = 2

The more subtle part is decrement operators. The decrement operators on r1 and on r2 are realized by
the following chemical reactions:
(cleavage)

dsRNA+Dicer −→ siRNA′s for r1 (1)

(degradation)

mRNA+RISC −→ m̃RNA+RISC for r2 (2)

where in (2) m̃RNA denotes either 0 or mRNAab.
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6 RNAi and Register Machines

The above chemical reactions guarantee that Dicer and RISC interact to the respective registers of
dsRNA and mRNA for the sake to eliminate each one of them. Although the two are the key agents for
the decrement of each registers, Dicer and RISC have a different nature observed in the above chemical
reactions: RISC is reused for degradation so that it retains its occurrence at right-hand-side of (2), while
Dicer catalyzes (1) by disappearing throughout the reaction (1).

In order for the registers to be decremented, we interpret registers as follows:
(Registers)
Register r1

dsRNA :=?a1.(siRNA
∣∣ · · ·

∣∣ siRNA)

Register r2

mRNA :=?a2.(τ.0⊕ τ .mRNAab)

They represent that dsRNA and mRNA disappear respectively by transforming into siRNAs and by degra-
dation or aberration.

If the chemical reaction happens in the presence of dsRNA (res. mRNA), then we proceed to the
instruction Ii+1. Otherwise (i.e., if the reaction does not take place due to the absence of dsRNA (res.
mRNA)), then we jump to the instruction Is. Thus in a primitive description of CGF, every decrement
instruction Ii = DecJump(r j,s) may be represented as follows:
(decrement instruction Ii = DecJump(r j,s))
j = 1

Ii =!a1.(0
∣∣ Ii+1)⊕ τ.Is with Dicer =!a1.(0

∣∣ Ii+1)

j = 2

Ii =!a2.(RISC|Ii+1)⊕ τ.Is with RISC=!a2.(RISC
∣∣ Ii+1)

The above recursive definition of RISC for j = 2 corresponds to the recycle of RISC described in the
degradation (2).

The above definition of decrement instructions has a certain error that the jump to Is accidentally
happens even if the register is non zero (i.e., in spite of the presence of the channel ?a j). The error is due
to the absence of zero-test of the registers in the above interpretations of decrement instructions, which
test though is impossible to be directly represented in terms of CGF. The absence is also discussed in
Soloveichik, et al.[23] for investigating stochastic chemical reaction networks. The lacking of zero-test
is a main origin of Turing incompleteness of CGF shown in [26] and in order to recover this, Cardelli-
Zavattaro presents Biochemical Ground Form [4] as minimalistic extension of CGF.

4 Recursive RNAi and Probabilistic Termination

In this section, we model recursive RNAi in order to improve the defect of Section 3 that the machine
interpretation RMRNAi has wrong jumps in terms of CGF. We extend RNAi mechanism into recursive
RNAi (recRNAi) so that its register machine interpretation RMrecRNAi in terms of CGF + fixed points
guarantees a probabilistic termination of the machine. In this extended mechanism, siRNAs produced
during the interference targets not only mRNA but also Dicer and RISC themselves. See Figure 3(a),
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... X
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Computation of CGF is given in terms of Labelled Transition Graph of Definition 3.2. This is deter-
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Definition 3.2 (Labelled Transition Graph of CGF (Definition 3.2.1 of [3])) Given a CGF (E,P), Next(E,P)
is defined to consist of the following labelled transition, where P† denotes the normalized form of a pro-
cess P where the variables are sorted in lexicographical order.
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E.Y. j =!a(r).R and S = P†\m,n
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The labelled transition graph LT G(E,P) of (E,P) is defined as follows:
LT G(E,P) = ∪nΨn with Ψ0 = Next(E,P) and Ψn+1 = ∪{Next(E,Q) | Q is a state of Ψn}
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The above chemical reactions guarantee that Dicer and RISC interact to the respective registers of
dsRNA and mRNA for the sake to eliminate each one of them. Although the two are the key agents for
the decrement of each registers, Dicer and RISC have a different nature observed in the above chemical
reactions: RISC is reused for degradation so that it retains its occurrence at right-hand-side of (2), while
Dicer catalyzes (1) by disappearing throughout the reaction (1).

In order for the registers to be decremented, we interpret registers as follows:
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mRNA :=?a2.(τ.0⊕ τ .mRNAab)

They represent that dsRNA and mRNA disappear respectively by transforming into siRNAs and by degra-
dation or aberration.

If the chemical reaction happens in the presence of dsRNA (res. mRNA), then we proceed to the
instruction Ii+1. Otherwise (i.e., if the reaction does not take place due to the absence of dsRNA (res.
mRNA)), then we jump to the instruction Is. Thus in a primitive description of CGF, every decrement
instruction Ii = DecJump(r j,s) may be represented as follows:
(decrement instruction Ii = DecJump(r j,s))
j = 1

Ii =!a1.(0
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j = 2
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The above recursive definition of RISC for j = 2 corresponds to the recycle of RISC described in the
degradation (2).

The above definition of decrement instructions has a certain error that the jump to Is accidentally
happens even if the register is non zero (i.e., in spite of the presence of the channel ?a j). The error is due
to the absence of zero-test of the registers in the above interpretations of decrement instructions, which
test though is impossible to be directly represented in terms of CGF. The absence is also discussed in
Soloveichik, et al.[23] for investigating stochastic chemical reaction networks. The lacking of zero-test
is a main origin of Turing incompleteness of CGF shown in [26] and in order to recover this, Cardelli-
Zavattaro presents Biochemical Ground Form [4] as minimalistic extension of CGF.

4 Recursive RNAi and Probabilistic Termination

In this section, we model recursive RNAi in order to improve the defect of Section 3 that the machine
interpretation RMRNAi has wrong jumps in terms of CGF. We extend RNAi mechanism into recursive
RNAi (recRNAi) so that its register machine interpretation RMrecRNAi in terms of CGF + fixed points
guarantees a probabilistic termination of the machine. In this extended mechanism, siRNAs produced
during the interference targets not only mRNA but also Dicer and RISC themselves. See Figure 3(a),
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8 RNAi and Register Machines

The decrement instruction is represented as follows together with interpretation of siRNA.

- (Decrement Ii = DecJump(r j, Is))

Ii = !a j.(0
∣∣ Ii+1)⊕ τ.(!s.Ii ⊕ τ .Is) (5)

siRNA = ?s.siRNA

In the above definition (5) of Ii, when j = 1 (res. j = 2), the left term !a j.(0
∣∣ Ii+1) corresponds to

Dicer (res. RISC) as an agent cleaving dsRNA (res. degrading mRNA) and the right term τ.(!s.Ii ⊕ Is)
corresponds to Dicer (res. RISC) as an agent being degraded by siRNA. Hence our definition of Ii is
intrinsic to the reciprocal interactions of Dicer and RISC, intrinsic to recursive RNAi in the presence of
siRNA.

The iterative definition of (5) is a fixed point definition of Ii in CGF by using agent variable X so that

Ii = fixX .[a.(0
∣∣ Ii+1)⊕ τ.(!s.X ⊕ τ .Is) ]

The fixed point definition stems from Zavattaro-Cardelli [26], but we point out that the definition has a
certain biological counter part as discussed above. We follow their line to obtain the main theorem of
this section by slightly modifying the corresponding result of [26].

Given a state (Ii,r1 = l1,r2 = l2) of register machine and a natural number h, the solution in RMrecRNAi

is defined by

(Ii,r1 = l1,r2 = l2) h := Ii
∣∣ ∏

l1
dsRNA

∣∣ ∏
l2
mRNA

∣∣ ∏
h
siRNA

where Ii on the right hand is that of Definition 4.1.
That is, (Ii,r1 = l1,r2 = l2) h is the encoding of the state in RMrecRNAi together with h iterative siRNAs.

Proposition 4.2 (corrrespondence of computations between machine and RMrecRNAi) Suppose a one
step computation of register machine is given by the following:

(Ii,r1 = l1,r2 = l2) "−→ (I j,r1 = l
′
1,r2 = l

′
2)

We have the following for the solutions of the two states of the computation:

- If l j = 0 and Ii = Inc(r j) or Ii =DecJump(r j,s), then the solution (Ii,r1 = l1,r2 = l2) h can reach

to the solution (I j,r1 = l ′1,r2 = l ′2)
†
h with the probability 1.

- If l j > 0 and Ii = DecJump(r j,s), the solution (Ii,r1 = l1,r2 = l2) h can reach to a solution

(I j,r1 = l ′1,r2 = l ′2)
†
k for some natural number k ≥ h+1 with the probability > 1− 1

h .

Proof.
- The case where l j = 0. Since the assertion is direct for Ii = Inc(r j), we demonstrate for Ii =DecJump(r j,s).
The probability for computations in RMrecRNAi pass through the solution of R.H.S. is

∞

∑
i=0

(
h

h+1
)i × 1

(h+1)
= 1

r1= r2=
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Decrement Instruction Ii makes an error !
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6 RNAi and Register Machines

The above chemical reactions guarantee that Dicer and RISC interact to the respective registers of
dsRNA and mRNA for the sake to eliminate each one of them. Although the two are the key agents for
the decrement of each registers, Dicer and RISC have a different nature observed in the above chemical
reactions: RISC is reused for degradation so that it retains its occurrence at right-hand-side of (2), while
Dicer catalyzes (1) by disappearing throughout the reaction (1).

In order for the registers to be decremented, we interpret registers as follows:
(Registers)
Register r1

dsRNA :=?a1.(siRNA
∣∣ · · ·

∣∣ siRNA)

Register r2

mRNA :=?a2.(τ.0⊕ τ .mRNAab)

They represent that dsRNA and mRNA disappear respectively by transforming into siRNAs and by degra-
dation or aberration.

If the chemical reaction happens in the presence of dsRNA (res. mRNA), then we proceed to the
instruction Ii+1. Otherwise (i.e., if the reaction does not take place due to the absence of dsRNA (res.
mRNA)), then we jump to the instruction Is. Thus in a primitive description of CGF, every decrement
instruction Ii = DecJump(r j,s) may be represented as follows:
(decrement instruction Ii = DecJump(r j,s))
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j = 2
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The above recursive definition of RISC for j = 2 corresponds to the recycle of RISC described in the
degradation (2).

The above definition of decrement instructions has a certain error that the jump to Is accidentally
happens even if the register is non zero (i.e., in spite of the presence of the channel ?a j). The error is due
to the absence of zero-test of the registers in the above interpretations of decrement instructions, which
test though is impossible to be directly represented in terms of CGF. The absence is also discussed in
Soloveichik, et al.[23] for investigating stochastic chemical reaction networks. The lacking of zero-test
is a main origin of Turing incompleteness of CGF shown in [26] and in order to recover this, Cardelli-
Zavattaro presents Biochemical Ground Form [4] as minimalistic extension of CGF.

4 Recursive RNAi and Probabilistic Termination

In this section, we model recursive RNAi in order to improve the defect of Section 3 that the machine
interpretation RMRNAi has wrong jumps in terms of CGF. We extend RNAi mechanism into recursive
RNAi (recRNAi) so that its register machine interpretation RMrecRNAi in terms of CGF + fixed points
guarantees a probabilistic termination of the machine. In this extended mechanism, siRNAs produced
during the interference targets not only mRNA but also Dicer and RISC themselves. See Figure 3(a),
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Due to the absence of zero-test against the registers, 　
which is related to Turing Incompleteness of CGF.
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Question:
How to probabilistically moderate the 

error jumps of RNAi in CGF ?

We propose:
•Theoretical idea of Inhibitors for the 
decrement instructions (motivated by 
Zavattaro-Cardelli 2008) 

• The inhibitors are realized by a 
biological extension of  Recursive RNAi ! 
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siRNAs floating/growing during the 
interference are to be taken into account !

Masahiro Hamano, C. Author 7

whose left hand is the usual RNAi but siRNAs are produced not only by Dicer but also by RISC’s degrad-
ing mRNA. The right hand of Figure 3(a) describes inhibition arrows from the right most siRNA to Dicer
and to RISC in the circle. The mechanism is called recursive because RISC complex containing siRNA
is not only for degrading but also for being degraded. With the recursiveness of RNAi, the defect of the
decrement operators of Section 3 to have wrong jumps is ameliorated so that siRNAs growing during
RNAi work as inhibitors of the decrement operators.
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Figure 3: Recursive RNAi

In recRNAi, the chemical reactions involved in Dicer and in RISC are not only (1) and (2) respectively
but also the following (3) and (4), respectively.

- (degradation of Dicer)

siRNA+Dicer −→ 0 (3)

- (degradation of RISC)

siRNA+RISC −→ 0 (4)

(1) and (3) provide reciprocal interactions on Dicer such that Dicer either makes dsRNA disappear by
cleavage or Dicer is degraded by siRNA. Similar reciprocal interactions (2) and (4) for RISC. See Figure
3(b), for these reciprocal interactions for Dicer and RISC, each of which concerns a register r j with
j ∈ {1,2} and the arrows are for inhibitions.

We interpret recRNAi into a register machine RMrecRNAi in terms of CGF with fixed points.

Definition 4.1 (RMrecRNAi in CGF with fixed points)
RMrecRNAi is interpreted in CGF as follows:

- Registers and Ii = Inc(r j) are the same as Section 3: That is
- (Register r1)

dsRNA :=?a1.(siRNA
∣∣ · · ·

∣∣ siRNA)

- (Register r2)
mRNA :=?a2.(τ .0⊕ τ .mRNAab)

- (Increment Ii = Inc(r j))

Ii = RdRp
∣∣ τ .Ii+1 j = 1

Ii = mRNA
∣∣ τ.Ii+1 j = 2

For recursive RNAi,
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cleavage or Dicer is degraded by siRNA. Similar reciprocal interactions (2) and (4) for RISC. See Figure
3(b), for these reciprocal interactions for Dicer and RISC, each of which concerns a register r j with
j ∈ {1,2} and the arrows are for inhibitions.

We interpret recRNAi into a register machine RMrecRNAi in terms of CGF with fixed points.

Definition 4.1 (RMrecRNAi in CGF with fixed points)
RMrecRNAi is interpreted in CGF as follows:

- Registers and Ii = Inc(r j) are the same as Section 3: That is
- (Register r1)

dsRNA :=?a1.(siRNA
∣∣ · · ·

∣∣ siRNA)

- (Register r2)
mRNA :=?a2.(τ .0⊕ τ .mRNAab)

- (Increment Ii = Inc(r j))

Ii = RdRp
∣∣ τ .Ii+1 j = 1

Ii = mRNA
∣∣ τ.Ii+1 j = 2

siRNA inhibits (not only mRNA but also) Dicer and RISC.
I.e., siRNA inhibits the decrement instructions.

Xie Z, Kasschau KD, Carrington JC, Negative feedback regulation of Dicer-like1 
in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol (2003) 

feedback linkage in RNAi
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recRNAi in CGF with Fixed Points 

8 RNAi and Register Machines

The decrement instruction is represented as follows together with interpretation of siRNA.

- (Decrement Ii = DecJump(r j, Is))

Ii = !a j.(0
∣∣ Ii+1)⊕ τ.(!s.Ii ⊕ τ .Is) (5)

siRNA = ?s.siRNA

In the above definition (5) of Ii, when j = 1 (res. j = 2), the left term !a j.(0
∣∣ Ii+1) corresponds to

Dicer (res. RISC) as an agent cleaving dsRNA (res. degrading mRNA) and the right term τ.(!s.Ii ⊕ Is)
corresponds to Dicer (res. RISC) as an agent being degraded by siRNA. Hence our definition of Ii is
intrinsic to the reciprocal interactions of Dicer and RISC, intrinsic to recursive RNAi in the presence of
siRNA.

The iterative definition of (5) is a fixed point definition of Ii in CGF by using agent variable X so that

Ii = fixX .[a.(0
∣∣ Ii+1)⊕ τ.(!s.X ⊕ τ .Is) ]

The fixed point definition stems from Zavattaro-Cardelli [26], but we point out that the definition has a
certain biological counter part as discussed above. We follow their line to obtain the main theorem of
this section by slightly modifying the corresponding result of [26].

Given a state (Ii,r1 = l1,r2 = l2) of register machine and a natural number h, the solution in RMrecRNAi

is defined by

(Ii,r1 = l1,r2 = l2) h := Ii
∣∣ ∏

l1
dsRNA

∣∣ ∏
l2
mRNA

∣∣ ∏
h
siRNA

where Ii on the right hand is that of Definition 4.1.
That is, (Ii,r1 = l1,r2 = l2) h is the encoding of the state in RMrecRNAi together with h iterative siRNAs.

Proposition 4.2 (corrrespondence of computations between machine and RMrecRNAi) Suppose a one
step computation of register machine is given by the following:

(Ii,r1 = l1,r2 = l2) "−→ (I j,r1 = l
′
1,r2 = l

′
2)

We have the following for the solutions of the two states of the computation:

- If l j = 0 and Ii = Inc(r j) or Ii =DecJump(r j,s), then the solution (Ii,r1 = l1,r2 = l2) h can reach

to the solution (I j,r1 = l ′1,r2 = l ′2)
†
h with the probability 1.

- If l j > 0 and Ii = DecJump(r j,s), the solution (Ii,r1 = l1,r2 = l2) h can reach to a solution

(I j,r1 = l ′1,r2 = l ′2)
†
k for some natural number k ≥ h+1 with the probability > 1− 1

h .

Proof.
- The case where l j = 0. Since the assertion is direct for Ii = Inc(r j), we demonstrate for Ii =DecJump(r j,s).
The probability for computations in RMrecRNAi pass through the solution of R.H.S. is

∞

∑
i=0

(
h

h+1
)i × 1

(h+1)
= 1
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The calculation corresponds to the following diagram:

l j = 0 Ii
1 !! •
h

""
1 !! Is = I j

- The case where l j != 0.
The probability for computations in RMrecRNAi pass through the solution of R.H.S. is

∞

∑
i=0

(
1

l j +1
× h

h+1
)i ×

l j

l j +1
> 1− 1

h

See the following diagram for the calculation:

l j != 0 Ii
1 !!

l j ##!
!!

!!
!!

!!
! •

h
""

1 !! Is

Ii+1 = I j

!
We have the main theorem of this section.

Theorem 4.3 (probabilistic termination) The following are equivalent:

- A Minsky register machine starting from a state (I j,r1 = l1,r2 = l2) terminates.

- A CGF (RMrecRNAi, (I j,r1 = l1,r2 = l2) h) probabilistically terminates with probability

> 1−
∞

∑
k=h

1
k
.

Proof. Note first that after the execution of a decrement instruction, the number of siRNA increases
at lease one. This is because at least one siRNA is produced by Dicer cleavage or by RISC’s degrading
mRNA. By Proposition 4.2 a computation of register machine containing d decrement instructions is
faithfully reproduced with probability greater than the following:

(1− 1
h
)(1− 1

h+ k1
) · · ·(1− 1

h+ k1 + · · ·+ kd
) ≥ ∏h+d

k=h(1−
1
k ) > 1−

h+d

∑
k=h

1
k

where ki ≥ 1 is the number of siRNAs produced by the corresponding decrement instruction. !

5 Precise Embedding of Register Machine into CGF with Delayed Inputs

In this section, we investigate a minimal extension over CGF to gain Turing completeness. For this, we
extend CGF by allowing a new kind of interaction, delayed inputs among entangled channels of CGF.
Our extended system is naturally induced by delayed inputs system of π-calculus (Section 10.4 of [22]),
given that CGF is a subsystem of π-calculus with reaction rates. The related systems are investigated in
Milner’s synchronous version of π-calculus [17] and πε -calculus (enabled pi) of [24]. We augment two
features, (self communication) and (guarding), which are not present in CGF.
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8 RNAi and Register Machines

The decrement instruction is represented as follows together with interpretation of siRNA.

- (Decrement Ii = DecJump(r j, Is))

Ii = !a j.(0
∣∣ Ii+1)⊕ τ.(!s.Ii ⊕ τ .Is) (5)

siRNA = ?s.siRNA

In the above definition (5) of Ii, when j = 1 (res. j = 2), the left term !a j.(0
∣∣ Ii+1) corresponds to

Dicer (res. RISC) as an agent cleaving dsRNA (res. degrading mRNA) and the right term τ.(!s.Ii ⊕ Is)
corresponds to Dicer (res. RISC) as an agent being degraded by siRNA. Hence our definition of Ii is
intrinsic to the reciprocal interactions of Dicer and RISC, intrinsic to recursive RNAi in the presence of
siRNA.

The iterative definition of (5) is a fixed point definition of Ii in CGF by using agent variable X so that

Ii = fixX .[a.(0
∣∣ Ii+1)⊕ τ.(!s.X ⊕ τ .Is) ]

The fixed point definition stems from Zavattaro-Cardelli [26], but we point out that the definition has a
certain biological counter part as discussed above. We follow their line to obtain the main theorem of
this section by slightly modifying the corresponding result of [26].

Given a state (Ii,r1 = l1,r2 = l2) of register machine and a natural number h, the solution in RMrecRNAi

is defined by

(Ii,r1 = l1,r2 = l2) h := Ii
∣∣ ∏

l1
dsRNA

∣∣ ∏
l2
mRNA

∣∣ ∏
h
siRNA

where Ii on the right hand is that of Definition 4.1.
That is, (Ii,r1 = l1,r2 = l2) h is the encoding of the state in RMrecRNAi together with h iterative siRNAs.

Proposition 4.2 (corrrespondence of computations between machine and RMrecRNAi) Suppose a one
step computation of register machine is given by the following:

(Ii,r1 = l1,r2 = l2) "−→ (I j,r1 = l
′
1,r2 = l

′
2)

We have the following for the solutions of the two states of the computation:

- If l j = 0 and Ii = Inc(r j) or Ii =DecJump(r j,s), then the solution (Ii,r1 = l1,r2 = l2) h can reach

to the solution (I j,r1 = l ′1,r2 = l ′2)
†
h with the probability 1.

- If l j > 0 and Ii = DecJump(r j,s), the solution (Ii,r1 = l1,r2 = l2) h can reach to a solution

(I j,r1 = l ′1,r2 = l ′2)
†
k for some natural number k ≥ h+1 with the probability > 1− 1

h .

Proof.
- The case where l j = 0. Since the assertion is direct for Ii = Inc(r j), we demonstrate for Ii =DecJump(r j,s).
The probability for computations in RMrecRNAi pass through the solution of R.H.S. is

∞

∑
i=0

(
h

h+1
)i × 1

(h+1)
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The calculation corresponds to the following diagram:

l j = 0 Ii
1 !! •
h

""
1 !! Is = I j

- The case where l j != 0.
The probability for computations in RMrecRNAi pass through the solution of R.H.S. is

∞

∑
i=0

(
1

l j +1
× h

h+1
)i ×

l j

l j +1
> 1− 1

h

See the following diagram for the calculation:

l j != 0 Ii
1 !!

l j ##!
!!

!!
!!

!!
! •

h
""

1 !! Is

Ii+1 = I j

!
We have the main theorem of this section.

Theorem 4.3 (probabilistic termination) The following are equivalent:

- A Minsky register machine starting from a state (I j,r1 = l1,r2 = l2) terminates.

- A CGF (RMrecRNAi, (I j,r1 = l1,r2 = l2) h) probabilistically terminates with probability

> 1−
∞

∑
k=h

1
k
.

Proof. Note first that after the execution of a decrement instruction, the number of siRNA increases
at lease one. This is because at least one siRNA is produced by Dicer cleavage or by RISC’s degrading
mRNA. By Proposition 4.2 a computation of register machine containing d decrement instructions is
faithfully reproduced with probability greater than the following:

(1− 1
h
)(1− 1

h+ k1
) · · ·(1− 1

h+ k1 + · · ·+ kd
) ≥ ∏h+d

k=h(1−
1
k ) > 1−

h+d

∑
k=h

1
k

where ki ≥ 1 is the number of siRNAs produced by the corresponding decrement instruction. !

5 Precise Embedding of Register Machine into CGF with Delayed Inputs

In this section, we investigate a minimal extension over CGF to gain Turing completeness. For this, we
extend CGF by allowing a new kind of interaction, delayed inputs among entangled channels of CGF.
Our extended system is naturally induced by delayed inputs system of π-calculus (Section 10.4 of [22]),
given that CGF is a subsystem of π-calculus with reaction rates. The related systems are investigated in
Milner’s synchronous version of π-calculus [17] and πε -calculus (enabled pi) of [24]. We augment two
features, (self communication) and (guarding), which are not present in CGF.
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Milner’s synchronous version of π-calculus [17] and πε -calculus (enabled pi) of [24]. We augment two
features, (self communication) and (guarding), which are not present in CGF.

2012年9月8日土曜日



Probabilistic Termination

• Register Machine  starting from             
terminates.

• RecRNAI starting from                       
probabilistically terminates with probability

Masahiro Hamano, C. Author 9

The calculation corresponds to the following diagram:

l j = 0 Ii
1 !! •
h

""
1 !! Is = I j

- The case where l j != 0.
The probability for computations in RMrecRNAi pass through the solution of R.H.S. is

∞

∑
i=0

(
1

l j +1
× h

h+1
)i ×

l j

l j +1
> 1− 1

h

See the following diagram for the calculation:

l j != 0 Ii
1 !!

l j ##!
!!

!!
!!

!!
! •

h
""

1 !! Is

Ii+1 = I j

!
We have the main theorem of this section.

Theorem 4.3 (probabilistic termination) The following are equivalent:

- A Minsky register machine starting from a state (I j,r1 = l1,r2 = l2) terminates.

- A CGF (RMrecRNAi, (I j,r1 = l1,r2 = l2) h) probabilistically terminates with probability

> 1−
∞

∑
k=h

1
k
.

Proof. Note first that after the execution of a decrement instruction, the number of siRNA increases
at lease one. This is because at least one siRNA is produced by Dicer cleavage or by RISC’s degrading
mRNA. By Proposition 4.2 a computation of register machine containing d decrement instructions is
faithfully reproduced with probability greater than the following:

(1− 1
h
)(1− 1

h+ k1
) · · ·(1− 1

h+ k1 + · · ·+ kd
) ≥ ∏h+d

k=h(1−
1
k ) > 1−

h+d

∑
k=h

1
k

where ki ≥ 1 is the number of siRNAs produced by the corresponding decrement instruction. !

5 Precise Embedding of Register Machine into CGF with Delayed Inputs

In this section, we investigate a minimal extension over CGF to gain Turing completeness. For this, we
extend CGF by allowing a new kind of interaction, delayed inputs among entangled channels of CGF.
Our extended system is naturally induced by delayed inputs system of π-calculus (Section 10.4 of [22]),
given that CGF is a subsystem of π-calculus with reaction rates. The related systems are investigated in
Milner’s synchronous version of π-calculus [17] and πε -calculus (enabled pi) of [24]. We augment two
features, (self communication) and (guarding), which are not present in CGF.

Masahiro Hamano, C. Author 9

The calculation corresponds to the following diagram:

l j = 0 Ii
1 !! •
h

""
1 !! Is = I j

- The case where l j != 0.
The probability for computations in RMrecRNAi pass through the solution of R.H.S. is

∞

∑
i=0

(
1

l j +1
× h

h+1
)i ×

l j

l j +1
> 1− 1

h

See the following diagram for the calculation:

l j != 0 Ii
1 !!

l j ##!
!!

!!
!!

!!
! •

h
""

1 !! Is

Ii+1 = I j

!
We have the main theorem of this section.

Theorem 4.3 (probabilistic termination) The following are equivalent:

- A Minsky register machine starting from a state (I j,r1 = l1,r2 = l2) terminates.

- A CGF (RMrecRNAi, (I j,r1 = l1,r2 = l2) h) probabilistically terminates with probability

> 1−
∞

∑
k=h

1
k
.

Proof. Note first that after the execution of a decrement instruction, the number of siRNA increases
at lease one. This is because at least one siRNA is produced by Dicer cleavage or by RISC’s degrading
mRNA. By Proposition 4.2 a computation of register machine containing d decrement instructions is
faithfully reproduced with probability greater than the following:

(1− 1
h
)(1− 1

h+ k1
) · · ·(1− 1

h+ k1 + · · ·+ kd
) ≥ ∏h+d

k=h(1−
1
k ) > 1−

h+d

∑
k=h

1
k

where ki ≥ 1 is the number of siRNAs produced by the corresponding decrement instruction. !

5 Precise Embedding of Register Machine into CGF with Delayed Inputs

In this section, we investigate a minimal extension over CGF to gain Turing completeness. For this, we
extend CGF by allowing a new kind of interaction, delayed inputs among entangled channels of CGF.
Our extended system is naturally induced by delayed inputs system of π-calculus (Section 10.4 of [22]),
given that CGF is a subsystem of π-calculus with reaction rates. The related systems are investigated in
Milner’s synchronous version of π-calculus [17] and πε -calculus (enabled pi) of [24]. We augment two
features, (self communication) and (guarding), which are not present in CGF.

Masahiro Hamano, C. Author 9

The calculation corresponds to the following diagram:

l j = 0 Ii
1 !! •
h

""
1 !! Is = I j

- The case where l j != 0.
The probability for computations in RMrecRNAi pass through the solution of R.H.S. is

∞

∑
i=0

(
1

l j +1
× h

h+1
)i ×

l j

l j +1
> 1− 1

h

See the following diagram for the calculation:

l j != 0 Ii
1 !!

l j ##!
!!

!!
!!

!!
! •

h
""

1 !! Is

Ii+1 = I j

!
We have the main theorem of this section.

Theorem 4.3 (probabilistic termination) The following are equivalent:

- A Minsky register machine starting from a state (I j,r1 = l1,r2 = l2) terminates.

- A CGF (RMrecRNAi, (I j,r1 = l1,r2 = l2) h) probabilistically terminates with probability

> 1−
∞

∑
k=h

1
k
.

Proof. Note first that after the execution of a decrement instruction, the number of siRNA increases
at lease one. This is because at least one siRNA is produced by Dicer cleavage or by RISC’s degrading
mRNA. By Proposition 4.2 a computation of register machine containing d decrement instructions is
faithfully reproduced with probability greater than the following:

(1− 1
h
)(1− 1

h+ k1
) · · ·(1− 1

h+ k1 + · · ·+ kd
) ≥ ∏h+d

k=h(1−
1
k ) > 1−

h+d

∑
k=h

1
k

where ki ≥ 1 is the number of siRNAs produced by the corresponding decrement instruction. !

5 Precise Embedding of Register Machine into CGF with Delayed Inputs

In this section, we investigate a minimal extension over CGF to gain Turing completeness. For this, we
extend CGF by allowing a new kind of interaction, delayed inputs among entangled channels of CGF.
Our extended system is naturally induced by delayed inputs system of π-calculus (Section 10.4 of [22]),
given that CGF is a subsystem of π-calculus with reaction rates. The related systems are investigated in
Milner’s synchronous version of π-calculus [17] and πε -calculus (enabled pi) of [24]. We augment two
features, (self communication) and (guarding), which are not present in CGF.

The following is equivalent

2012年9月8日土曜日



Table of Contents

• RNA interference (RNAi)               

• Naive Interpretation of RNAi in Minsky Register 
Machine

• RNAi as Chemical Reactions (Chemical Ground 
Form)

• Recursive RNAi and Probabilistic Termination 

• Chemical Ground Form with Delayed Inputs• Chemical Ground Form with Delayed Inputs

2012年9月8日土曜日



Turing Complete Extensions of CGF

CGF

BGF
(Biochemical GF)

CGF
with  delayed Inputs

association/dissociation
of agents

We propose
Cardelli-Zavattaro  (2010)

2012年9月8日土曜日



Delayed Inputs 
(for "-calculus) van Breugel '97 , Merro-Sangiorgi '98

• Self Communication

• Guarding

!a. (?a. P !  M) " P 

 ?b. R ! N # !a. (?a. P !  M) " ?b. R ! N # P  

only if b ≠ a. 
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Precise Encoding of RM into CGF with Delayed Inputs

• DecJump Instruction   Ii

• Registers 

By entanglling channels, 

10 RNAi and Register Machines

We first extend the definition of molecules of CGF to allow nesting inputs and outputs:

(Molecule) M := 0
... π.P⊕M

... π.M

The first feature enables a process to communicate with itself. This arises by entangling prefixes of
inputs and outputs. In its simple form, self communication amounts to
( Self Communication )

!a.(?a.P⊕M) −→ P

The second feature is for regulating the first feature so that self communication is inert while there is
a complementary channel outside. In its simple form, guarding amounts to
( Guarding )
The following self communication is enabled only when b $= a.

?b.R⊕N
∣∣!a.(?a.P⊕M) −→ ?b.R⊕N

∣∣ P

That is, when b = a, the self communication is guarded.

The two additional features are formally specified in terms of LTG for the extended system:

Definition 5.1 (Labelled Transition Graph for CGF with delayed inputs) Given a CGF (E,P) with
delayed inputs, Next(E,P) is defined to consist of the labelled transitions defined in Definition 3.2 to-
gether with the following labelled transition:

- ({m.X .i j} : P† →r S†) such that P†.m = X and E.X .i =!a(r).Q and Q j =?a(r).Q̄ and S = P†\m
∣∣ Q̄.

This transition is subject to the following guarding condition:

∀n $= m ∀i no prefix of E.Y.i is ?a(r) with Y = P†n

CGF with delayed inputs provides a precise encoding of Minsky Register Machine:

Definition 5.2 (encoding of register machine in CGF with delayed inputs)
- (Register r j holding a number l j)

r j =

l j︷ ︸︸ ︷
?a j.?b.0

∣∣ · · ·
∣∣?a j.?b.0

- (Instructions Ii of two kinds)

Ii = Inc(r j) = τ .(!a j.0
∣∣ Ii+1)

Ii = DecJump(r j,s) = !a j.(?a j.Is⊕!b.Ii+1) (6)

The preciseness of the encoding of Definition 5.2 is shown for the decrement instruction as follows:

- (The case where l j = 0)
In the absence of ?a j.b.0, the decrement instruction (6) communicates by itself through the outer-
most !a j

!a j.(?a j.Is⊕?b.Ii+1) −→ Is
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Preciseness
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- (The case where l j != 0)
In the presence of ?a j.b.0, the decrement instruction (6) interacts to the register r j we have

?a j.?b.0
∣∣ DecJump(r j,s)

which is reduced to the following:

?a j.?b.0
∣∣!a j.(?a j.Is⊕!b.Ii+1) −→ ?b.0

∣∣?a j.Is⊕!b.Ii+1

−→ 0
∣∣ Ii+1

Formally, a state (Ii,r1 = l1,r2 = l2) of Minsky Register Machine is encoded in CGF with delayed inputs
by

(Ii,r1 = l1,r2 = l2) := Ii
∣∣ ∏

l1
?a1.?b.0

∣∣ ∏
l2

?a2.?b.0

where Ii on the right hand is that of Definition 5.2.
Then the preciseness of the encoding shown above proves the following theorem.

Theorem 5.3 (correctness) Suppose a one step computation of register machine is given

(Ii,r1 = l1,r2 = l2) %−→ (I j,r1 = l
′
1,r2 = l

′
2).

Then the solution (Ii,r1 = l1,r2 = l2) reaches deterministically to the solution (I j,r1 = l ′1,r2 = l ′2)
†.

Corollary 5.4 CGF with delayed inputs is Turing complete.

6 Conclusion and Future Works

In this paper, RNAi is represented by register machine RMRNAi by virtue of multi-strand formations
to which RNAs take (Section 2). A stochastic process algebra CGF provides a primitive description
of RMRNAi (Section 3). In order to prevent errors caused by the description, recursive RNAi is shown
to realize a biological counterpart of inhibitors of the machine so that siRNAs growing during RNAi
targets to the decrement instructions (Section 4). A probabilistic termination is obtained in the recursive
RNAi (Theorem 4.3). As a completion of CGF to gain Turing completeness, CGF with delayed inputs is
presented (Section 5).

As a future work, we are interested in investigating RNAi with another biological pathway of primer
dependent synthesis of dsRNA [19]. The pathway is also for maintaining the circularity depicted in Intro-
duction. While polymerization considered in this paper is primer independent so that dsRNA is directly
duplicated without any primer, in the primer dependent one, polymerization for producing dsRNA is trig-
gered by siRNA, which enables RdRp to copy non-aberrant mRNA. Computational meaning of RNAi
with primer dep. synthesis is much more involved because siRNA does not only work for inhibitor but
also for trigger to produce the initiator of dsRNA. Comparison of the two pathways is an important topic
for experimental biology in order to explain difference of RNAi between plants and animal [1, 2, 7, 19].

From an aspect on computational language, it is an interesting future work how the κ-calculus [5, 6]
captures recRNAi. The κ-calculus is known to be a Turing complete fragment of the stochastic π-
calculus, and the author of this paper in [9] shows that the rule based modelling of κ-calculus provides a
compact description to discriminate the two syntheses for dsRNA.
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